

NP and Computational Intractability

T. M. Murali

April 21, 23, 2009

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

Algorithm Design

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
 - NP-completeness.
 - PSPACE-completeness.
 - Undecidability.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^2)$ edit distance. $O(n^3)$ maximum flow and minimum cuts.

 $O(n^k)$ algorithm unlikely. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

▶ When is an algorithm an efficient solution to a problem?

When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time	Probably not
Shortest path	Longest path
Matching	3-D matching
Minimum cut	Maximum cut
2-SAT	3-SAT
Planar four-colour	Planar three-colour
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

Polynomial-Time Reduction

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y $\leq_P X$)

Polynomial-Time Reduction

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if an arbitrary instance of Y can be solved using a polynomial number of standard operations, plus a polynomial number of calls to a black box that solves problem X.
- $Y \leq_P X$ implies that "X is at least as hard as Y."
- Such reductions are Cook reductions. Karp reductions allow only one call to the black box that solves X.

Usefulness of Reductions

Claim: If Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.

Usefulness of Reductions

- Claim: If Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.
- ► Contrapositive: If Y ≤_P X and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- ▶ Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

- ► Simple equivalence.
- Special case to general case.
- Encoding with gadgets.

Optimisation versus Decision Problems

- ▶ So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.

Optimisation versus Decision Problems

- ► So far, we have developed algorithms that solve optimisation problems.
 - Compute the largest flow.
 - Find the closest pair of points.
 - Find the schedule with the least completion time.
- ▶ Now, we will focus on *decision versions* of problems, e.g., is there a flow with value at least *k*, for a given value of *k*?

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET **INSTANCE:** Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain an independent set of size Vertex cover

INSTANCE: Undirected graph *G* and an integer *I* **QUESTION:** Does *G* contain a vertex cover of size

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain an independent set of size at least *k*? Vertex cover

INSTANCE: Undirected graph *G* and an integer *I*

QUESTION: Does *G* contain a vertex cover of size at most *I*?

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET **INSTANCE:** Undirected graph *G* and an integer *k* **QUESTION:** Does *G* contain an independent set of size at

least k?

VERTEX COVER INSTANCE: Undirected graph G and an integer / QUESTION: Does G contain a

vertex cover of size at most *I*?

• Demonstrate simple equivalence between these two problems.

- Given an undirected graph G(V, E), a subset S ⊆ V is an *independent set* if no two vertices in S are connected by an edge.
- Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.

INDEPENDENT SET

INSTANCE: Undirected graph G and an integer k

QUESTION: Does *G* contain an independent set of size at least *k*? Vertex cover

INSTANCE: Undirected graph G and an integer I

QUESTION: Does *G* contain a vertex cover of size at most *I*?

- Demonstrate simple equivalence between these two problems.
- ► Claim: INDEPENDENT SET \leq_P VERTEX COVER and VERTEX COVER \leq_P INDEPENDENT SET.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
- ► Transformation and proof must be correct for all possible graphs *G*(*V*, *E*) and all possible values of *k*.
- Why is the proof an iff statement?

 $\mathcal{NP} ext{-Complete}$

Strategy for Proving Indep. Set \leq_P Vertex Cover

Reductions

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
- ► Transformation and proof must be correct for all possible graphs G(V, E) and all possible values of k.
- ▶ Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 - (i) If there is an independent set size $\geq k$, we must be sure that there is a vertex cover of size $\leq l$, so that we know that the black box will find this vertex cover.
 - (ii) If the black box finds a vertex cover of size $\leq I$, we must be sure we can construct an independent set of size $\geq k$ from this vertex cover.

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.
- 4. Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size $\leq n k$.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

Proof that Independent Set \leq_P **Vertex Cover**

- 1. Arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- 2. Let |V| = n.
- 3. Create an instance of VERTEX COVER: same undirected graph G(V, E) and integer n k.
- 4. Claim: G(V, E) has an independent set of size $\geq k$ iff G(V, E) has a vertex cover of size $\leq n k$.

Proof: S is an independent set in G iff V - S is a vertex cover in G.

▶ Same idea proves that VERTEX COVER \leq_P INDEPENDENT SET

Vertex Cover and Set Cover

- ▶ INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- ► VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- > There are more general covering problems.

Set Cover

INSTANCE: A set U of n

elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a collection of $\leq k$ sets in the collection whose union is U?

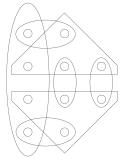


Figure 8.2 An instance of the Set Cover Problem.

Vertex Cover \leq_P **Set Cover**

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- ▶ Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where

Vertex Cover \leq_P **Set Cover**

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- ▶ Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where
 - U = E,
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.

Vertex Cover \leq_P **Set Cover**

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- ▶ Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where
 - U = E,
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.
- Claim: U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
- Proof strategy:
 - 1. If G(V, E) has a vertex cover of size at most k, then U can be covered with at most k subsets.
 - 2. If U can be covered with at most k subsets, then G(V, E) has a vertex cover of size at most k.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in Al.

Boolean Satisfiability

- Abstract problems formulated in Boolean notation.
- Often used to specify problems, e.g., in Al.
- We are given a set $X = \{x_1, x_2, \dots, x_n\}$ of *n* Boolean variables.
- Each variable can take the value 0 or 1.
- A *term* is a variable x_i or its negation $\overline{x_i}$.
- ▶ A clause of length *I* is a disjunction of *I* distinct terms $t_1 \lor t_2 \lor \cdots t_I$.
- A *truth assignment* for X is a function $\nu : X \to \{0, 1\}$.
- ► An assignment *satisfies* a clause *C* if it causes *C* to evaluate to 1 under the rules of Boolean logic.
- An assignment *satisfies* a collection of clauses C_1, C_2, \ldots, C_k if it causes $C_1 \wedge C_2 \wedge \cdots \wedge C_k$ to evaluate to 1.
 - ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - set of clauses C_1, C_2, \ldots, C_k is satisfiable.

SAT and 3-SAT

SATISFIABILITY PROBLEM (SAT)

INSTANCE: A set of clauses $C_1, C_2, \dots C_k$ over a set $X = \{x_1, x_2, \dots x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- ► SAT and 3-SAT are fundamental combinatorial search problems.
- ▶ We have to make *n* independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2}$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable? No.

3-SAT and Independent Set

▶ We want to prove 3-SAT \leq_P INDEPENDENT SET.

3-SAT and Independent Set

- ▶ We want to prove 3-SAT \leq_P INDEPENDENT SET.
- ▶ Two ways to think about 3-SAT:
 - 1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected *conflict*, i.e., select x_i and x_i.

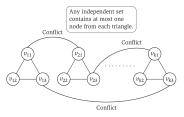


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ▶ We are given an instance of 3-SAT with *k* clauses of length three over *n* variables.
- Construct a graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .

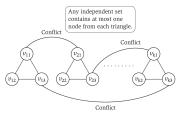


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ▶ We are given an instance of 3-SAT with *k* clauses of length three over *n* variables.
- Construct a graph G(V, E) with 3k nodes.
 - ▶ For each clause C_i , $1 \le i \le k$, add a triangle of three nodes v_{i1} , v_{i2} , v_{i3} and three edges to G.
 - Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .
 - Add an edge between each pair of nodes whose labels correspond to terms that conflict.

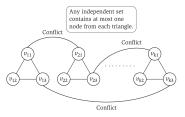


Figure 8.3 The reduction from 3-SAT to Independent Set.

► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.

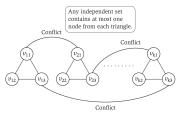


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment \rightarrow independent set of size $\geq k$:

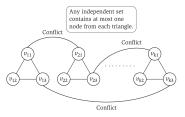


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment → independent set of size ≥ k: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size ≥ k. Why?

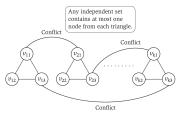


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment → independent set of size ≥ k: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size ≥ k. Why?
- Independent set of size $\geq k \rightarrow$ satisfiable assignment:

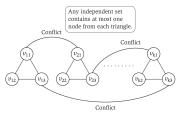


Figure 8.3 The reduction from 3-SAT to Independent Set.

- ► Claim: 3-SAT instance is satisfiable iff G has an independent set of size at least k.
- Satisfiable assignment → independent set of size ≥ k: Each triangle in G has at least one node whose label evaluates to 1. These nodes form an independent set of size ≥ k. Why?
- Independent set of size ≥ k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

Transitivity of Reductions

▶ Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.

Transitivity of Reductions

- ▶ Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between *finding* a solution and *checking* a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

- Encode input to a computational problem as a finite binary string s of length |s|.
- Identify a decision problem X with the set of strings for which the answer is "yes",

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., PRIMES = {2,3,5,7,11,...}.

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., PRIMES = {2,3,5,7,11,...}.
- An algorithm A for a decision problem receives an input string s and returns A(s) ∈ {yes, no}.
- A solves the problem X if for every string s, A(s) = yes iff $s \in X$.

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., PRIMES = {2,3,5,7,11,...}.
- An algorithm A for a decision problem receives an input string s and returns A(s) ∈ {yes, no}.
- A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ► A has a polynomial running time if there is a polynomial function p(·) such that for every input string s, A terminates on s in at most O(p(|s|)) steps,

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., PRIMES = {2,3,5,7,11,...}.
- An algorithm A for a decision problem receives an input string s and returns A(s) ∈ {yes, no}.
- A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ▶ A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input string *s*, *A* terminates on *s* in at most O(p(|s|)) steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).

- Encode input to a computational problem as a finite binary string s of length |s|.
- ▶ Identify a decision problem X with the set of strings for which the answer is "yes", e.g., PRIMES = {2,3,5,7,11,...}.
- An algorithm A for a decision problem receives an input string s and returns A(s) ∈ {yes, no}.
- A solves the problem X if for every string s, A(s) = yes iff $s \in X$.
- ▶ A has a *polynomial running time* if there is a polynomial function $p(\cdot)$ such that for every input string *s*, *A* terminates on *s* in at most O(p(|s|)) steps, e.g., there is an algorithm such that $p(|s|) = |s|^8$ for PRIMES (Agarwal, Kayal, Saxena, 2002).
- \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

Efficient Certification

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- ► Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that s ∈ X.

Efficient Certification

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that s ∈ X.
- An algorithm B is an *efficient certifier* for a problem X if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \le p(|s|)$ and B(s, t) = yes.

Efficient Certification

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input string s as well as a separate "certificate" string t that contains evidence that s ∈ X.
- An algorithm B is an *efficient certifier* for a problem X if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. there is a polynomial function p so that for every string s, we have $s \in X$ iff there exists a string t such that $|t| \le p(|s|)$ and B(s, t) = yes.
- ► Certifier's job is to take a candidate short proof (t) that s ∈ X and check in polynomial time whether t is a correct proof.
- Certifier does not care about how to find these proofs.

- \mathcal{NP}
- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier. ▶ 3-SAT $\in \mathcal{NP}$:

\mathcal{NP}

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- ▶ 3-SAT $\in NP$: *t* is a truth assignment; *B* evaluates the clauses with respect to the assignment.

\mathcal{NP}

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- INDEPENDENT SET $\in \mathcal{NP}$:

\mathcal{NP}

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- ► 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ► INDEPENDENT SET ∈ NP: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.

\mathcal{NP}

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ► INDEPENDENT SET ∈ NP: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:

\mathcal{NP}

- \blacktriangleright \mathcal{NP} is the set of all problems for which there exists an efficient certifier.
- ► 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect to the assignment.
- ► INDEPENDENT SET ∈ NP: t is a set of at least k vertices; B checks that no pair of these vertices are connected by an edge.
- ► SET COVER ∈ NP: t is a list of k sets from the collection; B checks if their union is U.

${\mathcal P}$ vs. ${\mathcal N}{\mathcal P}$

• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

${\mathcal P}$ vs. ${\mathcal N}{\mathcal P}$

Claim: P ⊆ NP. If X ∈ P, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?

\mathcal{P} vs. \mathcal{NP}

- Claim: P ⊆ NP. If X ∈ P, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{NP} \mathcal{P} \neq \emptyset$?

${\mathcal P}$ vs. ${\mathcal N}{\mathcal P}$

- Claim: P ⊆ NP. If X ∈ P, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- Is P = NP or is NP − P ≠ Ø? One of the major unsolved problems in computer science.

$\mathcal P$ vs. $\mathcal N\mathcal P$

- Claim: P ⊆ NP. If X ∈ P, then there is a polynomial time algorithm A that solves X. B ignores t and returns A(s). Why is B an efficient certifier?
- Is P = NP or is NP − P ≠ Ø? One of the major unsolved problems in computer science.

$\mathcal{NP}\text{-}\textbf{Complete Problems}$

• What are the hardest problems in \mathcal{NP} ?

\mathcal{NP} -Complete Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.

\mathcal{NP} -Complete Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ► Claim: Suppose X is NP-Complete. Then X can be solved in polynomial time iff P = NP.

\mathcal{NP} -Complete Problems

- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ► Claim: Suppose X is NP-Complete. Then X can be solved in polynomial time iff P = NP.
- Corollary: If there is any problem in NP that cannot be solved in polynomial time, then no NP-Complete problem can be solved in polynomial time.

$\mathcal{NP}\text{-}\textbf{Complete Problems}$

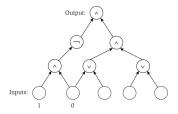
- What are the hardest problems in \mathcal{NP} ?
- A problem X is \mathcal{NP} -Complete if
 - 1. $X \in \mathcal{NP}$ and
 - 2. for every problem $Y \in \mathcal{NP}$, $Y \leq_P X$.
- ► Claim: Suppose X is NP-Complete. Then X can be solved in polynomial time iff P = NP.
- Corollary: If there is any problem in NP that cannot be solved in polynomial time, then no NP-Complete problem can be solved in polynomial time.
- Are there any \mathcal{NP} -Complete problems?
 - 1. Perhaps there are two problems X_1 and X_2 in \mathcal{NP} such that there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$.
 - 2. Perhaps there is a sequence of problems $X_1, X_2, X_3, ...$ in \mathcal{NP} , each strictly harder than the previous one.

Circuit Satisfiability

► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.

Circuit Satisfiability

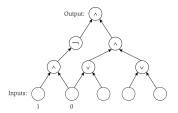
- ► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - 1. the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator $\wedge,$ $\vee,$ or $\neg.$
 - 3. a single node with no outgoing edges represents the output of K.



 $\ensuremath{\textit{Figure}}$ 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Circuit Satisfiability

- ► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - 1. the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator $\wedge,$ $\vee,$ or $\neg.$
 - 3. a single node with no outgoing edges represents the *output* of K.



CIRCUIT SATISFIABILITY

INSTANCE: A circuit *K*. **QUESTION:** Is there a truth assignment to the inputs that causes the output to have value 1?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

• Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether *s* ∈ *X* using a black box that solves CIRCUIT SATISFIABILITY.

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether *s* ∈ *X* using a black box that solves CIRCUIT SATISFIABILITY.
- ▶ What do we know about X?

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether *s* ∈ *X* using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether *s* ∈ *X* using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- ► To determine whether s ∈ X, we ask "Is there a string t of length p(n) such that B(s, t) = yes?"

► To determine whether s ∈ X, we ask "Is there a string t of length p(|s|) such that B(s, t) = yes?"

- ► To determine whether s ∈ X, we ask "Is there a string t of length p(|s|) such that B(s, t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First n sources are hard-coded with the bits of s.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.

- ► To determine whether s ∈ X, we ask "Is there a string t of length p(|s|) such that B(s, t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First n sources are hard-coded with the bits of s.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.
- ► s ∈ X iff there is an assignment of the input bits of K that makes K satisfiable.

▶ Does a graph *G* on *n* nodes have a two-node independent set?

- ▶ Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if
 - 1. at least two bits in t are set to 1 and
 - 2. no two bits in *t* are set to 1 if they form the ends of an edge (the corresponding bit in *s* is set to 1).

Suppose G contains three nodes u, v, and w with v connected to u and w.

Suppose G contains three nodes u, v, and w with v connected to u and w.

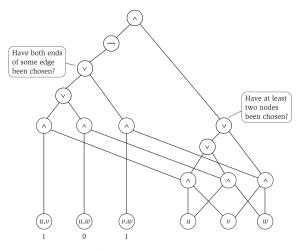


Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.

▶ Claim: If Y is NP-Complete and $X \in NP$ such that $Y \leq_P X$, then X is NP-Complete.

- ▶ Claim: If Y is NP-Complete and $X \in NP$ such that $Y \leq_P X$, then X is NP-Complete.
- Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is

- ▶ Claim: If Y is NP-Complete and $X \in NP$ such that $Y \leq_P X$, then X is NP-Complete.
- Given a new problem X, a general strategy for proving it NP-Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.

- ▶ Claim: If Y is NP-Complete and $X \in NP$ such that $Y \leq_P X$, then X is NP-Complete.
- Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.
- ▶ If we use Karp reductions, we can refine the strategy:
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Consider an arbitrary instance s_Y of problem Y. Show how to construct, in polynomial time, an instance s_X of problem X such that
 - (a) If $s_Y \in Y$, then $s_X \in X$ and
 - (b) If $s_X \in X$, then $s_Y \in Y$.