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How Do We Tackle an N'P-Complete Problem?

» These problems come up in real life.
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How Do We Tackle an N'P-Complete Problem?

» These problems come up in real life.

» N P-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?
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How Do We Tackle an A'P-Complete Problem?

» These problems come up in real life.
» N'P-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?
» Develop algorithms that are exponential in one parameter in the problem.
» Consider special cases of the input, e.g., graphs that “look like" trees.
» Develop algorithms that can provably compute a solution close to the optimal.
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Vertex Cover Problem

VERTEX COVER
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k?

» The problem has two parameters: k and n, the number of nodes in G.
» What is the running time of a brute-force algorithm?
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Vertex Cover Problem

VERTEX COVER
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k?
» The problem has two parameters: k and n, the number of nodes in G.

» What is the running time of a brute-force algorithm? O(kn(})) = O(kn**1).
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Vertex Cover Problem

VERTEX COVER
INSTANCE: Undirected graph G and an integer k
QUESTION: Does G contain a vertex cover of size at most k?
» The problem has two parameters: k and n, the number of nodes in G.
» What is the running time of a brute-force algorithm? O(kn(})) = O(kn**1).

» Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?
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Designing the Vertex Cover Algorithm

» If a graph has a small vertex cover, it cannot have too many edges.
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Designing the Vertex Cover Algorithm

» If a graph has a small vertex cover, it cannot have too many edges.

» Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.
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Designing the Vertex Cover Algorithm

» If a graph has a small vertex cover, it cannot have too many edges.

» Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

> Easy part of algorithm: Return no if G has more than kn edges.
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Designing the Vertex Cover Algorithm

v

If a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

v

v

Easy part of algorithm: Return no if G has more than kn edges.

v

G — {u} is the graph G without node u and the edges incident on wu.

v

Consider an edge (u, v). Either u or v must be in the vertex cover.
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Designing the Vertex Cover Algorithm

» If a graph has a small vertex cover, it cannot have too many edges.

Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

v

Easy part of algorithm: Return no if G has more than kn edges.
G — {u} is the graph G without node u and the edges incident on wu.
Consider an edge (u, v). Either u or v must be in the vertex cover.

vV V. v VY

Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G — {u} or G — {v} has a vertex cover of size at most k — 1.
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Vertex Cover Algorithm

To search for a k-node vertex cover in G:
If G contains no edges, then the empty set is a vertex cover
If G contains> k |V| edges, then it has no k-node vertex cover
Else let e=(u,v) be an edge of G
Recursively check if either of G—{u} or G—{v}
has a vertex cover of size k-1
If neither of them does, then G has no k-node vertex cover
Else, one of them (say, G—{u}) has a (k— 1)-node vertex cover T
In this case, TU{u} is a k-node vertex cover of G
Endif
Endif
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Analysing the Vertex Cover Algorithm

» Develop a recurrence relation for the algorithm with parameters
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Analysing the Vertex Cover Algorithm

» Develop a recurrence relation for the algorithm with parameters n and k.

> Let T(n, k) denote the worst-case running time of the algorithm on an
instance of VERTEX COVER with parameters n and k.
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Analysing the Vertex Cover Algorithm

» Develop a recurrence relation for the algorithm with parameters n and k.

> Let T(n, k) denote the worst-case running time of the algorithm on an
instance of VERTEX COVER with parameters n and k.

> T(n,1) <cn.



Solving A P-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

v

Develop a recurrence relation for the algorithm with parameters n and k.

v

Let T(n, k) denote the worst-case running time of the algorithm on an
instance of VERTEX COVER with parameters n and k.

T(n,1) <cn.
T(n,k) <2T(n,k —1)+ ckn.

v

v
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Analysing the Vertex Cover Algorithm

v

Develop a recurrence relation for the algorithm with parameters n and k.

v

Let T(n, k) denote the worst-case running time of the algorithm on an
instance of VERTEX COVER with parameters n and k.

T(n,1) <cn.
T(n,k) <2T(n,k —1)+ ckn.
Claim: T(n, k) = O(2%kn).

v

v

v
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Solving N'P-Hard Problems on Trees

» “A'P-Hard": at least as hard as A'P-Complete. We will use N"P-Hard to
refer to optimisation versions of decision problems.
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Solving N'P-Hard Problems on Trees

» “A'P-Hard": at least as hard as A'P-Complete. We will use N"P-Hard to
refer to optimisation versions of decision problems.
» Many A'P-Hard problems can be solved efficiently on trees.

> Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v. Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v’'s subtree from the

rest of the tree.
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Designing Greedy Algorithm for Independent Set

» Optimisation problem: Find the largest independent set in a tree.
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Designing Greedy Algorithm for Independent Set

» Optimisation problem: Find the largest independent set in a tree.
» Claim: Every tree T(V, E) has a /leaf, a node with degree 1.

» Claim: If a tree T has a leaf v, then there exists a maximum-size
independent set in T that contains v.
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Designing Greedy Algorithm for Independent Set

» Optimisation problem: Find the largest independent set in a tree.
» Claim: Every tree T(V, E) has a /leaf, a node with degree 1.

» Claim: If a tree T has a leaf v, then there exists a maximum-size
independent set in T that contains v. Prove by exchange argument.
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Designing Greedy Algorithm for Independent Set

» Optimisation problem: Find the largest independent set in a tree.
> Claim: Every tree T(V, E) has a leaf, a node with degree 1.

» Claim: If a tree T has a leaf v, then there exists a maximum-size
independent set in T that contains v. Prove by exchange argument.

» Claim: If a tree T has a a leaf v, then a maximum-size independent set in T
is v and a maximum-size independent set in T — {v}.
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Greedy Algorithm for Independent Set

> A forest is a graph where every connected component is a tree.

To find a maximum-size independent set in a forest F:
Let S be the independent set to be constructed (initially empty)
While F has at least one edge
Let e=(u,v) be an edge of F such that v is a leaf

Add v to S
Delete from F nodes u and v, and all edges incident to them
Endwhile

Return S
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Greedy Algorithm for Independent Set

> A forest is a graph where every connected component is a tree.
» Running time of the algorithm is O(n).

To find a maximum-size independent set in a forest F:
Let S be the independent set to be constructed (initially empty)
While F has at least one edge
Let e=(u,v) be an edge of F such that v is a leaf

Add v to S
Delete from F nodes u and v, and all edges incident to them
Endwhile

Return S
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Greedy Algorithm for Independent Set

> A forest is a graph where every connected component is a tree.
» Running time of the algorithm is O(n).

> The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

To find a maximum-size independent set in a forest F:

Let S be the independent set to be constructed (initially empty)
While F has at least one edge

Let e=(u,v) be an edge of F such that v is a leaf
Add v to S

Delete from F nodes u and v, and all edges incident to them
Endwhile

Return S
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Maximum Weight Independent Set

» Consider the INDEPENDENT SET problem but with a weight w, on every
node v.

> Goal is to find an independent set S such that )
possible.

ves Wy is as large as
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Maximum Weight Independent Set

» Consider the INDEPENDENT SET problem but with a weight w, on every
node v.

» Goal is to find an independent set S such that ) _sw, is as large as
possible.

» Can we extend the greedy algorithm?
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Maximum Weight Independent Set

» Consider the INDEPENDENT SET problem but with a weight w, on every
node v.

> Goal is to find an independent set S such that )
possible.

ves Wy is as large as

> Can we extend the greedy algorithm? Exchange argument fails: if v is a
parent of a leaf v, w, may be larger than w,.
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Maximum Weight Independent Set

» Consider the INDEPENDENT SET problem but with a weight w, on every
node v.

» Goal is to find an independent set S such that ) s w, is as large as
possible.

» Can we extend the greedy algorithm? Exchange argument fails: if v is a
parent of a leaf v, w, may be larger than w,.

» But there are still only two possibilities: either include v in the independent
set or include all neighbours of u that are leaves.
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Maximum Weight Independent Set

» Consider the INDEPENDENT SET problem but with a weight w, on every
node v.

> Goal is to find an independent set S such that )
possible.

ves Wy is as large as

» Can we extend the greedy algorithm? Exchange argument fails: if v is a
parent of a leaf v, w, may be larger than w,.

» But there are still only two possibilities: either include v in the independent
set or include all neighbours of u that are leaves.

> Suggests dynamic programming algorithm.
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Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

» What are the sub-problems?
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Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.
» What are the sub-problems?
» Pick a node r and root tree at r: orient edges towards r.

> parent p(u) of a node u is the node adjacent to u along the path to r.
> Sub-problems are T,: subtree induced by u and all its descendants.
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Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.
» What are the sub-problems?
» Pick a node r and root tree at r: orient edges towards r.
> parent p(u) of a node u is the node adjacent to u along the path to r.
» Sub-problems are T,: subtree induced by v and all its descendants.

» Ordering the sub-problems: start at leaves and work our way up to the root.
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Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Either we include u in an optimal solution or exclude u.

» OPTj,(u): maximum weight of an independent set in T, that includes u.
> OPTou(u): maximum weight of an independent set in T, that excludes u.
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Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Either we include u in an optimal solution or exclude u.

» OPTj,(u): maximum weight of an independent set in T, that includes u.
> OPTou(u): maximum weight of an independent set in T, that excludes u.

» Base cases:
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Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

» Either we include u in an optimal solution or exclude u.

» OPTj,(u): maximum weight of an independent set in T, that includes u.
> OPTou(u): maximum weight of an independent set in T, that excludes u.

> Base cases: For a leaf u, OPT;,(u) = w, and OPToyu(u) = 0.
» Recurrence:

1. If we include u, all children must be excluded.
2. If we exclude u, a child may or may not be excluded.
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Dynamic Programming Algorithm for Maximum
Weight Independent Set

To find a maximum-weight independent set of a tree T:
Root the tree at a node r
For all nodes u of T in post-order
If u is a leaf then set the values:

Moye[u]=0
M, [u] =w,
Else set the values:
Myyelul= Z max Moy [ul, M [ul)

vechildren(u)

My[ul= w, + Y Myylul.

vechildren(u)
Endif
Endfor
Return max(My,[r], M, [r])
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Dynamic Programming Algorithm for Maximum
Weight Independent Set

To find a maximum-weight independent set of a tree T:
Root the tree at a node r
For all nodes u of T in post-order
If u is a leaf then set the values:

Moye[u]=0
M, [u] =w,
Else set the values:
Myyelul= Z max Moy [ul, M [ul)

vechildren(u)

My[ul= w, + Y Myylul.

vechildren(u)
Endif
Endfor
Return max(My,[r], M, [r])

> Running time of the algorithm is O(n).
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Aren’'t Trees Too Restrictive?

> Trees are only a very specific sub-class of graphs. What use are algorithms
for N'P-Hard problems that work well on trees?
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Aren’'t Trees Too Restrictive?

> Trees are only a very specific sub-class of graphs. What use are algorithms
for N'P-Hard problems that work well on trees?

» These ideas can be generalised to graphs that “look like" trees: graphs with
bounded treewidth.
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Example of Tree Decomposition

() (b) (©

Figure 10.5 Parts (a) and (b) depict the same graph drawn in different ways. The drawing
in (b) emphasizes the way in which it is composed of ten interlocking triangles. Part (c)
illustrates schematically how these ten triangles “fit together.”
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Example of Tree Decomposition

(a) (b) (©

Figure 10.5 Parts (a) and (b) depict the same graph drawn in different ways. The drawing
in (b) emphasizes the way in which it is composed of ten interlocking triangles. Part (c)
illustrates schematically how these ten triangles “fit together.”

» Definition of “tree-like” should capture graphs that we can decompose into
disconnected pieces by removing a small number of nodes.

» Definition should make precise the notion of “tree-like" structures in the
figure.
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Tree Decompositions

A Tree decomposition of a graph G(V/, E) consists of

1. atree T (whose nodes are different from V)
2. a piece V; C V associated with each node t € T
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Tree Decompositions

A Tree decomposition of a graph G(V/, E) consists of

1. atree T (whose nodes are different from V)
2. a piece V; C V associated with each node t € T

that satisfy three properties:
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Tree Decompositions

A Tree decomposition of a graph G(V/, E) consists of

1. atree T (whose nodes are different from V)
2. a piece V; C V associated with each node t € T

that satisfy three properties:
(Node coverage): Every node of G belongs to at least one piece V;
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Tree Decompositions

A Tree decomposition of a graph G(V/, E) consists of
1. atree T (whose nodes are different from V)
2. a piece V; C V associated with each node t € T
that satisfy three properties:
(Node coverage): Every node of G belongs to at least one piece V;

(Edge coverage): For every edge (u,v) in G, there is at least one piece V;
that contains both v and v, and
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Tree Decompositions

A Tree decomposition of a graph G(V/, E) consists of

1. atree T (whose nodes are different from V)
2. a piece V; C V associated with each node t € T
that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece V;
(Edge coverage): For every edge (u,v) in G, there is at least one piece V;
that contains both v and v, and
(Coherence): Let t1, to, and t3 be three nodes in T such that t, lies on the
path from t; to t3. Then, if a node v in G belongs to V;, and V4, it also
belongs to V4,.
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Properties of Tree Decompositions

> Trees have two nice separation properties:
1. If we delete an edge from a tree, the tree splits into two connected
components.
2. If we delete a node and all incident edges from a tree, the tree splits into a
number of connected components equal to the degree of the node.

» Tree decompositions have analogous properties.
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Node Separation in a Tree Decomposition

No edge (u, v)

Figure 10.6 Separations of the tree T translate to separations of the graph G.
» If T’ is a subgraph of T, let Gr/
denote the subgraph of G induced
by the nodes Uic 7/ V4.
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Node Separation in a Tree Decomposition

No edge (u, v)

Figure 10.6 Separations of the tree T translate to separations of the graph G.

» If T’ is a subgraph of T, let Gr/
denote the subgraph of G induced
by the nodes Uic 7/ V4.

» Claim: Suppose T — {t} has the

components Ty, To,... Ty. Then
+he cithoranhe
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Edge Separation in a Tree Decomposition

Gx- VNV, Gy- VNV,

Figure 10.7 Deleting an edge of the tree T translates to separation of the graph G.

» Claim: Let X and Y be the two
components of T after the deletion
of the edge (x,y). Then deleting
the set Vx N Vy from G
disconnects G into the two
subgraphs Gx — (Vx N Vy) and
Gy — (VX N Vy)
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Uses of Tree Decompositions

Width of a tree decomposition is the size of the largest piece.

Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

Cost of the algorithm is exponential in the width of the decomposition.

v

v

v

v
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Uses of Tree Decompositions

» Width of a tree decomposition is the size of the largest piece.

» Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

> If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

» Cost of the algorithm is exponential in the width of the decomposition.

» Does a graph a tree decomposition with width at most w?
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Uses of Tree Decompositions

Width of a tree decomposition is the size of the largest piece.

Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

Cost of the algorithm is exponential in the width of the decomposition.
Does a graph a tree decomposition with width at most w? NP-Complete!
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Uses of Tree Decompositions

v

Width of a tree decomposition is the size of the largest piece.

» Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

> If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

» Cost of the algorithm is exponential in the width of the decomposition.

» Does a graph a tree decomposition with width at most w? AP-Complete!

> (Chapter 10.5): Given a graph and a parameter w, there is an algorithm that
runs in O(f(w)mn) time and either
1. produces a tree decomposition of width at most 4w or

2. reports correctly that G does not have a tree decomposition with width less
than w.
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Approximation Algorithms

» Methods for optimisation versions of A/P-Complete problems.

» Run in polynomial time.

» Solution returned is guaranteed to be within a small factor of the optimal
solution
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Load Balancing Problem

» Given set of m machines My, M, ... M,.
> Given a set of m jobs: job j has processing time t;.
> Assign each job to one machine so that the total time spent is minimised.
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Load Balancing Problem

Given set of m machines My, M, ... M,.

Given a set of m jobs: job j has processing time t;.

Assign each job to one machine so that the total time spent is minimised.
Let A(/) be the set of jobs assigned to machine M;.

Ti =2 keaq te-

Minimise makespan T = max; T;.

vV V. vV vV VvVY



Solving N/ P-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Load Balancing Problem

Given set of m machines My, M, ... M,.

Given a set of m jobs: job j has processing time t;.

Assign each job to one machine so that the total time spent is minimised.
Let A(/) be the set of jobs assigned to machine M;.

Ti =2 keaq te-
Minimise makespan T = max; T;.

vV VvV vV vV VY

Minimising makespan is A/P-Complete.
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Greedy-Balance Algorithm

Greedy-Balance:
Start with no jobs assigned
Set T;=0 and A()) =¢ for all machines M;
For j=1,...,n
Let M; be a machine that achieves the minimum miny Ty
Assign job j to machine M;
Set A() < A U {j}
Set T; « T;j+¢
EndFor
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Lower Bounds on the Optimal Makespan

» We need a lower bound on the optimum makespan T*.
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Lower Bounds on the Optimal Makespan

» We need a lower bound on the optimum makespan T*.

» The two bounds below will suffice:
1
T > — t;

T* > maxt;
J
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Analysing Greedy-Balance

» Let T be the computed makespan.
» Claim: T <2T*.
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Analysing Greedy-Balance

Let T be the computed makespan.

Claim: T <2T*.

Let M; be the machine whose load is T and j be the last job placed on M,;.
What was the situation just before placing this job?

vvyyvyy



Solving A/ P-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing Greedy-Balance

Let T be the computed makespan.

Claim: T <2T*.

Let M; be the machine whose load is T and j be the last job placed on M;.
What was the situation just before placing this job?

vvyyvyy

The contribution of
the last job alone is
at most the optimum.

(Just before adding
the last job, the load
on M; was at most
the optimum.

Figure 11.2 Accounting for the load on machine M; in two parts: the last job to be
added, and all the others.

» M, had the smallest load and its
load was T — .
> Every machine had load > T — ;.
» Therefore,
T— tj < 1/mzk T < T*.
» But t; < T*.
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Analysing Greedy-Balance

Let T be the computed makespan.

Claim: T <2T*.

Let M; be the machine whose load is T and j be the last job placed on M;.
What was the situation just before placing this job?

vvyyvyy

The contribution of
the last job alone is
at most the optimum.

(Just before adding
the last job, the load
on M; was at most
the optimum.

Figure 11.2 Accounting for the load on machine M; in two parts: the last job to be
added, and all the others.

» M, had the smallest load and its
load was T — .
> Every machine had load > T — ;.
» Therefore,
T— tj < 1/mzk T < T*.
» But t; < T*.
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solution close to a factor of 2 away from optimal.
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Improving the Bound

> It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

» How can we improve the algorithm?
» What if we process the jobs in decreasing order of processing time?
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Sorted-Balance Algorithm

Sorted-Balance:
Start with no jobs assigned
Set T;=0 and A()) =¢ for all machines M;
Sort jobs in decreasing order of processing times ¢
Assume that t1>26>...21,
For j=1,...,n
Let M; be the machine that achieves the minimum ming Ty
Assign job j to machine M;
Set A(I) < A(@) U {j}
Set T; « Tj+¢
EndFor
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Analyzing Sorted-Balance

» Claim: if there are fewer than m jobs, algorithm is optimal.
» Claim: if there are more than m jobs, then T* > 2¢,,,;.
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Analyzing Sorted-Balance

» Claim: if there are fewer than m jobs, algorithm is optimal.
» Claim: if there are more than m jobs, then T* > 2¢,,,;.
» Claim: T <3T7*/2.
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Analyzing Sorted-Balance

Claim: if there are fewer than m jobs, algorithm is optimal.
Claim: if there are more than m jobs, then T* > 2t,,,1.
Claim: T <3T7*/2.

Let M; be the machine whose load is T and j be the last job placed on M;.
(M; has at least two jobs.)

vV vVv. v Yy
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Analyzing Sorted-Balance

Claim: if there are fewer than m jobs, algorithm is optimal.

Claim: if there are more than m jobs, then T* > 2t,,,1.

Claim: T <3T*/2.

Let M; be the machine whose load is T and j be the last job placed on M;.
(M; has at least two jobs.)

Jem+1=t<tn <T7/2

vV vVv. v Yy

v
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Analyzing Sorted-Balance

Claim: if there are fewer than m jobs, algorithm is optimal.

Claim: if there are more than m jobs, then T* > 2t,,,1.

Claim: T <3T*/2.

Let M; be the machine whose load is T and j be the last job placed on M;.
(M; has at least two jobs.)

Jem+1=t<tn <T7/2

Using same proof as before, T = T; <3T*/2.

vV vVv. v Yy

v

v
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Set Cover

SET COVER

INSTANCE: A set U of n elements, a collection S, 5,,...,5,, of
subsets of U, each with an associated weight w.

SOLUTION: A collection C of sets in the collection such that } 5 - w;
is minimised.
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» To get a greedy algorithm, in what order should we process the sets?
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Greedy-Set-Cover

» To get a greedy algorithm, in what order should we process the sets?
» Maintain set R of uncovered elements.
> Process set in decreasing order of w;/|S; N R|.
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Greedy-Set-Cover

» To get a greedy algorithm, in what order should we process the sets?
» Maintain set R of uncovered elements.
> Process set in decreasing order of w;/|S; N R|.

Greedy-Set—Cover:
Start with R=U and no sets selected
While R# 0¥
Select set §5; that minimizes w;/[S;N R|
Delete set S; from R
EndWhile
Return the selected sets
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Greedy-Set-Cover

» To get a greedy algorithm, in what order should we process the sets?
» Maintain set R of uncovered elements.

> Process set in decreasing order of w;/|S; N R|.

Greedy-Set—Cover:
Start with R=U and no sets selected
While R# 0¥
Select set §5; that minimizes w;/[S;N R|
Delete set S; from R
EndWhile
Return the selected sets

> The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovész 1975, Chvatal 1979).
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Example of Greedy-Set-Cover

1+e¢ 1+e

Two sets can be used to
cover everything, but the
greedy algorithm doesn’t
find them.
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Starting the Analysis of Greedy-Set-Cover

» Good lower bounds on the weight w* of the optimum set cover are not easy
to obtain.
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Starting the Analysis of Greedy-Set-Cover

v

Good lower bounds on the weight w* of the optimum set cover are not easy
to obtain.

v

Bookkeeping: record the per-element cost paid when selecting S;.

v

In the algorithm, after selecting S;, add the line
Define ¢; = w;/|S;N R| for all s; € S;NR.

As each set S; is selected, its weight is distributed over the costs ¢ of the
newly-covered elements.

v



Solving A/ P-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Starting the Analysis of Greedy-Set-Cover

» Good lower bounds on the weight w* of the optimum set cover are not easy
to obtain.

» Bookkeeping: record the per-element cost paid when selecting S;.
» In the algorithm, after selecting S;, add the line
Define ¢; = w;/|S;N R| for all s; € S;NR.

> As each set S; is selected, its weight is distributed over the costs ¢, of the
newly-covered elements.

> Let C be the set cover computed by GREEDY-SET-COVER.

» Claim:

S

S;eC
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Starting the Analysis of Greedy-Set-Cover

Good lower bounds on the weight w* of the optimum set cover are not easy
to obtain.

» Bookkeeping: record the per-element cost paid when selecting S;.

In the algorithm, after selecting S;, add the line
Define ¢; = w;/|S;N R| for all s; € S;NR.

As each set S; is selected, its weight is distributed over the costs ¢ of the
newly-covered elements.

Let C be the set cover computed by GREEDY-SET-COVER.

Claim:

EDS (Z) “Y ..

SieC S;eC \seS§; seU
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Upper Bounding Cost-by-Weight Ratio

» Consider any set Sy (even one not selected by the algorithm).

ZSESI( Cs
Wi

» How large can get?
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» The harmonic function
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Upper Bounding Cost-by-Weight Ratio

» Consider any set Sy (even one not selected by the algorithm).

ZSESI( Cs
Wi

» How large can get?

» The harmonic function
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Upper Bounding Cost-by-Weight Ratio

v

Consider any set Sy (even one not selected by the algorithm).

ZSESI( Cs
Wk

v

How large can get?

v

The harmonic function

H(n) = Zl — (Inn).

!

v

Claim: For every set Sy, the sum Zsesk < H(|Sk|)wk.
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Why is the Bound Useful?

> Let us assume > _ o cs < H(|Sk|)wi.
> Let d* be the size of the largest set in the collection.

» Let C* denote the optimal set cover: w* = ZS;EC* w;.
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Why is the Bound Useful?

v

Let us assume >__ s cs < H(|Sk|)wk.

v

Let d* be the size of the largest set in the collection.

v

Let C* denote the optimal set cover: w* = Zs;em w;.

ESGS,‘ Cs > ZSGS,‘ Cs
H([Sil) — H(d*)

Since C* is a set cover, Z (Z cs> >

S;eC* \seS;

v

For each set in C*, we have w; >

v
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Why is the Bound Useful?

v

Let us assume >__ s cs < H(|Sk|)wk.

Let d* be the size of the largest set in the collection.

v

v

Let C* denote the optimal set cover: w* = ZsfeC* w;.

ESGS,‘ Cs > ZSGS,‘ Cs
H([Sil) — H(d*)

Since C* is a set cover, Z (Z cs> > ch.

S;eC* \seS; seU
Combining with > g .o w; = >, s, we have

w* = g w;

S;eC*

v

For each set in C*, we have w; >

v

v
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Why is the Bound Useful?

Let us assume >__ s cs < H(|Sk|)wx.

Let d* be the size of the largest set in the collection.
Let C* denote the optimal set cover: w* =3 ¢ . w;.
2ses; Cs > 2ses; s
H(lsil) — H(d*)

Since C* is a set cover, Z (Z cs> > ch.

S;eC* \seS; seU
Combining with > g .o w; = >, s, we have

For each set in C*, we have w; >

ZW’—ZH ZS—H(d* ZCS_

Siec* SiecC* Si seU

Approximation Algorithms

S w

S;eC
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Why is the Bound Useful?

> Let us assume > _ s cs < H(|Sk|)wx.
> Let d* be the size of the largest set in the collection.
> Let C* denote the optimal set cover: w* =3 s .. w;.

ZSGS,' Cs > ZSES,‘ Cs
H(Si)) — H(d*)

» Since C* is a set cover, Z (Z cs> > ch.

S;eC* \seS; seU
» Combining with Y ¢ .o w; = > ., G, we have

ZW’—ZH ZS_H(d* ZCS_ZW"‘

S;ec S;ec* seU S;eC

» For each set in C*, we have w; >

» We have proven that GREEDY-SET-COVER computes a set cover whose
weight is at most H(d*) times the optimal weight.
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Proving ¢ c. < H(|Sk|)wk

> Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.

> Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).
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Proving > s ¢ < H(|Sk]|)wi

> Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.

> Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).

» What happens some element s;,j < d is covered by the algorithm?
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Proving > . ¢ < H(|Sk|)wk

> Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.

> Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).

» What happens some element s;,j < d is covered by the algorithm?

> At the start of this iteration, R must contain s;, sj11,...5q4, i.e.,
|SkﬁR|Zd—j+1
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Proving > . ¢ < H(|Sk|)wk

Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.

Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).

What happens some element s;, j < d is covered by the algorithm?

At the start of this iteration, R must contain sj,sj41,...54, i.€.,
|SkﬁR|Zd—j+1

Wi Wi

Theref < _
S SR T d—j 1
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Proving > . ¢ < H(|Sk|)wk

> Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.

> Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).
» What happens some element s;,j < d is covered by the algorithm?

> At the start of this iteration, R must contain s;, sj11,...5q4, i.e.,
|SkﬂR|Zd—j+1
w, w,
< —
[SkNR| —d—j+1
» Suppose the algorithm selected set S; in this iteration.

» Therefore,

Cs =
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Proving > . ¢ < H(|Sk|)wk

Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.
Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).
What happens some element s;, j < d is covered by the algorithm?
At the start of this iteration, R must contain sj,sj41,...54, i.€.,
|SkﬂR|Zd—j+1

Wi Wi
|Sk N R = d—j+1

Suppose the algorithm selected set S; in this iteration.
Wi Wi Wi
Cs;

= < .
! |S;ﬂR|_|SkﬂR‘_d—j+1

Therefore,
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Proving > . ¢ < H(|Sk|)wk

Renumber elements in U so that elements in Sy are the first d = | S|
elements of U, i.e., Sx = {s1,%,...,54}.
Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost ¢;).
What happens some element s;, j < d is covered by the algorithm?
At the start of this iteration, R must contain sj,sj41,...54, i.€.,
|SkﬂR|Zd—j+1

Wi Wi
|Sk N R = d—j+1

Suppose the algorithm selected set S; in this iteration.
Wi Wi Wi
Cs

= < < L
! |S,'ﬂR|_|SkﬂR‘_d—_j+1
We are done!

Therefore,

d

d
Z = chj < gd‘/j,;l = H(d)w.

sESk i=1
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How Badly Can Greedy-Set-Cover Perform?

Two sets can be used to
cover everything, but the
greedy algorithm doesn’t
find them.

Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either
1 or 1+ ¢ for some small ¢ > 0. The greedy algorithm chooses sets of total weight 4,
rather than the optimal solution of weight 2 + 2¢.

> Generalise this example to show

that algorithm produces a set cover
of weicht Oflooc n) even thonich
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Figure 11.6 An instance of the Set Cover Problem where the weights of sets are either
1 or 1+ ¢ for some small ¢ > 0. The greedy algorithm chooses sets of total weight 4,
rather than the optimal solution of weight 2 + 2¢.

> Generalise this example to show
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of weicht Oflooc n) even thonich
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