
Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Coping with NP-Completeness

T. M. Murali

May 5, 2009

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.
I NP-Complete means that a problem is hard to solve in the worst case. Can

we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Do We Tackle an NP-Complete Problem?

I These problems come up in real life.

I NP-Complete means that a problem is hard to solve in the worst case. Can
we come up with better solutions at least in some cases?

I Develop algorithms that are exponential in one parameter in the problem.
I Consider special cases of the input, e.g., graphs that “look like” trees.
I Develop algorithms that can provably compute a solution close to the optimal.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm?

O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Vertex Cover Problem

Vertex cover

INSTANCE: Undirected graph G and an integer k

QUESTION: Does G contain a vertex cover of size at most k?

I The problem has two parameters: k and n, the number of nodes in G .

I What is the running time of a brute-force algorithm? O(kn
(
n
k

)
) = O(knk+1).

I Can we devise an algorithm whose running time is exponential in k but
polynomial in n, e.g., O(2kn)?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing the Vertex Cover Algorithm

I If a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing the Vertex Cover Algorithm

I If a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing the Vertex Cover Algorithm

I If a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing the Vertex Cover Algorithm

I If a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing the Vertex Cover Algorithm

I If a graph has a small vertex cover, it cannot have too many edges.

I Claim: If G has n nodes and G has a vertex cover of size at most k, then G
has at most kn edges.

I Easy part of algorithm: Return no if G has more than kn edges.

I G − {u} is the graph G without node u and the edges incident on u.

I Consider an edge (u, v). Either u or v must be in the vertex cover.

I Claim: G has a vertex cover of size at most k iff for any edge (u, v) either
G − {u} or G − {v} has a vertex cover of size at most k − 1.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Vertex Cover Algorithm

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters

n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.

I Claim: T (n, k) = O(2kkn).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.

I Claim: T (n, k) = O(2kkn).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.

I Claim: T (n, k) = O(2kkn).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.

I Claim: T (n, k) = O(2kkn).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing the Vertex Cover Algorithm

I Develop a recurrence relation for the algorithm with parameters n and k.

I Let T (n, k) denote the worst-case running time of the algorithm on an
instance of Vertex Cover with parameters n and k.

I T (n, 1) ≤ cn.

I T (n, k) ≤ 2T (n, k − 1) + ckn.

I Claim: T (n, k) = O(2kkn).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Solving NP-Hard Problems on Trees

I “NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

I Many NP-Hard problems can be solved efficiently on trees.

I Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Solving NP-Hard Problems on Trees

I “NP-Hard”: at least as hard as NP-Complete. We will use NP-Hard to
refer to optimisation versions of decision problems.

I Many NP-Hard problems can be solved efficiently on trees.

I Intuition: subtree rooted at any node v of the tree “interacts” with the rest
of tree only through v . Therefore, depending on whether we include v in the
solution or not, we can decouple solving the problem in v ’s subtree from the
rest of the tree.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.

I Claim: Every tree T (V , E) has a leaf, a node with degree 1.

I Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.

I Claim: Every tree T (V , E) has a leaf, a node with degree 1.

I Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v .

Prove by exchange argument.

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.

I Claim: Every tree T (V , E) has a leaf, a node with degree 1.

I Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Greedy Algorithm for Independent Set

I Optimisation problem: Find the largest independent set in a tree.

I Claim: Every tree T (V , E) has a leaf, a node with degree 1.

I Claim: If a tree T has a leaf v , then there exists a maximum-size
independent set in T that contains v . Prove by exchange argument.

I Claim: If a tree T has a a leaf v , then a maximum-size independent set in T
is v and a maximum-size independent set in T − {v}.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy Algorithm for Independent Set

I A forest is a graph where every connected component is a tree.

I Running time of the algorithm is O(n).

I The algorithm works correctly on any graph for which we can repeatedly find
a leaf.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm?

Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Maximum Weight Independent Set

I Consider the Independent Set problem but with a weight wv on every
node v .

I Goal is to find an independent set S such that
∑

v∈S wv is as large as
possible.

I Can we extend the greedy algorithm? Exchange argument fails: if u is a
parent of a leaf v , wu may be larger than wv .

I But there are still only two possibilities: either include u in the independent
set or include all neighbours of u that are leaves.

I Suggests dynamic programming algorithm.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?

I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Designing Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Dynamic programming algorithm needs a set of sub-problems, recursion to
combine sub-problems, and order over sub-problems.

I What are the sub-problems?
I Pick a node r and root tree at r : orient edges towards r .
I parent p(u) of a node u is the node adjacent to u along the path to r .
I Sub-problems are Tu: subtree induced by u and all its descendants.

I Ordering the sub-problems: start at leaves and work our way up to the root.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence:

1. If we include u, all children must be excluded.
2. If we exclude u, a child may or may not be excluded.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases:

For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence:

1. If we include u, all children must be excluded.
2. If we exclude u, a child may or may not be excluded.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Recursion for Dynamic Programming Algorithm for
Maximum Weight Independent Set

I Either we include u in an optimal solution or exclude u.
I OPTin(u): maximum weight of an independent set in Tu that includes u.
I OPTout(u): maximum weight of an independent set in Tu that excludes u.

I Base cases: For a leaf u, OPTin(u) = wu and OPTout(u) = 0.

I Recurrence:

1. If we include u, all children must be excluded.
2. If we exclude u, a child may or may not be excluded.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Dynamic Programming Algorithm for Maximum
Weight Independent Set

I Running time of the algorithm is O(n).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Dynamic Programming Algorithm for Maximum
Weight Independent Set

I Running time of the algorithm is O(n).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Aren’t Trees Too Restrictive?

I Trees are only a very specific sub-class of graphs. What use are algorithms
for NP-Hard problems that work well on trees?

I These ideas can be generalised to graphs that “look like” trees: graphs with
bounded treewidth.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Aren’t Trees Too Restrictive?

I Trees are only a very specific sub-class of graphs. What use are algorithms
for NP-Hard problems that work well on trees?

I These ideas can be generalised to graphs that “look like” trees: graphs with
bounded treewidth.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Example of Tree Decomposition

I Definition of “tree-like” should capture graphs that we can decompose into
disconnected pieces by removing a small number of nodes.

I Definition should make precise the notion of “tree-like” structures in the
figure.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Example of Tree Decomposition

I Definition of “tree-like” should capture graphs that we can decompose into
disconnected pieces by removing a small number of nodes.

I Definition should make precise the notion of “tree-like” structures in the
figure.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Tree Decompositions

A Tree decomposition of a graph G (V , E) consists of

1. a tree T (whose nodes are different from V)
2. a piece Vt ⊆ V associated with each node t ∈ T

that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece Vt

(Edge coverage): For every edge (u, v) in G , there is at least one piece Vt

that contains both u and v , and
(Coherence): Let t1, t2, and t3 be three nodes in T such that t2 lies on the
path from t1 to t3. Then, if a node v in G belongs to Vt1 and Vt3 , it also
belongs to Vt2 .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Tree Decompositions

A Tree decomposition of a graph G (V , E) consists of

1. a tree T (whose nodes are different from V)
2. a piece Vt ⊆ V associated with each node t ∈ T

that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece Vt

(Edge coverage): For every edge (u, v) in G , there is at least one piece Vt

that contains both u and v , and
(Coherence): Let t1, t2, and t3 be three nodes in T such that t2 lies on the
path from t1 to t3. Then, if a node v in G belongs to Vt1 and Vt3 , it also
belongs to Vt2 .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Tree Decompositions

A Tree decomposition of a graph G (V , E) consists of

1. a tree T (whose nodes are different from V)
2. a piece Vt ⊆ V associated with each node t ∈ T

that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece Vt

(Edge coverage): For every edge (u, v) in G , there is at least one piece Vt

that contains both u and v , and
(Coherence): Let t1, t2, and t3 be three nodes in T such that t2 lies on the
path from t1 to t3. Then, if a node v in G belongs to Vt1 and Vt3 , it also
belongs to Vt2 .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Tree Decompositions

A Tree decomposition of a graph G (V , E) consists of

1. a tree T (whose nodes are different from V)
2. a piece Vt ⊆ V associated with each node t ∈ T

that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece Vt

(Edge coverage): For every edge (u, v) in G , there is at least one piece Vt

that contains both u and v , and

(Coherence): Let t1, t2, and t3 be three nodes in T such that t2 lies on the
path from t1 to t3. Then, if a node v in G belongs to Vt1 and Vt3 , it also
belongs to Vt2 .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Tree Decompositions

A Tree decomposition of a graph G (V , E) consists of

1. a tree T (whose nodes are different from V)
2. a piece Vt ⊆ V associated with each node t ∈ T

that satisfy three properties:

(Node coverage): Every node of G belongs to at least one piece Vt

(Edge coverage): For every edge (u, v) in G , there is at least one piece Vt

that contains both u and v , and
(Coherence): Let t1, t2, and t3 be three nodes in T such that t2 lies on the
path from t1 to t3. Then, if a node v in G belongs to Vt1 and Vt3 , it also
belongs to Vt2 .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Properties of Tree Decompositions

I Trees have two nice separation properties:

1. If we delete an edge from a tree, the tree splits into two connected
components.

2. If we delete a node and all incident edges from a tree, the tree splits into a
number of connected components equal to the degree of the node.

I Tree decompositions have analogous properties.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Node Separation in a Tree Decomposition

I If T ′ is a subgraph of T , let GT ′

denote the subgraph of G induced
by the nodes ∪t∈T ′Vt .

I Claim: Suppose T − {t} has the
components T1, T2, . . . Td . Then
the subgraphs

GT1 − Vt , GTt − Vt , . . . ,GTd
− Vt

have no nodes in common and there
are no edges between nodes in
different subgraphs.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Node Separation in a Tree Decomposition

I If T ′ is a subgraph of T , let GT ′

denote the subgraph of G induced
by the nodes ∪t∈T ′Vt .

I Claim: Suppose T − {t} has the
components T1, T2, . . . Td . Then
the subgraphs

GT1 − Vt , GTt − Vt , . . . ,GTd
− Vt

have no nodes in common and there
are no edges between nodes in
different subgraphs.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Edge Separation in a Tree Decomposition

I Claim: Let X and Y be the two
components of T after the deletion
of the edge (x , y). Then deleting
the set VX ∩ VY from G
disconnects G into the two
subgraphs GX − (VX ∩ VY) and
GY − (VX ∩ VY)

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Uses of Tree Decompositions

I Width of a tree decomposition is the size of the largest piece.

I Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

I If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

I Cost of the algorithm is exponential in the width of the decomposition.

I Does a graph a tree decomposition with width at most w? NP-Complete!

I (Chapter 10.5): Given a graph and a parameter w , there is an algorithm that
runs in O(f (w)mn) time and either

1. produces a tree decomposition of width at most 4w or
2. reports correctly that G does not have a tree decomposition with width less

than w .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Uses of Tree Decompositions

I Width of a tree decomposition is the size of the largest piece.

I Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

I If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

I Cost of the algorithm is exponential in the width of the decomposition.

I Does a graph a tree decomposition with width at most w?

NP-Complete!

I (Chapter 10.5): Given a graph and a parameter w , there is an algorithm that
runs in O(f (w)mn) time and either

1. produces a tree decomposition of width at most 4w or
2. reports correctly that G does not have a tree decomposition with width less

than w .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Uses of Tree Decompositions

I Width of a tree decomposition is the size of the largest piece.

I Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

I If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

I Cost of the algorithm is exponential in the width of the decomposition.

I Does a graph a tree decomposition with width at most w? NP-Complete!

I (Chapter 10.5): Given a graph and a parameter w , there is an algorithm that
runs in O(f (w)mn) time and either

1. produces a tree decomposition of width at most 4w or
2. reports correctly that G does not have a tree decomposition with width less

than w .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Uses of Tree Decompositions

I Width of a tree decomposition is the size of the largest piece.

I Treewidth of a graph is the smallest width of a tree decomposition of the
graph.

I If we have a tree decomposition of small width, we can perform dynamic
programming over the decomposition.

I Cost of the algorithm is exponential in the width of the decomposition.

I Does a graph a tree decomposition with width at most w? NP-Complete!

I (Chapter 10.5): Given a graph and a parameter w , there is an algorithm that
runs in O(f (w)mn) time and either

1. produces a tree decomposition of width at most 4w or
2. reports correctly that G does not have a tree decomposition with width less

than w .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Approximation Algorithms

I Methods for optimisation versions of NP-Complete problems.

I Run in polynomial time.

I Solution returned is guaranteed to be within a small factor of the optimal
solution

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Load Balancing Problem

I Given set of m machines M1, M2, . . . Mn.

I Given a set of m jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti .

I Minimising makespan is NP-Complete.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Load Balancing Problem

I Given set of m machines M1, M2, . . . Mn.

I Given a set of m jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti .

I Minimising makespan is NP-Complete.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Load Balancing Problem

I Given set of m machines M1, M2, . . . Mn.

I Given a set of m jobs: job j has processing time tj .

I Assign each job to one machine so that the total time spent is minimised.

I Let A(i) be the set of jobs assigned to machine Mi .

I Ti =
∑

k∈A(i) tk .

I Minimise makespan T = maxi Ti .

I Minimising makespan is NP-Complete.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy-Balance Algorithm

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Lower Bounds on the Optimal Makespan

I We need a lower bound on the optimum makespan T ∗.

I The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Lower Bounds on the Optimal Makespan

I We need a lower bound on the optimum makespan T ∗.

I The two bounds below will suffice:

T ∗ ≥ 1

m

∑
j

tj

T ∗ ≥ max
j

tj

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing Greedy-Balance

I Let T be the computed makespan.
I Claim: T ≤ 2T ∗.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
I What was the situation just before placing this job?

I Mi had the smallest load and its
load was T − tj .

I Every machine had load ≥ T − tj .

I Therefore,
T − tj ≤ 1/m

∑
k Tk ≤ T ∗.

I But tj ≤ T ∗.

I T ≤ 2T ∗

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing Greedy-Balance

I Let T be the computed makespan.
I Claim: T ≤ 2T ∗.
I Let Mi be the machine whose load is T and j be the last job placed on Mi .
I What was the situation just before placing this job?

I Mi had the smallest load and its
load was T − tj .

I Every machine had load ≥ T − tj .

I Therefore,
T − tj ≤ 1/m

∑
k Tk ≤ T ∗.

I But tj ≤ T ∗.

I T ≤ 2T ∗

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing Greedy-Balance

I Let T be the computed makespan.
I Claim: T ≤ 2T ∗.
I Let Mi be the machine whose load is T and j be the last job placed on Mi .
I What was the situation just before placing this job?

I Mi had the smallest load and its
load was T − tj .

I Every machine had load ≥ T − tj .

I Therefore,
T − tj ≤ 1/m

∑
k Tk ≤ T ∗.

I But tj ≤ T ∗.

I T ≤ 2T ∗

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analysing Greedy-Balance

I Let T be the computed makespan.
I Claim: T ≤ 2T ∗.
I Let Mi be the machine whose load is T and j be the last job placed on Mi .
I What was the situation just before placing this job?

I Mi had the smallest load and its
load was T − tj .

I Every machine had load ≥ T − tj .

I Therefore,
T − tj ≤ 1/m

∑
k Tk ≤ T ∗.

I But tj ≤ T ∗.

I T ≤ 2T ∗

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Improving the Bound

I It is easy to construct an example for which the greedy algorithm produces a
solution close to a factor of 2 away from optimal.

I How can we improve the algorithm?

I What if we process the jobs in decreasing order of processing time?

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Sorted-Balance Algorithm

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
(Mi has at least two jobs.)

I j ≥ m + 1⇒ tj ≤ tm+1 ≤ T ∗/2.

I Using same proof as before, T = Ti ≤ 3T ∗/2.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
(Mi has at least two jobs.)

I j ≥ m + 1⇒ tj ≤ tm+1 ≤ T ∗/2.

I Using same proof as before, T = Ti ≤ 3T ∗/2.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
(Mi has at least two jobs.)

I j ≥ m + 1⇒ tj ≤ tm+1 ≤ T ∗/2.

I Using same proof as before, T = Ti ≤ 3T ∗/2.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
(Mi has at least two jobs.)

I j ≥ m + 1⇒ tj ≤ tm+1 ≤ T ∗/2.

I Using same proof as before, T = Ti ≤ 3T ∗/2.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Analyzing Sorted-Balance

I Claim: if there are fewer than m jobs, algorithm is optimal.

I Claim: if there are more than m jobs, then T ∗ ≥ 2tm+1.

I Claim: T ≤ 3T ∗/2.

I Let Mi be the machine whose load is T and j be the last job placed on Mi .
(Mi has at least two jobs.)

I j ≥ m + 1⇒ tj ≤ tm+1 ≤ T ∗/2.

I Using same proof as before, T = Ti ≤ 3T ∗/2.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Set Cover

Set Cover

INSTANCE: A set U of n elements, a collection S1, S2, . . . ,Sm of
subsets of U, each with an associated weight w .

SOLUTION: A collection C of sets in the collection such that
∑

Si∈C wi

is minimised.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Greedy-Set-Cover

I To get a greedy algorithm, in what order should we process the sets?

I Maintain set R of uncovered elements.

I Process set in decreasing order of wi/|Si ∩ R|.

I The algorithm computes a set cover whose weight is at most O(log n) times
the optimal weight (Johnson 1974, Lovász 1975, Chvatal 1979).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Example of Greedy-Set-Cover

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Starting the Analysis of Greedy-Set-Cover

I Good lower bounds on the weight w∗ of the optimum set cover are not easy
to obtain.

I Bookkeeping: record the per-element cost paid when selecting Si .

I In the algorithm, after selecting Si , add the line

Define cs = wi/|Si ∩ R| for all si ∈ Si ∩ R.

I As each set Si is selected, its weight is distributed over the costs cs of the
newly-covered elements.

I Let C be the set cover computed by Greedy-Set-Cover.

I Claim: ∑
Si∈C

wi =
∑
Si∈C

(∑
s∈Si

cs

)
=
∑
s∈U

cs .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Starting the Analysis of Greedy-Set-Cover

I Good lower bounds on the weight w∗ of the optimum set cover are not easy
to obtain.

I Bookkeeping: record the per-element cost paid when selecting Si .

I In the algorithm, after selecting Si , add the line

Define cs = wi/|Si ∩ R| for all si ∈ Si ∩ R.

I As each set Si is selected, its weight is distributed over the costs cs of the
newly-covered elements.

I Let C be the set cover computed by Greedy-Set-Cover.

I Claim: ∑
Si∈C

wi =
∑
Si∈C

(∑
s∈Si

cs

)
=
∑
s∈U

cs .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Starting the Analysis of Greedy-Set-Cover

I Good lower bounds on the weight w∗ of the optimum set cover are not easy
to obtain.

I Bookkeeping: record the per-element cost paid when selecting Si .

I In the algorithm, after selecting Si , add the line

Define cs = wi/|Si ∩ R| for all si ∈ Si ∩ R.

I As each set Si is selected, its weight is distributed over the costs cs of the
newly-covered elements.

I Let C be the set cover computed by Greedy-Set-Cover.

I Claim: ∑
Si∈C

wi =

∑
Si∈C

(∑
s∈Si

cs

)
=
∑
s∈U

cs .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Starting the Analysis of Greedy-Set-Cover

I Good lower bounds on the weight w∗ of the optimum set cover are not easy
to obtain.

I Bookkeeping: record the per-element cost paid when selecting Si .

I In the algorithm, after selecting Si , add the line

Define cs = wi/|Si ∩ R| for all si ∈ Si ∩ R.

I As each set Si is selected, its weight is distributed over the costs cs of the
newly-covered elements.

I Let C be the set cover computed by Greedy-Set-Cover.

I Claim: ∑
Si∈C

wi =
∑
Si∈C

(∑
s∈Si

cs

)
=
∑
s∈U

cs .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum
∑

s∈Sk
≤ H(|SK |)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i

= Θ(ln n).

I Claim: For every set Sk , the sum
∑

s∈Sk
≤ H(|SK |)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum
∑

s∈Sk
≤ H(|SK |)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Upper Bounding Cost-by-Weight Ratio

I Consider any set Sk (even one not selected by the algorithm).

I How large can

∑
s∈Sk

cs

wk
get?

I The harmonic function

H(n) =
n∑

i=1

1

i
= Θ(ln n).

I Claim: For every set Sk , the sum
∑

s∈Sk
≤ H(|SK |)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Why is the Bound Useful?

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Let C∗ denote the optimal set cover: w∗ =
∑

Si∈C∗ wi .

I For each set in C∗, we have wi ≥
∑

s∈Si
cs

H(|Si |)
≥
∑

s∈Si
cs

H(d∗)
.

I Since C∗ is a set cover,
∑

Si∈C∗

(∑
s∈Si

cs

)
≥
∑
s∈U

cs .

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑

Si∈C∗
wi ≥

∑
Si∈C∗

1

H(d∗)

∑
s∈Si

cs ≥
1

H(d∗)

∑
s∈U

cs =
∑
Si∈C

wi .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Why is the Bound Useful?

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Let C∗ denote the optimal set cover: w∗ =
∑

Si∈C∗ wi .

I For each set in C∗, we have wi ≥
∑

s∈Si
cs

H(|Si |)
≥
∑

s∈Si
cs

H(d∗)
.

I Since C∗ is a set cover,
∑

Si∈C∗

(∑
s∈Si

cs

)
≥

∑
s∈U

cs .

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑

Si∈C∗
wi ≥

∑
Si∈C∗

1

H(d∗)

∑
s∈Si

cs ≥
1

H(d∗)

∑
s∈U

cs =
∑
Si∈C

wi .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Why is the Bound Useful?

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Let C∗ denote the optimal set cover: w∗ =
∑

Si∈C∗ wi .

I For each set in C∗, we have wi ≥
∑

s∈Si
cs

H(|Si |)
≥
∑

s∈Si
cs

H(d∗)
.

I Since C∗ is a set cover,
∑

Si∈C∗

(∑
s∈Si

cs

)
≥
∑
s∈U

cs .

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑

Si∈C∗
wi

≥
∑

Si∈C∗

1

H(d∗)

∑
s∈Si

cs ≥
1

H(d∗)

∑
s∈U

cs =
∑
Si∈C

wi .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Why is the Bound Useful?

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Let C∗ denote the optimal set cover: w∗ =
∑

Si∈C∗ wi .

I For each set in C∗, we have wi ≥
∑

s∈Si
cs

H(|Si |)
≥
∑

s∈Si
cs

H(d∗)
.

I Since C∗ is a set cover,
∑

Si∈C∗

(∑
s∈Si

cs

)
≥
∑
s∈U

cs .

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑

Si∈C∗
wi ≥

∑
Si∈C∗

1

H(d∗)

∑
s∈Si

cs ≥
1

H(d∗)

∑
s∈U

cs =
∑
Si∈C

wi .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Why is the Bound Useful?

I Let us assume
∑

s∈Sk
cs ≤ H(|SK |)wk .

I Let d∗ be the size of the largest set in the collection.

I Let C∗ denote the optimal set cover: w∗ =
∑

Si∈C∗ wi .

I For each set in C∗, we have wi ≥
∑

s∈Si
cs

H(|Si |)
≥
∑

s∈Si
cs

H(d∗)
.

I Since C∗ is a set cover,
∑

Si∈C∗

(∑
s∈Si

cs

)
≥
∑
s∈U

cs .

I Combining with
∑

Si∈C wi =
∑

s∈U cs , we have

w∗ =
∑

Si∈C∗
wi ≥

∑
Si∈C∗

1

H(d∗)

∑
s∈Si

cs ≥
1

H(d∗)

∑
s∈U

cs =
∑
Si∈C

wi .

I We have proven that Greedy-Set-Cover computes a set cover whose
weight is at most H(d∗) times the optimal weight.

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =

wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

Proving
∑

s∈Sk
cs ≤ H(|SK |)wk

I Renumber elements in U so that elements in Sk are the first d = |Sk |
elements of U, i.e., Sk = {s1, s2, . . . , sd}.

I Order elements of S in the order they get covered by the algorithm (i.e.,
when they get assigned a cost cs).

I What happens some element sj , j ≤ d is covered by the algorithm?

I At the start of this iteration, R must contain sj , sj+1, . . . sd , i.e.,
|Sk ∩ R| ≥ d − j + 1.

I Therefore,
wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I Suppose the algorithm selected set Si in this iteration.

csj =
wi

|Si ∩ R|
≤ wk

|Sk ∩ R|
≤ wk

d − j + 1
.

I We are done! ∑
s∈Sk

cs =
d∑

i=1

csj ≤
d∑

i=1

wk

d − j + 1
= H(d)wk .

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Badly Can Greedy-Set-Cover Perform?

I Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

I More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

I No polynomial time algorithm can
achieve an approximation bound
better than H(n) times optimal
unless P = NP (Lund and
Yannakakis, 1994).

Solving NP-Complete Problems Small Vertex Covers Trees Treewidth Approximation Algorithms

How Badly Can Greedy-Set-Cover Perform?

I Generalise this example to show
that algorithm produces a set cover
of weight Ω(log n) even though
optimal weight is 2 + ε.

I More complex constructions show
greedy algorithm incurs a weight
close to H(n) times the optimal
weight.

I No polynomial time algorithm can
achieve an approximation bound
better than H(n) times optimal
unless P = NP (Lund and
Yannakakis, 1994).

	Solving NP-Complete Problems
	Small Vertex Covers
	Trees
	Treewidth
	Approximation Algorithms

