
11

Graphs

Graphs provide the ultimate in data structure flexibility. Graphs can model both
real-world systems and abstract problems, so they are used in hundreds of appli-
cations. Here is a small sampling of the range of problems that graphs are applied
to.

1. Modeling connectivity in computer and communications networks.
2. Representing a map as a set of locations with distances between locations;

used to compute shortest routes between locations.
3. Modeling flow capacities in transportation networks.
4. Finding a path from a starting condition to a goal condition; for example, in

artificial intelligence problem solving.
5. Modeling computer algorithms, showing transitions from one program state

to another.
6. Finding an acceptable order for finishing subtasks in a complex activity, such

as constructing large buildings.
7. Modeling relationships such as family trees, business or military organiza-

tions, and scientific taxonomies.

We begin in Section 11.1 with some basic graph terminology and then define
two fundamental representations for graphs, the adjacency matrix and adjacency
list. Section 11.2 presents a graph ADT and simple implementations based on the
adjacency matrix and adjacency list. Section 11.3 presents the two most commonly
used graph traversal algorithms, called depth-first and breadth-first search, with
application to topological sorting. Section 11.4 presents algorithms for solving
some problems related to finding shortest routes in a graph. Finally, Section 11.5
presents algorithms for finding the minimum-cost spanning tree, useful for deter-
mining lowest-cost connectivity in a network. Besides being useful and interesting
in their own right, these algorithms illustrate the use of some data structures pre-
sented in earlier chapters.

389

390 Chap. 11 Graphs

(b) (c)

0

3

4

1

2

7

1
2

3

4

(a)

1

Figure 11.1 Examples of graphs and terminology. (a) A graph. (b) A directed
graph (digraph). (c) A labeled (directed) graph with weights associated with the
edges. In this example, there is a simple path from Vertex 0 to Vertex 3 containing
Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1 also form a path, but not a simple
path because Vertex 1 appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.

11.1 Terminology and Representations

A graph G = (V,E) consists of a set of vertices V and a set of edges E, such
that each edge in E is a connection between a pair of vertices in V.1 The number
of vertices is written |V|, and the number of edges is written |E|. |E| can range
from zero to a maximum of |V|2 − |V|. A graph with relatively few edges is called
sparse, while a graph with many edges is called dense. A graph containing all
possible edges is said to be complete.

A graph with edges directed from one vertex to another (as in Figure 11.1(b))
is called a directed graph or digraph. A graph whose edges are not directed is
called an undirected graph (as illustrated by Figure 11.1(a)). A graph with labels
associated with its vertices (as in Figure 11.1(c)) is called a labeled graph. Two
vertices are adjacent if they are joined by an edge. Such vertices are also called
neighbors. An edge connecting Vertices U and V is written (U, V). Such an edge
is said to be incident on Vertices U and V . Associated with each edge may be a
cost or weight. Graphs whose edges have weights (as in Figure 11.1(c)) are said to
be weighted.

A sequence of vertices v1, v2, ..., vn forms a path of length n− 1 if there exist
edges from vi to vi+1 for 1 ≤ i < n. A path is simple if all vertices on the path are
distinct. The length of a path is the number of edges it contains. A cycle is a path
of length three or more that connects some vertex v1 to itself. A cycle is simple if
the path is simple, except for the first and last vertices being the same.

1Some graph applications require that a given pair of vertices can have multiple edges connecting
them, or that a vertex can have an edge to itself. However, the applications discussed in this book do
not require either of these special cases, so for simplicity we will assume that they cannot occur.

Sec. 11.1 Terminology and Representations 391

0 2

4

1 3

6

5

7

Figure 11.2 An undirected graph with three connected components. Vertices 0,
1, 2, 3, and 4 form one connected component. Vertices 5 and 6 form a second
connected component. Vertex 7 by itself forms a third connected component.

A subgraph S is formed from graph G by selecting a subset Vs of G’s vertices
and a subset Es of G’s edges such that for every edge E in Es, both of its vertices
are in Vs.

An undirected graph is connected if there is at least one path from any vertex
to any other. The maximally connected subgraphs of an undirected graph are called
connected components. For example, Figure 11.2 shows an undirected graph with
three connected components.

A graph without cycles is called acyclic. Thus, a directed graph without cycles
is called a directed acyclic graph or DAG.

A free tree is a connected, undirected graph with no simple cycles. An equiv-
alent definition is that a free tree is connected and has |V| − 1 edges.

There are two commonly used methods for representing graphs. The adja-
cency matrix is illustrated by Figure 11.3(b). The adjacency matrix for a graph
is a |V| × |V| array. Assume that |V| = n and that the vertices are labeled from
v0 through vn−1. Row i of the adjacency matrix contains entries for Vertex vi.
Column j in row i is marked if there is an edge from vi to vj and is not marked oth-
erwise. Thus, the adjacency matrix requires one bit at each position. Alternatively,
if we wish to associate a number with each edge, such as the weight or distance
between two vertices, then each matrix position must store that number. In either
case, the space requirements for the adjacency matrix are Θ(|V|2).

The second common representation for graphs is the adjacency list, illustrated
by Figure 11.3(c). The adjacency list is an array of linked lists. The array is
|V| items long, with position i storing a pointer to the linked list of edges for Ver-
tex vi. This linked list represents the edges by the vertices that are adjacent to
Vertex vi. The adjacency list is therefore a generalization of the “list of children”
representation for trees described in Section 6.3.1.

392 Chap. 11 Graphs

(a) (b)

0

4

2

3

0

1

2

3

4

0 1 2 3 4
1 1

1

1

1

11

(c)

0

1

2

3

4

1

3

4

2

1

4

Figure 11.3 Two graph representations. (a) A directed graph. (b) The adjacency
matrix for the graph of (a). (c) The adjacency list for the graph of (a).

Example 11.1 The entry for Vertex 0 in Figure 11.3(c) stores 1 and 4
because there are two edges in the graph leaving Vertex 0, with one going
to Vertex 1 and one going to Vertex 4. The list for Vertex 2 stores an entry
for Vertex 4 because there is an edge from Vertex 2 to Vertex 4, but no entry
for Vertex 3 because this edge comes into Vertex 2 rather than going out.

The storage requirements for the adjacency list depend on both the number of
edges and the number of vertices in the graph. There must be an array entry for
each vertex (even if the vertex is not adjacent to any other vertex and thus has no
elements on its linked list), and each edge must appear on one of the lists. Thus,
the cost is Θ(|V|+ |E|).

Both the adjacency matrix and the adjacency list can be used to store directed
or undirected graphs. Each edge of an undirected graph connecting Vertices U
and V is represented by two directed edges: one from U to V and one from V to
U. Figure 11.4 illustrates the use of the adjacency matrix and the adjacency list for
undirected graphs.

Sec. 11.1 Terminology and Representations 393

(a) (b)

(c)

0

1

2

3

0

1

2

3

4

0 1 2 3 4
1 1

1 1 1

11

11

1 1 1

0

1

3

4

1

0

1

0

4

3

4

2

1

4

2

4

32

Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-
rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list
for the graph of (a).

Which graph representation is more space efficient depends on the number of
edges in the graph. The adjacency list stores information only for those edges that
actually appear in the graph, while the adjacency matrix requires space for each
potential edge, whether it exists or not. However, the adjacency matrix requires
no overhead for pointers, which can be a substantial cost, especially if the only
information stored for an edge is one bit to indicate its existence. As the graph be-
comes denser, the adjacency matrix becomes relatively more space efficient. Sparse
graphs are likely to have their adjacency list representation be more space efficient.

Example 11.2 Assume that the vertex index requires two bytes, a pointer
requires four bytes, and an edge weight requires two bytes. Then the adja-
cency matrix for the graph of Figure 11.3 requires 2|V2| = 50 bytes while
the adjacency list requires 4|V| + 6|E| = 56 bytes. For the graph of Fig-
ure 11.4, the adjacency matrix requires the same space as before, while the
adjacency list requires 4|V| + 6|E| = 92 bytes (Because there are now 12
edges instead of 6).

394 Chap. 11 Graphs

interface Graph { // Graph class ADT
public void Init(int n); // Initialize to n vertices
public int n(); // Number of vertices
public int e(); // Number of edges
public int first(int v); // Get v’s first neighbor
public int next(int v, int w); // Get v’s next neighbor
public void setEdge(int i, int j, int wght); // Set weight
public void delEdge(int i, int j); // Delete edge (i, j)
public boolean isEdge(int i, int j); // If (i,j) an edge?
public int weight(int i, int j); // Return edge weight
public void setMark(int v, int val); // Set Mark for v
public int getMark(int v); // Get Mark for v

}

Figure 11.5 A graph ADT. This ADT assumes that the number of vertices is
fixed when the graph is created, but that edges can be added and removed. It also
supports a mark array to aid graph traversal algorithms.

The adjacency matrix often requires a higher asymptotic cost for an algorithm
than would result if the adjacency list were used. The reason is that it is common
for a graph algorithm to visit each neighbor of each vertex. Using the adjacency list,
only the actual edges connecting a vertex to its neighbors are examined. However,
the adjacency matrix must look at each of its |V| potential edges, yielding a total
cost of Θ(|V2|) time when the algorithm might otherwise require only Θ(|V|+ |E|)
time. This is a considerable disadvantage when the graph is sparse, but not when
the graph is closer to full.

11.2 Graph Implementations

We next turn to the problem of implementing a graph class. Figure 11.5 shows
an abstract class defining an ADT for graphs. Vertices are defined by an integer
index value. In other words, there is a Vertex 0, Vertex 1, and so on. We can
assume that a graph application stores any additional information of interest about
a given vertex elsewhere, such as a name or application-dependent value. Note
that this ADT is not implemented using a template, because it is the Graph class
users’ responsibility to maintain information related to the vertices themselves. The
Graph class has no knowledge of the type or content of the information associated
with a vertex, only the index number for that vertex.

Abstract class Graph has methods to return the number of vertices and edges
(methods n and e, respectively). Function weight returns the weight of a given
edge, with that edge identified by its two incident vertices. For example, calling
weight(0, 4) on the graph of Figure 11.1 (c) would return 4. If no such edge

Sec. 11.2 Graph Implementations 395

exists, the weight is defined to be 0. So calling weight(0, 2) on the graph of
Figure 11.1 (c) would return 0.

Functions setEdge and delEdge set the weight of an edge and remove an
edge from the graph, respectively. Again, an edge is identified by its two incident
vertices. setEdge does not permit the user to set the weight to be 0, because this
value is used to indicate a non-existent edge, nor are negative edge weights per-
mitted. Functions getMark and setMark get and set, respectively, a requested
value in the Mark array (described below) for Vertex V .

Nearly every graph algorithm presented in this chapter will require visits to all
neighbors of a given vertex. Two methods are provided to support this. They work
in a manner similar to linked list access functions. Function first takes as input
a vertex V , and returns the edge to the first neighbor for V (we assume the neighbor
list is sorted by vertex number). Function next takes as input Vertices V1 and V2
and returns the index for the vertex forming the next edge with V1 after V2 on V1’s
edge list. Function next will return a value of n = |V| once the end of the edge
list for V1 has been reached. The following line appears in many graph algorithms:

for (w = G=>first(v); w < G->n(); w = G->next(v,w))

This for loop gets the first neighbor of v, then works through the remaining neigh-
bors of v until a value equal to G->n() is returned, signaling that all neighbors
of v have been visited. For example, first(1) in Figure 11.4 would return 0.
next(1, 0) would return 3. next(0, 3) would return 4. next(1, 4)
would return 5, which is not a vertex in the graph.

It is reasonably straightforward to implement our graph and edge ADTs using
either the adjacency list or adjacency matrix. The sample implementations pre-
sented here do not address the issue of how the graph is actually created. The user
of these implementations must add functionality for this purpose, perhaps reading
the graph description from a file. The graph can be built up by using the setEdge
function provided by the ADT.

Figure 11.6 shows an implementation for the adjacency matrix. Array Mark
stores the information manipulated by the setMark and getMark functions. The
edge matrix is implemented as an integer array of size n × n for a graph of n ver-
tices. Position (i, j) in the matrix stores the weight for edge (i, j) if it exists. A
weight of zero for edge (i, j) is used to indicate that no edge connects Vertices i
and j.

Given a vertex V , function first locates the position in matrix of the first
edge (if any) of V by beginning with edge (V , 0) and scanning through row V until
an edge is found. If no edge is incident on V , then first returns n.

396 Chap. 11 Graphs

class Graphm implements Graph { // Graph: Adjacency matrix
private int[][] matrix; // The edge matrix
private int numEdge; // Number of edges
public int[] Mark; // The mark array

public Graphm() {}
public Graphm(int n) { // Constructor

Init(n);
}

public void Init(int n) {
Mark = new int[n];
matrix = new int[n][n];
numEdge = 0;

}

public int n() { return Mark.length; } // # of vertices

public int e() { return numEdge; } // # of edges

public int first(int v) { // Get v’s first neighbor
for (int i=0; i<Mark.length; i++)

if (matrix[v][i] != 0) return i;
return Mark.length; // No edge for this vertex

}

public int next(int v, int w) { // Get v’s next edge
for (int i=w+1; i<Mark.length; i++)

if (matrix[v][i] != 0)
return i;

return Mark.length; // No next edge;
}

public boolean isEdge(int i, int j) // Is (i, j) an edge?
{ return matrix[i][j] != 0; }

// Set edge weight
public void setEdge(int i, int j, int wt) {

assert wt!=0 : "Cannot set weight to 0";
if (matrix[i][j] == 0) numEdge++;
matrix[i][j] = wt;

}

public void delEdge(int i, int j) { // Delete edge (i, j)
if (matrix[i][j] != 0) {

matrix[i][j] = 0;
numEdge--;

}
}

public int weight(int i, int j) { // Return edge weight
if (i == j) return 0;
if (matrix[i][j] == 0) return Integer.MAX VALUE;
return matrix[i][j];

}

// Get and set marks
public void setMark(int v, int val) { Mark[v] = val; }
public int getMark(int v) { return Mark[v]; }

}

Figure 11.6 An implementation for the adjacency matrix implementation.

Sec. 11.3 Graph Traversals 397

Function next locates the edge following edge (i, j) (if any) by continuing
down the row of Vertex i starting at position j + 1, looking for an edge. If no
such edge exists, next returns n. Functions setEdge and delEdge adjust the
appropriate value in the array. Function weight returns the value stored in the
appropriate position in the array.

Figure 11.7 presents an implementation of the adjacency list representation for
graphs. Its main data structure is an array of linked lists, one linked list for each
vertex. These linked lists store objects of type Edge, which merely stores the index
for the vertex pointed to by the edge, along with the weight of the edge.

// Edge class for Adjacency List graph representation
class Edge {

private int vert, wt;

public Edge(int v, int w) // Constructor
{ vert = v; wt = w; }

public int vertex() { return vert; }
public int weight() { return wt; }

}

Implementation for Graphl member functions is straightforward in principle,
with the key functions being setEdge, delEdge, and weight. The simplest
implementation would start at the beginning of the adjacency list and move along it
until the desired vertex has been found. However, many graph algorithms work by
taking advantage of the first and next functions to process all edges extending
from a given vertex in turn. Thus, there is a significant time savings if setEdge,
delEdge, and weight first check to see if the desired edge is the current one on
the relevant linked list. The implementation of Figure 11.7 does exactly this.

11.3 Graph Traversals

Often it is useful to visit the vertices of a graph in some specific order based on the
graph’s topology. This is known as a graph traversal and is similar in concept to
a tree traversal. Recall that tree traversals visit every node exactly once, in some
specified order such as preorder, inorder, or postorder. Multiple tree traversals exist
because various applications require the nodes to be visited in a particular order.
For example, to print a BST’s nodes in ascending order requires an inorder traver-
sal as opposed to some other traversal. Standard graph traversal orders also exist.
Each is appropriate for solving certain problems. For example, many problems in
artificial intelligence programming are modeled using graphs. The problem domain
may consist of a large collection of states, with connections between various pairs

398 Chap. 11 Graphs

// Adjacency list graph implementation
class Graphl implements Graph {

private GraphList[] vertex; // The vertex list
private int numEdge; // Number of edges
public int[] Mark; // The mark array

public Graphl() {}
public Graphl(int n) // Constructor

{ Init(n); }

public void Init(int n) {
Mark = new int[n];
vertex = new GraphList[n];
for (int i=0; i<n; i++)

vertex[i] = new GraphList();
numEdge = 0;

}

public int n() { return Mark.length; } // # of vertices
public int e() { return numEdge; } // # of edges

public int first(int v) { // Get v’s first neighbor
vertex[v].moveToStart();
Edge it = vertex[v].getValue();
if (it == null) return Mark.length;
else return it.vertex();

}

public boolean isEdge(int v, int w) { // Is (i,j) an edge?
Edge it = vertex[v].getValue();
if ((it != null) && (it.vertex() == w)) return true;
for (vertex[v].moveToStart();

vertex[v].currPos() < vertex[v].length();
vertex[v].next()) // Check whole list

if (vertex[v].getValue().vertex() == w) return true;
return false;

}

public int next(int v, int w) { // Get next neighbor
Edge it = null;
if (isEdge(v, w)) {

vertex[v].next();
it = vertex[v].getValue();

}
if (it != null)

return it.vertex();
else return Mark.length;

}

Figure 11.7 An implementation for the adjacency list.

Sec. 11.3 Graph Traversals 399

// Store edge weight
public void setEdge(int i, int j, int weight) {

assert weight != 0 : "May not set weight to 0";
Edge currEdge = new Edge(j, weight);
if (isEdge(i, j)) { // Edge already exists in graph

vertex[i].remove();
vertex[i].insert(currEdge);

}
else { // Keep neighbors sorted by vertex index

numEdge++;
for (vertex[i].moveToStart();

vertex[i].currPos() < vertex[i].length();
vertex[i].next())

if (vertex[i].getValue().vertex() > j) break;
vertex[i].insert(currEdge);

}
}

public void delEdge(int i, int j) // Delete edge
{ if (isEdge(i, j)) { vertex[i].remove(); numEdge--; } }

public int weight(int i, int j) { // Return weight of edge
if (i == j) return 0;
if (isEdge(i, j)) return vertex[i].getValue().weight();
else return Integer.MAX VALUE;

}

// Set and get marks
public void setMark(int v, int val) { Mark[v] = val; }
public int getMark(int v) { return Mark[v]; }

}
Figure 11.7 (continued)

of states. Solving the problem may require getting from a specified start state to a
specified goal state by moving between states only through the connections. Typi-
cally, the start and goal states are not directly connected. To solve this problem, the
vertices of the graph must be searched in some organized manner.

Graph traversal algorithms typically begin with a start vertex and attempt to
visit the remaining vertices from there. Graph traversals must deal with a number
of troublesome cases. First, it may not be possible to reach all vertices from the
start vertex. This occurs when the graph is not connected. Second, the graph may
contain cycles, and we must make sure that cycles do not cause the algorithm to go
into an infinite loop.

Graph traversal algorithms can solve both of these problems by maintaining a
mark bit for each vertex on the graph. At the beginning of the algorithm, the mark

400 Chap. 11 Graphs

bit for all vertices is cleared. The mark bit for a vertex is set when the vertex is first
visited during the traversal. If a marked vertex is encountered during traversal, it is
not visited a second time. This keeps the program from going into an infinite loop
when it encounters a cycle.

Once the traversal algorithm completes, we can check to see if all vertices have
been processed by checking the mark bit array. If not all vertices are marked, we
can continue the traversal from another unmarked vertex. Note that this process
works regardless of whether the graph is directed or undirected. To ensure visiting
all vertices, graphTraverse could be called as follows on a graph G:

void graphTraverse(Graph G) {
int v;
for (v=0; v<G.n(); v++)

G.setMark(v, UNVISITED); // Initialize
for (v=0; v<G.n(); v++)

if (G.getMark(v) == UNVISITED)
doTraverse(G, v);

}

Function “doTraverse” might be implemented by using one of the graph traver-
sals described in this section.

11.3.1 Depth-First Search

The first method of organized graph traversal is called depth-first search (DFS).
Whenever a vertex V is visited during the search, DFS will recursively visit all
of V’s unvisited neighbors. Equivalently, DFS will add all edges leading out of v
to a stack. The next vertex to be visited is determined by popping the stack and
following that edge. The effect is to follow one branch through the graph to its
conclusion, then it will back up and follow another branch, and so on. The DFS
process can be used to define a depth-first search tree. This tree is composed of
the edges that were followed to any new (unvisited) vertex during the traversal and
leaves out the edges that lead to already visited vertices. DFS can be applied to
directed or undirected graphs. Here is an implementation for the DFS algorithm:

static void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n() ; w = G.next(v, w))

if (G.getMark(w) == UNVISITED)
DFS(G, w);

PostVisit(G, v); // Take appropriate action
}

Sec. 11.3 Graph Traversals 401

(a) (b)

A B

D

F

A B

C

D

F

E

C

E

Figure 11.8 (a) A graph. (b) The depth-first search tree for the graph when
starting at Vertex A.

This implementation contains calls to functions PreVisit and PostVisit.
These functions specify what activity should take place during the search. Just
as a preorder tree traversal requires action before the subtrees are visited, some
graph traversals require that a vertex be processed before ones further along in the
DFS. Alternatively, some applications require activity after the remaining vertices
are processed; hence the call to function PostVisit. This would be a natural
opportunity to make use of the visitor design pattern described in Section 1.3.2.

Figure 11.8 shows a graph and its corresponding depth-first search tree. Fig-
ure 11.9 illustrates the DFS process for the graph of Figure 11.8(a).

DFS processes each edge once in a directed graph. In an undirected graph,
DFS processes each edge from both directions. Each vertex must be visited, but
only once, so the total cost is Θ(|V|+ |E|).

11.3.2 Breadth-First Search

Our second graph traversal algorithm is known as a breadth-first search (BFS).
BFS examines all vertices connected to the start vertex before visiting vertices fur-
ther away. BFS is implemented similarly to DFS, except that a queue replaces
the recursion stack. Note that if the graph is a tree and the start vertex is at the
root, BFS is equivalent to visiting vertices level by level from top to bottom. Fig-
ure 11.10 provides an implementation for the BFS algorithm. Figure 11.11 shows
a graph and the corresponding breadth-first search tree. Figure 11.12 illustrates the
BFS process for the graph of Figure 11.11(a).

402 Chap. 11 Graphs

Call DFS on A

Mark B
Process (B, C)
Process (B, F)
Print (B, F) and
call DFS on F

Process (F, E)
Print (F, E) and
call DFS on E

Done with B
Pop B

Mark A
Process (A, C)
Print (A, C) and
call DFS on C

Mark F
Process (F, B)
Process (F, C)
Process (F, D)
Print (F, D) and
call DFS on D

Mark E
Process (E, A)
Process (E, F)
Pop E

Continue with C
Process (C, E)
Process (C, F)
Pop C

Mark C
Process (C, A)
Process (C, B)
Print (C, B) and
call DFS on C

Mark D

Done with F
Pop F

Continue with A
Process (A, E)
Pop A
DFS complete

Pop D

Process (D, C)
Process (D, F)

E

F

B

C

A

A

F

B

C

A

C

A

F

B

C

A

C

A

D

F

B

C

A

A

B

C

A

B

C

A

F

B

C

A

Figure 11.9 A detailed illustration of the DFS process for the graph of Fig-
ure 11.8(a) starting at Vertex A. The steps leading to each change in the recursion
stack are described.

Sec. 11.3 Graph Traversals 403

// Breadth first (queue-based) search
static void BFS(Graph G, int start) {

Queue<Integer> Q = new AQueue<Integer>(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (Q.length() > 0) { // Process each vertex on Q

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (G.getMark(w) == UNVISITED) { // Put neighbors on Q
G.setMark(w, VISITED);
Q.enqueue(w);

}
PostVisit(G, v); // Take appropriate action

}
}

Figure 11.10 Implementation for the breadth-first graph traversal algorithm

(a) (b)

B

C

A

C

B

DD

F

EE

A

F

Figure 11.11 (a) A graph. (b) The breadth-first search tree for the graph when
starting at Vertex A.

404 Chap. 11 Graphs

Initial call to BFS on A.
Mark A and put on the queue.

Dequeue A.
Process (A, C).
Mark and enqueue C. Print (A, C).
Process (A, E).
Mark and enqueue E. Print(A, E).

Dequeue C.
Process (C, A). Ignore.
Process (C, B).
Mark and enqueue B. Print (C, B).
Process (C, D).
Mark and enqueue D. Print (C, D).
Process (C, F).
Mark and enqueue F. Print (C, F).

Dequeue E.
Process (E, A). Ignore.
Process (E, F). Ignore.

Dequeue B.
Process (B, C). Ignore.
Process (B, F). Ignore.

Dequeue D.
Process (D, C). Ignore.
Process (D, F). Ignore.

Dequeue F.
Process (F, B). Ignore.
Process (F, C). Ignore.
Process (F, D). Ignore.
BFS is complete.

A

E B D F

D F

C E

B D F

F

Figure 11.12 A detailed illustration of the BFS process for the graph of Fig-
ure 11.11(a) starting at Vertex A. The steps leading to each change in the queue
are described.

Sec. 11.3 Graph Traversals 405

11.3.3 Topological Sort

Assume that we need to schedule a series of tasks, such as classes or construction
jobs, where we cannot start one task until after its prerequisites are completed. We
wish to organize the tasks into a linear order that allows us to complete them one
at a time without violating any prerequisites. We can model the problem using a
DAG. The graph is directed because one task is a prerequisite of another — the
vertices have a directed relationship. It is acyclic because a cycle would indicate
a conflicting series of prerequisites that could not be completed without violating
at least one prerequisite. The process of laying out the vertices of a DAG in a
linear order to meet the prerequisite rules is called a topological sort. Figure 11.13
illustrates the problem. An acceptable topological sort for this example is J1, J2,
J3, J4, J5, J6, J7.

A topological sort may be found by performing a DFS on the graph. When a
vertex is visited, no action is taken (i.e., function PreVisit does nothing). When
the recursion pops back to that vertex, function PostVisit prints the vertex. This
yields a topological sort in reverse order. It does not matter where the sort starts,
as long as all vertices are visited in the end. Here is an implementation for the
DFS-based algorithm.

static void topsort(Graph G) { // Recursive topological sort
for (int i=0; i<G.n(); i++) // Initialize Mark array

G.setMark(i, UNVISITED);
for (int i=0; i<G.n(); i++) // Process all vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Recursive helper function

}

// Topsort helper function
static void tophelp(Graph G, int v) {

G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (G.getMark(w) == UNVISITED)
tophelp(G, w);

printout(v); // PostVisit for Vertex v
}

Using this algorithm starting at J1 and visiting adjacent neighbors in alphabetic
order, vertices of the graph in Figure 11.13 are printed out in the order J7, J5, J4,
J6, J2, J3, J1. When reversed, this yields the legal topological sort J1, J3, J2, J6,
J4, J5, J7.

We can also implement topological sort using a queue instead of recursion.
To do so, we first visit all edges, counting the number of edges that lead to each
vertex (i.e., count the number of prerequisites for each vertex). All vertices with no

406 Chap. 11 Graphs

J1 J2

J3 J4

J5 J7

J6

Figure 11.13 An example graph for topological sort. Seven tasks have depen-
dencies as shown by the directed graph.

static void topsort(Graph G) { // Topological sort: Queue
Queue<Integer> Q = new AQueue<Integer>(G.n());
int[] Count = new int[G.n()];
int v;
for (v=0; v<G.n(); v++) Count[v] = 0; // Initialize
for (v=0; v<G.n(); v++) // Process every edge

for (int w = G.first(v); w < G.n(); w = G.next(v, w))
Count[w]++; // Add to v2’s prereq count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) // V has no prerequisites

Q.enqueue(v);
while (Q.length() > 0) { // Process the vertices

v = Q.dequeue().intValue();
printout(v); // PreVisit for Vertex V
for (int w = G.first(v); w < G.n(); w = G.next(v, w)) {

Count[w]--; // One less prerequisite
if (Count[w] == 0) // This vertex is now free

Q.enqueue(w);
}

}
}

Figure 11.14 A queue-based topological sort algorithm.

prerequisites are placed on the queue. We then begin processing the queue. When
Vertex V is taken off of the queue, it is printed, and all neighbors of V (that is, all
vertices that have V as a prerequisite) have their counts decremented by one. Any
neighbor whose count is now zero is placed on the queue. If the queue becomes
empty without printing all of the vertices, then the graph contains a cycle (i.e., there
is no possible ordering for the tasks that does not violate some prerequisite). The
printed order for the vertices of the graph in Figure 11.13 using the queue version of
topological sort is J1, J2, J3, J6, J4, J5, J7. Figure 11.14 shows an implementation
for the queue-based topological sort algorithm.

Sec. 11.4 Shortest-Paths Problems 407

5

20

2

10 D

B

A

3 11

EC
15

Figure 11.15 Example graph for shortest-path definitions.

11.4 Shortest-Paths Problems

On a road map, a road connecting two towns is typically labeled with its distance.
We can model a road network as a directed graph whose edges are labeled with
real numbers. These numbers represent the distance (or other cost metric, such as
travel time) between two vertices. These labels may be called weights, costs, or
distances, depending on the application. Given such a graph, a typical problem
is to find the total length of the shortest path between two specified vertices. This
is not a trivial problem, because the shortest path may not be along the edge (if
any) connecting two vertices, but rather may be along a path involving one or more
intermediate vertices. For example, in Figure 11.15, the cost of the path from A to
B to D is 15. The cost of the edge directly from A to D is 20. The cost of the path
from A to C to B to D is 10. Thus, the shortest path from A to D is 10 (not along
the edge connecting A to D). We use the notation d(A, D) = 10 to indicate that the
shortest distance from A to D is 10. In Figure 11.15, there is no path from E to B, so
we set d(E, B) =∞. We define w(A, D) = 20 to be the weight of edge (A, D), that
is, the weight of the direct connection from A to D. Because there is no edge from
E to B, w(E, B) = ∞. Note that w(D, A) = ∞ because the graph of Figure 11.15
is directed. We assume that all weights are positive.

11.4.1 Single-Source Shortest Paths

This section presents an algorithm to solve the single-source shortest-paths prob-
lem. Given Vertex S in Graph G, find a shortest path from S to every other vertex
in G. We might want only the shortest path between two vertices, S and T . How-
ever in the worst case, while finding the shortest path from S to T , we might find
the shortest paths from S to every other vertex as well. So there is no better alg-
orithm (in the worst case) for finding the shortest path to a single vertex than to find
shortest paths to all vertices. The algorithm described here will only compute the

408 Chap. 11 Graphs

distance to every such vertex, rather than recording the actual path. Recording the
path requires modifications to the algorithm that are left as an exercise.

Computer networks provide an application for the single-source shortest-paths
problem. The goal is to find the cheapest way for one computer to broadcast a
message to all other computers on the network. The network can be modeled by a
graph with edge weights indicating time or cost to send a message to a neighboring
computer.

For unweighted graphs (or whenever all edges have the same cost), the single-
source shortest paths can be found using a simple breadth-first search. When
weights are added, BFS will not give the correct answer.

One approach to solving this problem when the edges have differing weights
might be to process the vertices in a fixed order. Label the vertices v0 to vn−1, with
S = v0. When processing Vertex v1, we take the edge connecting v0 and v1. When
processing v2, we consider the shortest distance from v0 to v2 and compare that to
the shortest distance from v0 to v1 to v2. When processing Vertex vi, we consider
the shortest path for Vertices v0 through vi−1 that have already been processed.
Unfortunately, the true shortest path to vi might go through Vertex vj for j > i.
Such a path will not be considered by this algorithm. However, the problem would
not occur if we process the vertices in order of distance from S. Assume that we
have processed in order of distance from S to the first i− 1 vertices that are closest
to S; call this set of vertices S. We are now about to process the ith closest vertex;
call it X. A shortest path from S to X must have its next-to-last vertex in S. Thus,

d(S,X) = min
U∈S

(d(S,U) + w(U,X)).

In other words, the shortest path from S to X is the minimum over all paths that go
from S to U, then have an edge from U to X, where U is some vertex in S.

This solution is usually referred to as Dijkstra’s algorithm. It works by main-
taining a distance estimate D(X) for all vertices X in V. The elements of D are ini-
tialized to the value INFINITE. Vertices are processed in order of distance from
S. Whenever a vertex V is processed, D(X) is updated for every neighbor X of V .
Figure 11.16 shows an implementation for Dijkstra’s algorithm. At the end, array D
will contain the shortest distance values.

There are two reasonable solutions to the key issue of finding the unvisited
vertex with minimum distance value during each pass through the main for loop.
The first method is simply to scan through the list of |V| vertices searching for the
minimum value, as follows:

Sec. 11.4 Shortest-Paths Problems 409

// Compute shortest path distances from s, store them in D
static void Dijkstra(Graph G, int s, int[] D) {

for (int i=0; i<G.n(); i++) // Initialize
D[i] = Integer.MAX VALUE;

D[s] = 0;
for (int i=0; i<G.n(); i++) { // Process the vertices

int v = minVertex(G, D); // Find next-closest vertex
G.setMark(v, VISITED);
if (D[v] == Integer.MAX VALUE) return; // Unreachable
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (D[w] > (D[v] + G.weight(v, w)))
D[w] = D[v] + G.weight(v, w);

}
}

Figure 11.16 An implementation for Dijkstra’s algorithm.

static int minVertex(Graph G, int[] D) {
int v = 0; // Initialize v to any unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED) { v = i; break; }
for (int i=0; i<G.n(); i++) // Now find smallest value

if ((G.getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;

return v;
}

Because this scan is done |V| times, and because each edge requires a constant-
time update to D, the total cost for this approach is Θ(|V|2 + |E|) = Θ(|V|2),
because |E| is in O(|V|2).

The second method is to store unprocessed vertices in a min-heap ordered by
distance values. The next-closest vertex can be found in the heap in Θ(log |V|)
time. Every time we modify D(X), we could reorder X in the heap by deleting
and reinserting it. This is an example of a priority queue with priority update, as
described in Section 5.5. To implement true priority updating, we would need to
store with each vertex its array index within the heap. A simpler approach is to
add the new (smaller) distance value for a given vertex as a new record in the heap.
The smallest value for a given vertex currently in the heap will be found first, and
greater distance values found later will be ignored because the vertex will already
be marked as VISITED. The only disadvantage to repeatedly inserting distance
values is that it will raise the number of elements in the heap from Θ(|V|) to Θ(|E|)
in the worst case. The time complexity is Θ((|V|+ |E|) log |E|), because for each
edge we must reorder the heap. Because the objects stored on the heap need to
know both their vertex number and their distance, we create a simple class for the
purpose called DijkElem, as follows. DijkElem is quite similar to the Edge
class used by the adjacency list representation.

410 Chap. 11 Graphs

// Dijkstra’s shortest-paths: priority queue version
static void Dijkstra(Graph G, int s, int[] D) {

int v; // The current vertex
DijkElem[] E = new DijkElem[G.e()]; // Heap for edges
E[0] = new DijkElem(s, 0); // Initial vertex
MinHeap<DijkElem> H = new MinHeap<DijkElem>(E, 1, G.e());
for (int i=0; i<G.n(); i++) // Initialize distance

D[i] = Integer.MAX VALUE;
D[s] = 0;
for (int i=0; i<G.n(); i++) { // For each vertex

do { v = (H.removemin()).vertex(); } // Get position
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == Integer.MAX VALUE) return; // Unreachable
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (D[w] > (D[v] + G.weight(v, w))) { // Update D
D[w] = D[v] + G.weight(v, w);
H.insert(new DijkElem(w, D[w]));

}
}

}

Figure 11.17 An implementation for Dijkstra’s algorithm using a priority queue.

import java.lang.Comparable;

class DijkElem implements Comparable<DijkElem> {
private int vertex;
private int weight;

public DijkElem(int inv, int inw)
{ vertex = inv; weight = inw; }

public DijkElem() {vertex = 0; weight = 0; }

public int key() { return weight; }
public int vertex() { return vertex; }
public int compareTo(DijkElem that) {

if (weight < that.key()) return -1;
else if (weight == that.key()) return 0;
else return 1;

}
}

Figure 11.17 shows an implementation for Dijkstra’s algorithm using the prior-
ity queue.

Using MinVertex to scan the vertex list for the minimum value is more ef-
ficient when the graph is dense, that is, when |E| approaches |V|2. Using a prior-
ity queue is more efficient when the graph is sparse because its cost is Θ((|V| +

Sec. 11.5 Minimum-Cost Spanning Trees 411

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

Figure 11.18 A listing for the progress of Dijkstra’s algorithm operating on the
graph of Figure 11.15. The start vertex is A.

|E|) log |E|). However, when the graph is dense, this cost can become as great as
Θ(|V|2 log |E|) = Θ(|V |2 log |V |).

Figure 11.18 illustrates Dijkstra’s algorithm. The start vertex is A. All vertices
except A have an initial value of∞. After processing Vertex A, its neighbors have
their D estimates updated to be the direct distance from A. After processing C
(the closest vertex to A), Vertices B and E are updated to reflect the shortest path
through C. The remaining vertices are processed in order B, D, and E.

11.5 Minimum-Cost Spanning Trees

This section presents two algorithms for determining the minimum-cost spanning
tree (MST) for a graph. The MST problem takes as input a connected, undirected
graph G, where each edge has a distance or weight measure attached. The MST
is the graph containing the vertices of G along with the subset of G’s edges that
(1) has minimum total cost as measured by summing the values for all of the edges
in the subset, and (2) keeps the vertices connected. Applications where a solution to
this problem is useful include soldering the shortest set of wires needed to connect
a set of terminals on a circuit board, and connecting a set of cities by telephone
lines in such a way as to require the least amount of cable.

The MST contains no cycles. If a proposed set of edges did have a cycle, a
cheaper MST could be had by removing any one of the edges in the cycle. Thus,
the MST is a free tree with |V|−1 edges. The name “minimum-cost spanning tree”
comes from the fact that the required set of edges forms a tree, it spans the vertices
(i.e., it connects them together), and it has minimum cost. Figure 11.19 shows the
MST for an example graph.

412 Chap. 11 Graphs

A

9

7 5
B

C

1 2
6

D 2

1E

F

Figure 11.19 A graph and its MST. All edges appear in the original graph.
Those edges drawn with heavy lines indicate the subset making up the MST. Note
that edge (C, F) could be replaced with edge (D, F) to form a different MST with
equal cost.

11.5.1 Prim’s Algorithm

The first of our two algorithms for finding MSTs is commonly referred to as Prim’s
algorithm. Prim’s algorithm is very simple. Start with any Vertex N in the graph,
setting the MST to be N initially. Pick the least-cost edge connected to N. This
edge connects N to another vertex; call this M. Add Vertex M and Edge (N, M) to
the MST. Next, pick the least-cost edge coming from either N or M to any other
vertex in the graph. Add this edge and the new vertex it reaches to the MST. This
process continues, at each step expanding the MST by selecting the least-cost edge
from a vertex currently in the MST to a vertex not currently in the MST.

Prim’s algorithm is quite similar to Dijkstra’s algorithm for finding the single-
source shortest paths. The primary difference is that we are seeking not the next
closest vertex to the start vertex, but rather the next closest vertex to any vertex
currently in the MST. Thus we replae the lines

if (D[w] > (D[v] + G->weight(v, w)))
D[w] = D[v] + G->weight(v, w);

in Djikstra’s algorithm with the lines

if (D[w] > G->weight(v, w))
D[w] = G->weight(v, w);

in Prim’s algorithm.
Figure 11.20 shows an implementation for Prim’s algorithm that searches the

distance matrix for the next closest vertex. For each vertex I, when I is processed
by Prim’s algorithm, an edge going to I is added to the MST that we are building.

Sec. 11.5 Minimum-Cost Spanning Trees 413

// Compute a minimal-cost spanning tree
static void Prim(Graph G, int s, int[] D, int[] V) {

for (int i=0; i<G.n(); i++) // Initialize
D[i] = Integer.MAX VALUE;
D[s] = 0;
for (int i=0; i<G.n(); i++) { // Process the vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == Integer.MAX VALUE) return; // Unreachable
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (D[w] > G.weight(v, w)) {
D[w] = G.weight(v, w);
V[w] = v;

}
}

}

Figure 11.20 An implementation for Prim’s algorithm.

Array V[I] stores the previously visited vertex that is closest to Vertex I. This
information lets us know which edge goes into the MST when Vertex I is processed.
The implementation of Figure 11.20 also contains calls to AddEdgetoMST to
indicate which edges are actually added to the MST.

Alternatively, we can implement Prim’s algorithm using a priority queue to find
the next closest vertex, as shown in Figure 11.21. As with the priority queue version
of Dijkstra’s algorithm, the heap’s Elem type stores a DijkElem object.

Prim’s algorithm is an example of a greedy algorithm. At each step in the
for loop, we select the least-cost edge that connects some marked vertex to some
unmarked vertex. The algorithm does not otherwise check that the MST really
should include this least-cost edge. This leads to an important question: Does
Prim’s algorithm work correctly? Clearly it generates a spanning tree (because
each pass through the for loop adds one edge and one unmarked vertex to the
spanning tree until all vertices have been added), but does this tree have minimum
cost?

Theorem 11.1 Prim’s algorithm produces a minimum-cost spanning tree.

Proof: We will use a proof by contradiction. Let G = (V,E) be a graph for which
Prim’s algorithm does not generate an MST. Define an ordering on the vertices
according to the order in which they were added by Prim’s algorithm to the MST:
v0, v1, ..., vn−1. Let edge ei connect (vx, vi) for some x < i and i ≥ 1. Let ej be the
lowest numbered (first) edge added by Prim’s algorithm such that the set of edges
selected so far cannot be extended to form an MST for G. In other words, ej is the

414 Chap. 11 Graphs

// Prims’s MST algorithm: priority queue version
static void Prim(Graph G, int s, int[] D, int[] V) {

int v; // The current vertex
DijkElem[] E = new DijkElem[G.e()]; // Heap for edges
E[0] = new DijkElem(s, 0); // Initial vertex
MinHeap<DijkElem> H = new MinHeap<DijkElem>(E, 1, G.e());
for (int i=0; i<G.n(); i++) // Initialize

D[i] = Integer.MAX VALUE; // distances
D[s] = 0;
for (int i=0; i<G.n(); i++) { // Now, get distances

do { v = (H.removemin()).vertex(); } // Get position
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v); // Add edge to MST
if (D[v] == Integer.MAX VALUE) return; // Unreachable
for (int w = G.first(v); w < G.n(); w = G.next(v, w))

if (D[w] > G.weight(v, w)) { // Update D
D[w] = G.weight(v, w);
V[w] = v; // Where it came from
H.insert(new DijkElem(w, D[w]));

}
}

}

Figure 11.21 An implementation of Prim’s algorithm using a priority queue.

first edge where Prim’s algorithm “went wrong.” Let T be the “true” MST. Call vp
(p < j) the vertex connected by edge ej , that is, ej = (vp, vj).

Because T is a tree, there exists some path in T connecting vp and vj . There
must be some edge e′ in this path connecting vertices vu and vw, with u < j and
w ≥ j. Because ej is not part of T, adding edge ej to T forms a cycle. Edge e′ must
be of lower cost than edge ej , because Prim’s algorithm did not generate an MST.
This situation is illustrated in Figure 11.22. However, Prim’s algorithm would have
selected the least-cost edge available. It would have selected e′, not ej . Thus, it is a
contradiction that Prim’s algorithm would have selected the wrong edge, and thus,
Prim’s algorithm must be correct. 2

Example 11.3 For the graph of Figure 11.19, assume that we begin by
marking Vertex A. From A, the least-cost edge leads to Vertex C. Vertex C
and edge (A, C) are added to the MST. At this point, our candidate edges
connecting the MST (Vertices A and C) with the rest of the graph are (A, E),
(C, B), (C, D), and (C, F). From these choices, the least-cost edge from the
MST is (C, D). So we add Vertex D to the MST. For the next iteration, our
edge choices are (A, E), (C, B), (C, F), and (D, F). Because edges (C, F)

Sec. 11.5 Minimum-Cost Spanning Trees 415

Marked Unmarked
Vertices vi, i ≥ jVertices vi, i < j

“correct” edge
e′

ej

Prim’s edge

vw

vjvp

vu

Figure 11.22 Prim’s MST algorithm proof. The left oval contains that portion of
the graph where Prim’s MST and the “true” MST T agree. The right oval contains
the rest of the graph. The two portions of the graph are connected by (at least)
edges ej (selected by Prim’s algorithm to be in the MST) and e′ (the “correct”
edge to be placed in the MST). Note that the path from vw to vj cannot include
any marked vertex vi, i ≤ j, because to do so would form a cycle.

and (D, F) happen to have equal cost, it is an arbitrary decision as to which
gets selected. Let’s pick (C, F). The next step marks Vertex E and adds
edge (F, E) to the MST. Following in this manner, Vertex B (through edge
(C, B)) is marked. At this point, the algorithm terminates.

11.5.2 Kruskal’s Algorithm

Our next MST algorithm is commonly referred to as Kruskal’s algorithm. Kruskal’s
algorithm is also a simple, greedy algorithm. We first partition the set of vertices
into |V| equivalence classes (see Section 6.2), each consisting of one vertex. We
then process the edges in order of weight. An edge is added to the MST, and the
two equivalence classes combined, if the edge connects two vertices in different
equivalence classes. This process is repeated until only one equivalence class re-
mains.

Example 11.4 Figure 11.23 shows the first three steps of Kruskal’s Alg-
orithm for the graph of Figure 11.19. Edge (C, D) has the least cost, and
because C and D are currently in separate MSTs, they are combined. We
next select edge (E, F) to process, and combine these vertices into a single

416 Chap. 11 Graphs

MST. The third edge we process is (C, F), which causes the MST contain-
ing Vertices C and D to merge with MST containing Vertices E and F. The
next edge to process is (D, F). But because Vertices D and F are currently
in the same MST, this edge is rejected. The algorithm will continue on to
accept edges (B, C) and (A, C) into the MST.

The edges can be processed in order of weight by using a min-heap. This is
generally faster than sorting the edges first, because in practice we need only visit
a small fraction of the edges before completing the MST. This is an example of
finding only a few smallest elements in a list, as discussed in Section 7.6.

The only tricky part to this algorithm is determining if two vertices belong to
the same equivalence class. Fortunately, the ideal algorithm is available for the
purpose — the UNION/FIND algorithm based on the parent pointer representation
for trees described in Section 6.2. Figure 11.24 shows an implementation for the
algorithm. Class KruskalElem is used to store the edges on the min-heap.

Kruskal’s algorithm is dominated by the time required to process the edges.
The differ and UNION functions are nearly constant in time if path compression
and weighted union is used. Thus, the total cost of the algorithm is Θ(|E| log |E|)
in the worst case, when nearly all edges must be processed before all the edges of
the spanning tree are found and the algorithm can stop. More often the edges of the
spanning tree are the shorter ones,and only about |V| edges must be processed. If
so, the cost is often close to Θ(|V| log |E|) in the average case.

11.6 Further Reading

Many interesting properties of graphs can be investigated by playing with the pro-
grams in the Stanford Graphbase. This is a collection of benchmark databases and
graph processing programs. The Stanford Graphbase is documented in [Knu94].

11.7 Exercises

11.1 Prove by induction that a graph with n vertices has at most n(n−1)/2 edges.
11.2 Prove the following implications regarding free trees.

(a) IF an undirected graph is connected and has no simple cycles, THEN
the graph has |V| − 1 edges.

(b) IF an undirected graph has |V| − 1 edges and no cycles, THEN the
graph is connected.

11.3 (a) Draw the adjacency matrix representation for the graph of Figure 11.25.

Sec. 11.7 Exercises 417

Initial

Step 1 A B
C

1

D

E F

Step 2

Process edge (E, F)
1 1

Step 3

Process edge (C, F)

B
1 2

E 1

F

Process edge (C, D)

A

A B D E FC

C

D

B
C

D

E
A

F

Figure 11.23 Illustration of the first three steps of Kruskal’s MST algorithm as
applied to the graph of Figure 11.19.

(b) Draw the adjacency list representation for the same graph.
(c) If a pointer requires four bytes, a vertex label requires two bytes, and

an edge weight requires two bytes, which representation requires more
space for this graph?

(d) If a pointer requires four bytes, a vertex label requires one byte, and
an edge weight requires two bytes, which representation requires more
space for this graph?

11.4 Show the DFS tree for the graph of Figure 11.25, starting at Vertex 1.
11.5 Wright a pseudocode algorithm to create a DFS tree for an undirected, con-

nected graph starting at a specified vertex V .
11.6 Show the BFS tree for the graph of Figure 11.25, starting at Vertex 1.

418 Chap. 11 Graphs

class KruskalElem implements Comparable<KruskalElem> {
private int v, w, weight;

public KruskalElem(int inweight, int inv, int inw)
{ weight = inweight; v = inv; w = inw; }

public int v1() { return v; }
public int v2() { return w; }
public int key() { return weight; }
public int compareTo(KruskalElem that) {

if (weight < that.key()) return -1;
else if (weight == that.key()) return 0;
else return 1;

}
}
static void Kruskal(Graph G) { // Kruskal’s MST algorithm

ParPtrTree A = new ParPtrTree(G.n()); // Equivalence array
KruskalElem[] E = new KruskalElem[G.e()]; // Minheap array
int edgecnt = 0; // Count of edges

for (int i=0; i<G.n(); i++) // Put edges in the array
for (int w = G.first(i); w < G.n(); w = G.next(i, w))

E[edgecnt++] = new KruskalElem(G.weight(i, w), i, w);
MinHeap<KruskalElem> H =

new MinHeap<KruskalElem>(E, edgecnt, edgecnt);
int numMST = G.n(); // Initially n classes
for (int i=0; numMST>1; i++) { // Combine equiv classes

KruskalElem temp = H.removemin(); // Next cheapest
int v = temp.v1(); int u = temp.v2();
if (A.differ(v, u)) { // If in different classes

A.UNION(v, u); // Combine equiv classes
AddEdgetoMST(v, u); // Add this edge to MST
numMST--; // One less MST

}
}

}
Figure 11.24 An implementation for Kruskal’s algorithm.

11.7 Wright a pseudocode algorithm to create a BFS tree for an undirected, con-
nected graph starting at a specified vertex V .

11.8 The BFS topological sort algorithm can report the existence of a cycle if one
is encountered. Modify this algorithm to print the vertices possibly appearing
in cycles (if there are any cycles).

11.9 Explain why, in the worst case, Dijkstra’s algorithm is (asymptotically) as
efficient as any algorithm for finding the shortest path from some vertex I to
another vertex J.

Sec. 11.7 Exercises 419

2 5
420

10
3

6 11
33

15 5

10

2

1

Figure 11.25 Example graph for Chapter 11 exercises.

11.10 Show the shortest paths generated by running Dijkstra’s shortest-paths alg-
orithm on the graph of Figure 11.25, beginning at Vertex 4. Show the D
values as each vertex is processed, as in Figure 11.18.

11.11 Modify the algorithm for single-source shortest paths to actually store and
return the shortest paths rather than just compute the distances.

11.12 The root of a DAG is a vertex R such that every vertex of the DAG can be
reached by a directed path from R. Write an algorithm that takes a directed
graph as input and determines the root (if there is one) for the graph. The
running time of your algorithm should be Θ(|V|+ |E|).

11.13 Write an algorithm to find the longest path in a DAG, where the length of
the path is measured by the number of edges that it contains. What is the
asymptotic complexity of your algorithm?

11.14 Write an algorithm to determine whether a directed graph of |V| vertices
contains a cycle. Your algorithm should run in Θ(|V|+ |E|) time.

11.15 Write an algorithm to determine whether an undirected graph of |V| vertices
contains a cycle. Your algorithm should run in Θ(|V|) time.

11.16 The single-destination shortest-paths problem for a directed graph is to find
the shortest path from every vertex to a specified vertex V . Write an algorithm
to solve the single-destination shortest-paths problem.

11.17 List the order in which the edges of the graph in Figure 11.25 are visited
when running Prim’s MST algorithm starting at Vertex 3. Show the final
MST.

11.18 List the order in which the edges of the graph in Figure 11.25 are visited
when running Kruskal’s MST algorithm. Each time an edge is added to the
MST, show the result on the equivalence array, (e.g., show the array as in
Figure 6.7).

11.19 Write an algorithm to find a maximum cost spanning tree, that is, the span-
ning tree with highest possible cost.

420 Chap. 11 Graphs

11.20 When can Prim’s and Kruskal’s algorithms yield different MSTs?
11.21 Prove that, if the costs for the edges of Graph G are distinct, then only one

MST exists for G.
11.22 Does either Prim’s or Kruskal’s algorithm work if there are negative edge

weights?
11.23 Consider the collection of edges selected by Dijkstra’s algorithm as the short-

est paths to the graph’s vertices from the start vertex. Do these edges form
a spanning tree (not necessarily of minimum cost)? Do these edges form an
MST? Explain why or why not.

11.24 Prove that a tree is a bipartite graph.
11.25 Prove that any tree can be two-colored.
11.26 Write an algorithm that deterimines if an arbitrary undirected graph is a bi-

partite graph. If the graph is bipartite, then your algorithm should also iden-
tify the vertices as to which of the two partitions each belongs to.

11.8 Projects

11.1 Design a format for storing graphs in files. Then implement two functions:
one to read a graph from a file and the other to write a graph to a file. Test
your functions by implementing a complete MST program that reads an undi-
rected graph in from a file, constructs the MST, and then writes to a second
file the graph representing the MST.

11.2 An undirected graph need not explicitly store two separate directed edges to
represent a single undirected edge. An alternative would be to store only a
single undirected edge (I, J) to connect Vertices I and J. However, what if the
user asks for edge (J, I)? We can solve this problem by consistently storing
the edge such that the lesser of I and J always comes first. Thus, if we have
an edge connecting Vertices 5 and 3, requests for edge (5, 3) and (3, 5) both
map to (3, 5) because 3 < 5.
Looking at the adacency matrix, we notice that only the lower triangle of
the array is used. Thus we could cut the space required by the adjacency
matrix from |V|2 positions to |V|(|V|−1)/2 positions. Read Section 12.2 on
triangular matrices. The reimplement the adjacency matrix representation of
Figure 11.6 to implement undirected graphs using a triangular array.

11.3 While the underlying implementation (whether adjacency matrix or adja-
cency list) is hidden behind the graph ADT, these two implementations can
have an impact on the efficiency of the resulting program. For Dijkstra’s
shortest paths algorithm, two different implementations were given in Sec-
tion 11.4.1 that provide diffent ways for determining the next closest vertex

Sec. 11.8 Projects 421

at each iteration of the algorithm. The relative costs of these two variants
depend on who sparse or dense the graph is. They might also depend on
whether the graph is implemented using an adjacency list or adjacency ma-
trix.
Design and implement a study to compare the effects on performance for
three variables: (i) the two graph representations (adjacency list and adja-
cency matrix); (ii) the two implementations for Djikstra’s shortest paths alg-
orithm (searching the table of vertex distances or using a priority queue to
track the distances), and (iii) sparse versus dense graphs. Be sure to test your
implementations on a variety of graphs that are sufficiently large to generate
meaningful times.

11.4 The example implementations for DFS and BFS show calls to functions
PreVisit and PostVisit. Better is to implement BFS and DFS using
the visitor design pattern, with the visitor functions being passed in as either
function or template parameters. Reimplement the BFS and DFS functions
to make use of the visitor design pattern.

11.5 Write a program to label the connected components for an undirected graph.
In other words, all vertices of the first component are given the first com-
ponent’s label, all vertices of the second component are given the second
component’s label, and so on. Your algorithm should work by defining any
two vertices connected by an edge to be members of the same equivalence
class. Once all of the edges have been processed, all vertices in a given equiv-
alence class will be connected. Use the UNION/FIND implementation from
Section 6.2 to implement equivalence classes.

