
14

Analysis Techniques

This book contains many examples of asymptotic analysis of the time requirements
for algorithms and the space requirements for data structures. Often it is easy to
invent an equation to model the behavior of the algorithm or data structure in ques-
tion, and also easy to derive a closed-form solution for the equation should it con-
tain a recurrence or summation.

Sometimes an analysis proves more difficult. It may take a clever insight to de-
rive the right model, such as the snowplow argument for analyzing the average run
length resulting from Replacement Selection (Section 8.5.2). In this case, once the
snowplow argument is understood, the resulting equations are simple. Sometimes,
developing the model is straightforward but analyzing the resulting equations is
not. An example is the average-case analysis for Quicksort. The equation given
in Section 7.5 simply enumerates all possible cases for the pivot position, sum-
ming corresponding costs for the recursive calls to Quicksort. However, deriving a
closed-form solution for the resulting recurrence relation is not as easy.

Many iterative algorithms require that we compute a summation to determine
the cost of a loop. Techniques for finding closed-form solutions to summations
are presented in Section 14.1. Time requirements for many algorithms based on
recursion are best modeled by recurrence relations. A discussion of techniques for
solving recurrences is provided in Section 14.2. These sections extend the introduc-
tion to summations and recurrences provided in Section 2.4, so the reader should
already be familiar with that material.

Section 14.3 provides an introduction to the topic of amortized analysis. Am-
ortized analysis deals with the cost of a series of operations. Perhaps a single opera-
tion in the series has high cost, but as a result the cost of the remaining operations is
limited in such a way that the entire series can be done efficiently. Amortized anal-
ysis has been used successfully to analyze several of the algorithms presented in

481

482 Chap. 14 Analysis Techniques

this book, including the cost of a series of UNION/FIND operations (Section 6.2),
the cost of a series of splay tree operations (Section 13.2), and the cost of a series
of operations on self-organizing lists (Section 9.2). Section 14.3 discusses the topic
in more detail.

14.1 Summation Techniques

We begin our study of techniques for finding the closed-form solution to a summa-
tion by considering the simple example

n∑
i=1

i.

In Section 2.6.3 it was proved by induction that this summation has the well-known
closed form n(n + 1)/2. But while induction is a good technique for proving that
a proposed closed-form expression is correct, how do we find a candidate closed-
form expression to test in the first place? Let us try to approach this summation
from first principles, as though we had never seen it before.

A good place to begin analyzing a summation it is to give an estimate of its
value for a given n. Observe that the biggest term for this summation is n, and
there are n terms being summed up. So the total must be less than n2. Actually,
most terms are much less than n, and the sizes of the terms grows linearly. If we
were to draw a picture with bars for the size of the terms, their heights would form a
line, and we could enclose them in a box n units wide and n units high. It is easy to
see from this that a closer estimate for the summation is about (n2)/2. Having this
estimate in hand helps us when trying to determine an exact closed-form solution,
because we will hopefully recognize if our proposed solution is badly wrong.

Let us now consider some ways that we might hit upon an exact value for the
closed form solution to this summation. One particularly clever approach we can
take is to observe that we can “pair up” the first and last terms, the second and
(n − 1)th terms, and so on. Each pair sums to n + 1. The number of pairs is n/2.
Thus, the solution is n(n + 1)/2. This is pretty, and there’s no doubt about it being
correct. The problem is that it is not a useful technique for solving many other
summations.

Now let us try to do something a bit more general. We already recognized
that, because the largest term is n and there are n terms, the summation is less
than n2. If we are lucky, the closed form solution is a polynomial. Using that as
a working assumption, we can invoke a technique called guess-and-test. We will
guess that the closed-form solution for this summation is a polynomial of the form

Sec. 14.1 Summation Techniques 483

c1n
2 + c2n + c3 for some constants c1, c2, and c3. If this is the case, we can plug

in the answers to small cases of the summation to solve for the coefficients. For
this example, substituting 0, 1, and 2 for n leads to three simultaneous equations.
Because the summation when n = 0 is just 0, c3 must be 0. For n = 1 and n = 2
we get the two equations

c1 + c2 = 1

4c1 + 2c2 = 3,

which in turn yield c1 = 1/2 and c2 = 1/2. Thus, if the closed-form solution for
the summation is a polynomial, it can only be

1/2n2 + 1/2n + 0

which is more commonly written

n(n + 1)
2

.

At this point, we still must do the “test” part of the guess-and-test approach.
We can use an induction proof to verify whether our candidate closed-form solu-
tion is correct. In this case it is indeed correct, as shown by Example 2.11. The
induction proof is necessary because our initial assumption that the solution is a
simple polynomial could be wrong. For example, it might have been possible that
the true solution includes a logarithmic term, such as c1n

2 +c2n log n. The process
shown here is essentially fitting a curve to a fixed number of points. Because there
is always an n-degree polynomial that fits n + 1 points, we had not done enough
work to be sure that we to know the true equation without the induction proof.

Guess-and-test is useful whenever the solution is a polynomial expression. In
particular, similar reasoning can be used to solve for

∑n
i=1 i2, or more generally∑n

i=1 ic for c any positive integer. Why is this not a universal approach to solving
summations? Because many summations do not have a polynomial as their closed
form solution.

A more general approach is based on the subtract-and-guess or divide-and-
guess strategies. One form of subtract-and-guess is known as the shifting method.
The shifting method subtracts the summation from a variation on the summation.
The variation selected for the subtraction should be one that makes most of the
terms cancel out. To solve sum f , we pick a known function g and find a pattern in
terms of f(n)− g(n) or f(n)/g(n).

484 Chap. 14 Analysis Techniques

Example 14.1 Find the closed form solution for
∑n

i=1 i using the divide-
and-guess approach. We will try two example functions to illustrate the
divide-and-guess method: dividing by n and dividing by f(n − 1). Our
goal is to find patterns that we can use to guess a closed-form expression as
our candidate for testing with an induction proof. To aid us in finding such
patterns, we can construct a table showing the first few numbers of each
function, and the result of dividing one by the other, as follows.

n 1 2 3 4 5 6 7 8 9 10
f(n) 1 3 6 10 15 21 28 36 46 57

n 1 2 3 4 5 6 7 8 9 10
f(n)/n 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 11/2

f(n− 1) 0 1 3 6 10 15 21 28 36 46
f(n)/f(n− 1) 3/1 4/2 5/3 6/4 7/5 8/6 9/7 10/8 11/9

Dividing by both n and f(n − 1) happen to give us useful patterns to
work with. f(n)

n = n+1
2 , and f(n)

f(n−1) = n+1
n−1 . Of course, lots of other

approaches do not work. For example, f(n)−n = f(n−1). Knowing that
f(n) = f(n−1)+n is not useful for determining the closed form solution
to this summation. Or consider f(n) − f(n − 1) = n. Again, knowing
that f(n) = f(n − 1) + n is not useful. Finding the right combination of
equations can be like finding a needle in a haystack.

In our first example, we can see directly what the closed-form solution
should be.

f(n)
n

=
n + 1

2

Obviously, f(n) = n(n + 1)/2.
Dividing f(n) by f(n − 1) does not give so obvious a result, but it

provides another useful illustration.

f(n)
f(n− 1)

=
n + 1
n− 1

f(n)(n− 1) = (n + 1)f(n− 1)

f(n)(n− 1) = (n + 1)(f(n)− n)

nf(n)− f(n) = nf(n) + f(n)− n2 − n

2f(n) = n2 + n = n(n + 1)

f(n) =
n(n + 1)

2

Sec. 14.1 Summation Techniques 485

Once again, we still do not have a proof that f(n) = n(n+1)/2. Why?
Because we did not prove that f(n)/n = (n + 1)/2 nor that f(n)/f(n −
1) = (n + 1)(n − 1). We merely hypothesized patterns from looking at a
few terms. Fortunately, it is easy to check our hypothesis with induction.

Example 14.2 Solve the summation

F (n) =
n∑

i=0

ari = a + ar + ar2 + · · ·+ arn.

This is called a geometric series. Our goal is to find some variation for
F (n) such that subtracting one from the other leaves us with an easily ma-
nipulated equation. Because the difference between consecutive terms of
the summation is a factor of r, we can shift terms if we multiply the entire
expression by r:

rF (n) = r

n∑
i=0

ari = ar + ar2 + ar3 + · · ·+ arn+1.

We can now subtract the one equation from the other, as follows:

F (n)− rF (n) = a + ar + ar2 + ar3 + · · ·+ arn

− (ar + ar2 + ar3 + · · ·+ arn)− arn+1.

The result leaves only the end terms:

F (n)− rF (n) =
n∑

i=0

ari − r

n∑
i=0

ari.

(1− r)F (n) = a− arn+1.

Thus, we get the result

F (n) =
a− arn+1

1− r

where r 6= 1.

486 Chap. 14 Analysis Techniques

Example 14.3 For our second example of the shifting method, we solve

F (n) =
n∑

i=1

i2i = 1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n.

We can achieve our goal if we multiply by two:

2F (n) = 2
n∑

i=1

i2i = 1 · 22 + 2 · 23 + 3 · 24 + · · ·+ (n− 1) · 2n + n · 2n+1.

The ith term of 2F (n) is i · 2i+1, while the (i + 1)th term of F (n) is
(i + 1) · 2i+1. Subtracting one expression from the other yields the sum-
mation of 2i and a few non-canceled terms:

2F (n)− F (n) = 2
n∑

i=1

i2i −
n∑

i=1

i2i

=
n∑

i=1

i2i+1 −
n∑

i=1

i2i.

Shift i’s value in the second summation, substituting (i + 1) for i:

= n2n+1 +
n−1∑
i=0

i2i+1 −
n−1∑
i=0

(i + 1)2i+1.

Break the second summation into two parts:

= n2n+1 +
n−1∑
i=0

i2i+1 −
n−1∑
i=0

i2i+1 −
n−1∑
i=0

2i+1.

Cancel like terms:

= n2n+1 −
n−1∑
i=0

2i+1.

Again shift i’s value in the summation, substituting i for (i + 1):

= n2n+1 −
n∑

i=1

2i.

Replace the new summation with a solution that we already know:
= n2n+1 −

(
2n+1 − 2

)
.

Finally, reorganize the equation:
= (n− 1)2n+1 + 2.

Sec. 14.2 Recurrence Relations 487

14.2 Recurrence Relations

Recurrence relations are often used to model the cost of recursive functions. For
example, the standard Mergesort (Section 7.4) takes a list of size n, splits it in half,
performs Mergesort on each half, and finally merges the two sublists in n steps.
The cost for this can be modeled as

T(n) = 2T(n/2) + n.

In other words, the cost of the algorithm on input of size n is two times the cost for
input of size n/2 (due to the two recursive calls to Mergesort) plus n (the time to
merge the sublists together again).

There are many approaches to solving recurrence relations, and we briefly con-
sider three here. The first is an estimation technique: Guess the upper and lower
bounds for the recurrence, use induction to prove the bounds, and tighten as re-
quired. The second approach is to expand the recurrence to convert it to a summa-
tion and then use summation techniques. The third approach is to take advantage
of already proven theorems when the recurrence is of a suitable form. In particu-
lar, typical divide and conquer algorithms such as Mergesort yield recurrences of a
form that fits a pattern for which we have a ready solution.

14.2.1 Estimating Upper and Lower Bounds

The first approach to solving recurrences is to guess the answer and then attempt
to prove it correct. If a correct upper or lower bound estimate is given, an easy
induction proof will verify this fact. If the proof is successful, then try to tighten
the bound. If the induction proof fails, then loosen the bound and try again. Once
the upper and lower bounds match, you are finished. This is a useful technique
when you are only looking for asymptotic complexities. When seeking a precise
closed-form solution (i.e., you seek the constants for the expression), this method
will not be appropriate.

Example 14.4 Use the guessing technique to find the asymptotic bounds
for Mergesort, whose running time is described by the equation

T(n) = 2T(n/2) + n; T(2) = 1.

We begin by guessing that this recurrence has an upper bound in O(n2). To
be more precise, assume that

T(n) ≤ n2.

488 Chap. 14 Analysis Techniques

We prove this guess is correct by induction. In this proof, we assume that
n is a power of two, to make the calculations easy. For the base case,
T(2) = 1 ≤ 22. For the induction step, we need to show that T(n) ≤ n2

implies that T(2n) ≤ (2n)2 for n = 2N , N ≥ 1. The induction hypothesis
is

T(i) ≤ i2, for all i ≤ n.

It follows that

T(2n) = 2T(n) + 2n ≤ 2n2 + 2n ≤ 4n2 ≤ (2n)2

which is what we wanted to prove. Thus, T(n) is in O(n2).
Is O(n2) a good estimate? In the next-to-last step we went from n2+2n

to the much larger 4n2. This suggests that O(n2) is a high estimate. If we
guess something smaller, such as T(n) ≤ cn for some constant c, it should
be clear that this cannot work because c2n = 2cn and there is no room for
the extra n cost to join the two pieces together. Thus, the true cost must be
somewhere between cn and n2.

Let us now try T(n) ≤ n log n. For the base case, the definition of the
recurrence sets T(2) = 1 ≤ (2 · log 2) = 2. Assume (induction hypothesis)
that T(n) ≤ n log n. Then,

T(2n) = 2T(n) + 2n ≤ 2n log n + 2n ≤ 2n(log n + 1) ≤ 2n log 2n

which is what we seek to prove. In similar fashion, we can prove that T(n)
is in Ω(n log n). Thus, T(n) is also Θ(n log n).

Example 14.5 We know that the factorial function grows exponentially.
How does it compare to 2n? To nn? Do they all grow “equally fast” (in an
asymptotic sense)? We can begin by looking at a few initial terms.

n 1 2 3 4 5 6 7 8 9
n! 1 2 6 24 120 720 5040 40320 362880
2n 2 4 8 16 32 64 128 256 512
nn 1 4 9 256 3125 46656 823543 16777216 387420489

We can also look at these functions in terms of their recurrences.

n! =
{

1 n = 1
n(n− 1)! n > 1

Sec. 14.2 Recurrence Relations 489

2n =
{

2 n = 1
2(2n−1) n > 1

nn =
{

n n = 1
n(nn−1) n > 1

At this point, our intuition should be telling us pretty clearly the relative
growth rates of these three functions. But how do we prove formally which
grows the fastest? And how do we decide if the differences are significant
in an asymptotic sense, or just constant factor differences?

We can use logarithms to help us get an idea about the relative growth
rates of these functions. Clearly, log 2n = n. Equally clearly, log nn =
n log n. We can easily see from this that 2n is o(nn), that is, nn grows
asymptotically faster than 2n.

How does n! fit into this? We can again take advantage of logarithms.
Obviously n! ≤ nn, so we know that log n! is O(n log n). But what about
a lower bound for the factorial function? Consider the following.

n! = n× (n− 1)× · · · × n

2
× (

n

2
− 1)× · · · × 2× 1

≥ n

2
× n

2
× · · · × n

2
× 1× · · · × 1× 1

= (
n

2
)n/2

Therefore
log n! ≥ log(

n

2
)n/2 = (

n

2
) log(

n

2
).

In other words, log n! is in Ω(n log n). Thus, log n! = Θ(n log n).
Note that this does not mean that n! = Θ(nn). Because log n2 =

2 log n, it follows that log n = Θ(log n2) but n 6= Θ(n2). The log function
often works as a “flattener” when dealing with asymptotics. (And the anti-
log works as a booster.) That is, whenever log f(n) is in O(log g(n)) we
know that f(n) is in O(g(n)). But knowing that log f(n) = Θ(log g(n))
does not necessarily mean that f(n) = Θ(g(n)).

490 Chap. 14 Analysis Techniques

Example 14.6 What is the growth rate of the fibonacci sequence f(n) =
f(n− 1) + f(n− 2) for n ≥ 2; f(0) = f(1) = 1?

In this case it is useful to compare the ratio of f(n) to f(n − 1). The
following table shows the first few values.

n 1 2 3 4 5 6 7
f(n) 1 2 3 5 8 13 21

f(n)/f(n− 1) 1 2 1.5 1.666 1.625 1.615 1.619

Following this out a few more terms, it appears to settle to a ratio of
approximately 1.618. Assuming f(n)/f(n− 1) really does tend to a fixed
value, we can determine what that value must be.

f(n)
f(n− 2)

=
f(n− 1)
f(n− 2)

+
f(n− 2)
f(n− 2)

→ x + 1

This comes from knowing that f(n) = f(n−1)+f(n−2). We divide
by f(n − 2) to make the second term go away, and we also get something
useful in the first term. Remember that the goal of such manipulations is to
give us an equation that relates f(n) to something without recursive calls.

For large n, we also observe that:

f(n)
f(n− 2)

=
f(n)

f(n− 1)
f(n− 1)
f(n− 2)

→ x2

as n gets big. This comes from multiplying f(n)/f(n − 2) by f(n −
1)/f(n− 1) and rearranging.

If x exists, then x2−x−1 → 0. Using the quadratic equation, the only
solution greater than one is

x =
1 +

√
5

2
≈ 1.618.

This expression also has the name φ. What does this say about the growth
rate of the fibonacci sequence? It is exponential, with f(n) = Θ(φn). More
precisely, f(n) converges to

φn − (1− φ)n

√
5

.

Sec. 14.2 Recurrence Relations 491

14.2.2 Expanding Recurrences

Estimating bounds is effective if you only need an approximation to the answer.
More precise techniques are required to find an exact solution. One such technique
is called expanding the recurrence. In this method, the smaller terms on the right
side of the equation are in turn replaced by their definition. This is the expanding
step. These terms are again expanded, and so on, until a full series with no recur-
rence results. This yields a summation, and techniques for solving summations can
then be used. A couple of simple expansions were shown in Section 2.4. A more
complex example is given below.

Example 14.7 Find the solution for

T(n) = 2T(n/2) + 5n2; T(1) = 7.

For simplicity we assume that n is a power of two, so we will rewrite it as
n = 2k. This recurrence can be expanded as follows:

T(n) = 2T(n/2) + 5n2

= 2(2T(n/4) + 5(n/2)2) + 5n2

= 2(2(2T(n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT(1) + 2k−1 · 5
(n

2k−1

)2
+ · · ·+ 2 · 5

(n

2

)2
+ 5n2.

This last expression can best be represented by a summation as follows:

7n + 5
k−1∑
i=0

n2/2i

= 7n + 5n2
k−1∑
i=0

1/2i.

From Equation 2.6, we have:
= 7n + 5n2

(
2− 1/2k−1

)
= 7n + 5n2(2− 2/n)

= 7n + 10n2 − 10n

= 10n2 − 3n.

This is the exact solution to the recurrence for n a power of two. At this
point, we should use a simple induction proof to verify that our solution is
indeed correct.

492 Chap. 14 Analysis Techniques

Example 14.8 Our next example comes from the algorithm to build a
heap. Recall from Section 5.5 that to build a heap, we first heapify the two
subheaps, then push down the root to its proper position. The cost is:

f(n) ≤ 2f(n/2) + 2 log n.

Let us find a closed form solution for this recurrence. We can expand
the recurrence a few times to see that

f(n) ≤ 2f(n/2) + 2 log n

≤ 2[2f(n/4) + 2 log n/2] + 2 log n

≤ 2[2(2f(n/8) + 2 log n/4) + 2 log n/2] + 2 log n

We can deduce from this expansion that this recurrence is equivalent to
following summation and its derivation:

f(n) ≤
log n−1∑

i=0

2i+1 log(n/2i)

= 2
log n−1∑

i=0

2i(log n− i)

= 2 log n

log n−1∑
i=0

2i − 4
log n−1∑

i=0

i2i−1

= 2n log n− 2 log n− 2n log n + 4n− 4

= 4n− 2 log n− 4.

14.2.3 Divide and Conquer Recurrences

The third approach to solving recurrences is to take advantage of known theorems
that describe the solution for classes of recurrences. One useful example is a the-
orem that gives the answer for a class known as divide and conquer recurrences.
These have the form

T(n) = aT(n/b) + cnk; T(1) = c

Sec. 14.2 Recurrence Relations 493

where a, b, c, and k are constants. In general, this recurrence describes a problem
of size n divided into a subproblems of size n/b, while cnk is the amount of work
necessary to combine the partial solutions. Mergesort is an example of a divide and
conquer algorithm, and its recurrence fits this form. So does binary search. We use
the method of expanding recurrences to derive the general solution for any divide
and conquer recurrence, assuming that n = bm.

T(n) = a(aT(n/b2) + c(n/b)k) + cnk

= amT(1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= c

m∑
i=0

am−ibik

= cam
m∑

i=0

(bk/a)i.

Note that

am = alogb n = nlogb a. (14.1)

The summation is a geometric series whose sum depends on the ratio r = bk/a.
There are three cases.

1. r < 1. From Equation 2.4,

m∑
i=0

ri < 1/(1− r), a constant.

Thus,
T(n) = Θ(am) = Θ(nlogba).

2. r = 1. Because r = bk/a, we know that a = bk. From the definition
of logarithms it follows immediately that k = logb a. We also note from
Equation 14.1 that m = logb n. Thus,

m∑
i=0

r = m + 1 = logb n + 1.

Because am = n logb a = nk, we have

T(n) = Θ(nlogb a log n) = Θ(nk log n).

494 Chap. 14 Analysis Techniques

3. r > 1. From Equation 2.5,

m∑
i=0

r =
rm+1 − 1

r − 1
= Θ(rm).

Thus,

T(n) = Θ(amrm) = Θ(am(bk/a)m) = Θ(bkm) = Θ(nk).

We can summarize the above derivation as the following theorem, sometimes
referred to as the Master Theorem.

Theorem 14.1 (The Master Theorem) For any recurrance relation of the form
T(n) = aT(n/b) + cnk,T(1) = c, the following relationships hold.

T(n) =

Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk.

This theorem may be applied whenever appropriate, rather than re-deriving the
solution for the recurrence.

Example 14.9 Apply the theorem to solve

T(n) = 3T(n/5) + 8n2.

Because a = 3, b = 5, c = 8, and k = 2, we find that 3 < 52. Applying
case (3) of the theorem, T(n) = Θ(n2).

Example 14.10 Use the theorem to solve the recurrence relation for Merge-
sort:

T(n) = 2T(n/2) + n; T(1) = 1.

Because a = 2, b = 2, c = 1, and k = 1, we find that 2 = 21. Applying
case (2) of the theorem, T(n) = Θ(n log n).

Sec. 14.2 Recurrence Relations 495

14.2.4 Average-Case Analysis of Quicksort

In Section 7.5, we determined that the average-case analysis of Quicksort had the
following recurrence:

T(n) = cn +
1
n

n−1∑
k=0

[T(k) + T(n− 1− k)], T(0) = T(1) = c.

The cn term is an upper bound on the findpivot and partition steps. This
equation comes from assuming that the partitioning element is equally likely to
occur in any position k. It can be simplified by observing that the two recurrence
terms T(k) and T(n − 1 − k) are equivalent, because one simply counts up from
T (0) to T (n− 1) while the other counts down from T (n− 1) to T (0). This yields

T(n) = cn +
2
n

n−1∑
k=0

T(k).

This form is known as a recurrence with full history. The key to solving such a
recurrence is to cancel out the summation terms. The shifting method for summa-
tions provides a way to do this. Multiply both sides by n and subtract the result
from the formula for nT(n + 1):

nT(n) = cn2 + 2
n−1∑
k=1

T(k)

(n + 1)T(n + 1) = c(n + 1)2 + 2
n∑

k=1

T(k).

Subtracting nT(n) from both sides yields:

(n + 1)T(n + 1)− nT(n) = c(n + 1)2 − cn2 + 2T(n)

(n + 1)T(n + 1)− nT(n) = c(2n + 1) + 2T(n)

(n + 1)T(n + 1) = c(2n + 1) + (n + 2)T(n)

T(n + 1) =
c(2n + 1)

n + 1
+

n + 2
n + 1

T(n).

At this point, we have eliminated the summation and can now use our normal meth-
ods for solving recurrences to get a closed-form solution. Note that c(2n+1)

n+1 < 2c,
so we can simplify the result. Expanding the recurrence, we get

496 Chap. 14 Analysis Techniques

T(n + 1) ≤ 2c +
n + 2
n + 1

T(n)

= 2c +
n + 2
n + 1

(
2c +

n + 1
n

T(n− 1)
)

= 2c +
n + 2
n + 1

(
2c +

n + 1
n

(
2c +

n

n− 1
T(n− 2)

))
= 2c +

n + 2
n + 1

(
2c + · · ·+ 4

3
(2c +

3
2
T(1))

)
= 2c

(
1 +

n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·+ n + 2
n + 1

n + 1
n

· · · 3
2

)
= 2c

(
1 + (n + 2)

(
1

n + 1
+

1
n

+ · · ·+ 1
2

))
= 2c + 2c(n + 2) (Hn+1 − 1)

for Hn+1, the Harmonic Series. From Equation 2.10, Hn+1 = Θ(log n), so the
final solution is Θ(n log n).

14.3 Amortized Analysis

This section presents the concept of amortized analysis, which is the analysis for
a series of operations taken as a whole. In particular, amortized analysis allows us
to deal with the situation where the worst-case cost for n operations is less than
n times the worst-case cost of any one operation. Rather than focusing on the indi-
vidual cost of each operation independently and summing them, amortized analysis
looks at the cost of the entire series and “charges” each individual operation with a
share of the total cost.

We can apply the technique of amortized analysis in the case of a series of se-
quential searches in an unsorted array. For n random searches, the average-case
cost for each search is n/2, and so the expected total cost for the series is n2/2.
Unfortunately, in the worst case all of the searches would be to the last item in the
array. In this case, each search costs n for a total worst-case cost of n2. Compare
this to the cost for a series of n searches such that each item in the array is searched
for precisely once. In this situation, some of the searches must be expensive, but
also some searches must be cheap. The total number of searches, in the best, av-
erage, and worst case, for this problem must be

∑n
i=i i ≈ n2/2. This is a factor

Sec. 14.3 Amortized Analysis 497

of two better than the more pessimistic analysis that charges each operation in the
series with its worst-case cost.

As another example of amortized analysis, consider the process of increment-
ing a binary counter. The algorithm is to move from the lower-order (rightmost) bit
toward the high-order (leftmost) bit, changing 1s to 0s until the first 0 is encoun-
tered. This 0 is changed to a 1, and the increment operation is done. Below is code
to implement the increment operation, assuming that a binary number of length n
is stored in array A of length n.

for (i=0; ((i<A.length) && (A[i] == 1)); i++)
A[i] = 0;

if (i < A.length)
A[i] = 1;

If we count from 0 through 2n − 1, (requiring a counter with at least n bits),
what is the average cost for an increment operation in terms of the number of bits
processed? Naive worst-case analysis says that if all n bits are 1 (except for the
high-order bit), then n bits need to be processed. Thus, if there are 2n increments,
then the cost is n2n. However, this is much too high, because it is rare for so many
bits to be processed. In fact, half of the time the low-order bit is 0, and so only
that bit is processed. One quarter of the time, the low-order two bits are 01, and
so only the low-order two bits are processed. Another way to view this is that the
low-order bit is always flipped, the bit to its left is flipped half the time, the next
bit one quarter of the time, and so on. We can capture this with the summation
(charging costs to bits going from right to left)

n−1∑
i=0

1
2i

< 2.

In other words, the average number of bits flipped on each increment is 2, leading
to a total cost of only 2 · 2n for a series of 2n increments.

A useful concept for amortized analysis is illustrated by a simple variation on
the stack data structure, where the pop function is slightly modified to take a sec-
ond parameter k indicating that k pop operations are to be performed. This revised
pop function, called multipop, might look as follows:

// pop k elements from stack
void multipop(int k);

The “local” worst-case analysis for multipop is Θ(n) for n elements in the
stack. Thus, if there are m1 calls to push and m2 calls to multipop, then the
naive worst-case cost for the series of operation is m1 + m2 · n = m1 + m2 ·m1.

498 Chap. 14 Analysis Techniques

This analysis is unreasonably pessimistic. Clearly it is not really possible to pop
m1 elements each time multipop is called. Analysis that focuses on single op-
erations cannot deal with this global limit, and so we turn to amortized analysis to
model the entire series of operations.

The key to an amortized analysis of this problem lies in the concept of poten-
tial. At any given time, a certain number of items may be on the stack. The cost for
multipop can be no more than this number of items. Each call to push places
another item on the stack, which can be removed by only a single multipop op-
eration. Thus, each call to push raises the potential of the stack by one item. The
sum of costs for all calls to multipop can never be more than the total potential of
the stack (aside from a constant time cost associated with each call to multipop
itself).

The amortized cost for any series of push and multipop operations is the
sum of three costs. First, each of the push operations takes constant time. Second,
each multipop operation takes a constant time in overhead, regardless of the
number of items popped on that call. Finally, we count the sum of the potentials
expended by all multipop operations, which is at most m1, the number of push
operations. This total cost can therefore be expressed as

m1 + (m2 + m1) = Θ(m1 + m2).

A similar argument was used in our analysis for the partition function in the
Quicksort algorithm (Section 7.5). While on any given pass through the while
loop the left or right pointers might move all the way through the remainder of the
partition, doing so would reduce the number of times that the while loop can be
further executed.

Our final example uses amortized analysis to prove a relationship between the
cost of the move-to-front self-organizing list heuristic from Section 9.2 and the cost
for the optimal static ordering of the list.

Recall that, for a series of search operations, the minimum cost for a static
list results when the list is sorted by frequency of access to its records. This is
the optimal ordering for the records if we never allow the positions of records to
change, because the most frequently accessed record is first (and thus has least
cost), followed by the next most frequently accessed record, and so on.

Theorem 14.2 The total number of comparisons required by any series S of n or
more searches on a self-organizing list of length n using the move-to-front heuristic
is never more than twice the total number of comparisons required when series S is
applied to the list stored in its optimal static order.

Sec. 14.4 Further Reading 499

Proof: Each comparison of the search key with a record in the list is either suc-
cessful or unsuccessful. For m searches, there must be exactly m successful com-
parisons for both the self-organizing list and the static list. The total number of
unsuccessful comparisons in the self-organizing list is the sum, over all pairs of
distinct keys, of the number of unsuccessful comparisons made between that pair.

Consider a particular pair of keys A and B. For any sequence of searches S,
the total number of (unsuccessful) comparisons between A and B is identical to the
number of comparisons between A and B required for the subsequence of S made up
only of searches for A or B. Call this subsequence SAB. In other words, including
searches for other keys does not affect the relative position of A and B and so does
not affect the relative contribution to the total cost of the unsuccessful comparisons
between A and B.

The number of unsuccessful comparisons between A and B made by the move-
to-front heuristic on subsequence SAB is at most twice the number of unsuccessful
comparisons between A and B required when SAB is applied to the optimal static
ordering for the list. To see this, assume that SAB contains i As and j Bs, with i ≤ j.
Under the optimal static ordering, i unsuccessful comparisons are required because
B must appear before A in the list (because its access frequency is higher). Move-to-
front will yield an unsuccessful comparison whenever the request sequence changes
from A to B or from B to A. The total number of such changes possible is 2i because
each change involves an A and each A can be part of at most two changes.

Because the total number of unsuccessful comparisons required by move-to-
front for any given pair of keys is at most twice that required by the optimal static
ordering, the total number of unsuccessful comparisons required by move-to-front
for all pairs of keys is also at most twice as high. Because the number of successful
comparisons is the same for both methods, the total number of comparisons re-
quired by move-to-front is less than twice the number of comparisons required by
the optimal static ordering. 2

14.4 Further Reading

A good introduction to solving recurrence relations appears in Applied Combina-
torics by Fred S. Roberts [Rob84]. For a more advanced treatment, see Concrete
Mathematics by Graham, Knuth, and Patashnik [GKP94].

Cormen, Leiserson, and Rivest provide a good discussion on various methods
for performing amortized analysis in Introduction to Algorithms [CLRS01]. For
an amortized analysis that the splay tree requires m log n time to perform a series
of m operations on n nodes when m > n, see “Self-Adjusting Binary Search
Trees” by Sleator and Tarjan [ST85]. The proof for Theorem 14.2 comes from

500 Chap. 14 Analysis Techniques

“Amortized Analysis of Self-Organizing Sequential Search Heuristics” by Bentley
and McGeoch [BM85].

14.5 Exercises

14.1 Use the technique of guessing a polynomial and deriving the coefficients to
solve the summation

n∑
i=1

i2.

14.2 Use the technique of guessing a polynomial and deriving the coefficients to
solve the summation

n∑
i=1

i3.

14.3 Find, and prove correct, a closed-form solution for

b∑
i=a

i2.

14.4 Use the shifting method to solve the summation
n∑

i=1

i.

14.5 Use the shifting method to solve the summation
n∑

i=1

2i.

14.6 Use the shifting method to solve the summation
n∑

i=1

i2n−i.

14.7 Provide a summation for the value of sum in the following code fragment.
Find and prove correct a closed form solution to the summation.

sum = 0; inc = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++) {
sum = sum + inc;
inc++;

}

Sec. 14.5 Exercises 501

14.8 A chocolate company decides to promote its chocolate bars by including a
coupon with each bar. A bar costs a dollar, and with c coupons you get a free
bar. So depending on the value of c, you get more than one bar of chocolate
for a dollar when considering the value of the coupons. How much chocolate
is a dollar worth (as a function of c)?

14.9 Write and solve a recurrence relation to compute the number of times Fibr is
called in the Fibr function of Exercise 2.11.

14.10 Give and prove the closed-form solution for the recurrence relation T(n) =
T(n− 1) + 1, T(1) = 1.

14.11 Give and prove the closed-form solution for the recurrence relation T(n) =
T(n− 1) + c, T(1) = c.

14.12 Prove by induction that the closed-form solution for the recurrence relation

T(n) = 2T(n/2) + n; T(2) = 1

is in Ω(n log n).
14.13 Find the solution (in asymptotic terms, not precise constants) for the recur-

rence relation
T(n) = T(n/2) +

√
n; T(1) = 1.

You may assume that n is a power of 2.
14.14 Using the technique of expanding the recurrence, find the exact closed-form

solution for the recurrence relation

T(n) = 2T(n/2) + n; T(2) = 2.

You may assume that n is a power of 2.
14.15 For the following recurrence, give a closed-form solution. You should not

give an exact solution, but only an asymptotic solution (i.e., using Θ nota-
tion). You may assume that n is a power of 2. Prove that your answer is
correct.

T(n) = T(n/2) +
√

n for n > 1; T(1) = 1.

14.16 Section 5.5 provides an asymptotic analysis for the worst-case cost of func-
tion buildHeap. Give an exact worst-case analysis for buildHeap.

14.17 For each of the following recurrences, find and then prove (using induction)
an exact closed-form solution. When convenient, you may assume that n is
a power of 2.

(a) T(n) = T(n− 1) + n/2 for n > 1; T(1) = 1.

502 Chap. 14 Analysis Techniques

(b) T(n) = 2T(n/2) + n for n > 2; T(2) = 2.

14.18 Use Theorem 14.1 to prove that binary search requires Θ(log n) time.
14.19 Recall that when a hash table gets to be more than about one half full, its

performance quickly degrades. One solution to this problem is to reinsert
all elements of the hash table into a new hash table that is twice as large.
Assuming that the (expected) average case cost to insert into a hash table is
Θ(1), prove that the average cost to insert is still Θ(1) when this reinsertion
policy is used.

14.20 Given a 2-3 tree with N nodes, prove that inserting M additional nodes re-
quires O(M + N) node splits.

14.21 One approach to implementing an array-based list where the list size is un-
known is to let the array grow and shrink. This is known as a dynamic array.
When necessary, we can grow or shrink the array by copying the array’s con-
tents to a new array. If we are careful about the size of the new array, this
copy operation can be done rarely enough so as not to affect the amortized
cost of the operations.

(a) What is the amortized cost of inserting elements into the list if the array
is initially of size 1 and we double the array size whenever the number
of elements that we wish to store exceeds the size of the array? Assume
that the insert itself cost O(1) time per operation and so we are just
concerned with minimizing the copy time to the new array.

(b) Consider an underflow strategy that cuts the array size in half whenever
the array falls below half full. Give an example where this strategy leads
to a bad amortized cost. Again, we are only interested in measuring the
time of the array copy operations.

(c) Give a better underflow strategy than that suggested in part (b). Your
goal is to find a strategy whose amortized analysis shows that array
copy requires O(n) time for a series of n operations.

14.22 Recall that two vertices in an undirected graph are in the same connected
component if there is a path connecting them. A good algorithm to find the
connected components of an undirected graph begins by calling a DFS on
the first vertex. All vertices reached by the DFS are in the same connected
component and are so marked. We then look through the vertex mark array
until an unmarked vertex i is found. Again calling the DFS on i, all vertices
reachable from i are in a second connected component. We continue work-
ing through the mark array until all vertices have been assigned to some
connected component. A sketch of the algorithm is as follows:

Sec. 14.5 Exercises 503

static void concom(Graph G) {
int i;
for (i=0; i<G.n(); i++) // For n vertices in graph

G.setMark(i, 0); // Vertex i in no component
int comp = 1; // Current component
for (i=0; i<G.n(); i++)

if (G.getMark(i) == 0) // Start a new component
DFS component(G, i, comp++);

for (i=0; i<G.n(); i++)
out.append(i + " " + G.getMark(i) + " ");

}

static void DFS component(Graph G, int v, int comp) {
G.setMark(v, comp);
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (G.getMark(w) == 0)
DFS component(G, w, comp);

}

Use the concept of potential from amortized analysis to explain why the total
cost of this algorithm is Θ(|V| + |E|). (Note that this will not be a true
amortized analysis because this algorithm does not allow an arbitrary series
of DFS operations but rather is fixed to do a single call to DFS from each
vertex.)

14.23 Give a proof similar to that used for Theorem 14.2 to show that the total
number of comparisons required by any series of n or more searches S on a
self-organizing list of length n using the count heuristic is never more than
twice the total number of comparisons required when series S is applied to
the list stored in its optimal static order.

14.24 Use mathematical induction to prove that

n∑
i=1

Fib(i) = Fib(n− 2)− 1, for n ≥ 1.

14.25 Use mathematical induction to prove that Fib(i) is even if and only if n is
divisible by 3.

14.26 Use mathematical induction to prove that for n ≥ 6, fib(n) > (3/2)n−1.
14.27 Find closed forms for each of the following recurrences.

(a) F (n) = F (n− 1) + 3; F (1) = 2.

(b) F (n) = 2F (n− 1);F (0) = 1.

(c) F (n) = 2F (n− 1) + 1; F (1) = 1.

(d) F (n) = 2nF (n− 1);F (0) = 1.

504 Chap. 14 Analysis Techniques

(e) F (n) = 2nF (n− 1);F (0) = 1.
(f) F (n) = 2 +

∑n−1
i=1 F (i);F (1) = 1.

14.28 Find Θ for each of the following recurrence relations.
(a) T (n) = 2T (n/2) + n2.
(b) T (n) = 2T (n/2) + 5.
(c) T (n) = 4T (n/2) + n.
(d) T (n) = 2T (n/2) + n2.
(e) T (n) = 4T (n/2) + n3.
(f) T (n) = 4T (n/3) + n.
(g) T (n) = 4T (n/3) + n2.
(h) T (n) = 2T (n/2) + log n.
(i) T (n) = 2T (n/2) + n log n.

14.6 Projects

14.1 Implement the UNION/FIND algorithm of Section 6.2 using both path com-
pression and the weighted union rule. Count the total number of node ac-
cesses required for various series of equivalences to determine if the actual
performance of the algorithm matches the expected cost of Θ(n log∗ n).

