
Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Network Flow

T. M. Murali

March 31, April 2, 2009



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum Flow and Minimum Cut

I Two rich algorithmic problems.

I Fundamental problems in combinatorial optimization.

I Beautiful mathematical duality between flows and cuts.

I Numerous non-trivial applications:

I Bipartite matching.

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination.

I Image segmentation.

I Network connectivity.

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene reconstruction.

I Gene function prediction.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

History

(Soviet Rail Network, Tolstoi, 1930; Harris and Ross, 1955; Alexander Schrijver,
Math Programming, 91: 3, 2002.)



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flow Networks
I Use directed graphs to model transporation networks:

I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph G (V ,E )
I Each edge e ∈ E has a capacity c(e) > 0.
I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flow Networks
I Use directed graphs to model transporation networks:

I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph G (V ,E )
I Each edge e ∈ E has a capacity c(e) > 0.
I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Defining Flow

I In a flow network G (V ,E ), an s-t flow is a function f : E → R+ such that

(i) (Capacity conditions) For each e ∈ E , 0 ≤ f (e) ≤ c(e).
(ii) (Conservation conditions) For each internal node v ,X

e into v

f (e) =
X

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).

I Useful notation:

f out(v) =
X

e out of v

f (e) f in(v) =
X

e into v

f (e)

For S ⊆ V ,

f out(S) =
X

e out of S

f (e) f in(S) =
X

e into S

f (e)



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Defining Flow

I In a flow network G (V ,E ), an s-t flow is a function f : E → R+ such that

(i) (Capacity conditions) For each e ∈ E , 0 ≤ f (e) ≤ c(e).
(ii) (Conservation conditions) For each internal node v ,X

e into v

f (e) =
X

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).

I Useful notation:

f out(v) =
X

e out of v

f (e) f in(v) =
X

e into v

f (e)

For S ⊆ V ,

f out(S) =
X

e out of S

f (e) f in(S) =
X

e into S

f (e)



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum-Flow Problem

Maximum Flow

INSTANCE: A flow network G

SOLUTION: The flow with largest value in G

I Assumptions:

1. No edges enter s, no edges leave t.
2. There is at least one edge incident on each node.
3. All edge capacities are integers.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum-Flow Problem

Maximum Flow

INSTANCE: A flow network G

SOLUTION: The flow with largest value in G

I Assumptions:

1. No edges enter s, no edges leave t.
2. There is at least one edge incident on each node.
3. All edge capacities are integers.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.

I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).

3. Idea: Push flow along edges with leftover capacity and undo flow on edges
already carrying flow.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.

I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).

2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).
3. Idea: Push flow along edges with leftover capacity and undo flow on edges

already carrying flow.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.

I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).

3. Idea: Push flow along edges with leftover capacity and undo flow on edges
already carrying flow.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.

I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).
3. Idea: Push flow along edges with leftover capacity and undo flow on edges

already carrying flow.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Residual Graph

I Given a flow network G (V ,E ) and a flow f on G , the residual graph Gf of G
with respect to f is a directed graph such that

(i) (Nodes) Gf has the same nodes as G .
(ii) (Forward edges) For each edge e = (u, v) ∈ E such that f (e) < c(e), Gf

contains the edge (u, v) with a residual capacity c(e)− f (e).
(iii) (Backward edges) For each edge e ∈ E such that f (e) > 0, Gf contains the

edge e′ = (v , u) with a residual capacity f (e).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Augmenting Paths in a Residual Graph

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual
capacity of any edge in P.

I The following operation augment(f ,P) yields a
new flow f ′ in G :



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Augmenting Paths in a Residual Graph

I Let P be a simple s-t path in Gf .

I bottleneck(P, f ) is the minimum residual
capacity of any edge in P.

I The following operation augment(f ,P) yields a
new flow f ′ in G :



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.

I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual
capacity of (u, v).

I e is a forward edge:
0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).

I e is a forward edge:
0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).

I e is a backward edge:
c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P.

Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f , P)

I A simple s-t path in the residual graph is an augmenting path.

I Let f ′ be the flow returned by augment(f ,P).

I Claim: f ′ is a flow. Verify capacity and conservation conditions.
I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that bottleneck(P, f ) ≤ residual

capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P, f ) ≤ f (e) + (c(e)− f (e)) = c(e).
I e is a backward edge:

c(e) ≥ f (e) ≥ f ′(e) = f (e)− bottleneck(P, f ) ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P. Four cases to work out.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Ford-Fulkerson Algorithm



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Analysis of the Ford-Fulkerson Algorithm

I Running time
I Does the algorithm terminate?
I If so, how many loops does the algorithm take?

I Correctness: if the algorithm terminates, why does it output a maximum
flow?



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers.

Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).

v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the structure of
the graph? For example, for every flow f , ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and
t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
P

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the structure of
the graph? For example, for every flow f , ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and
t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
P

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the structure of
the graph? For example, for every flow f , ν(f ) ≤ C =

∑
eout of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and
t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
P

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).

I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.

I ν(f ) =
P

v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).
I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, f out(v)− f in(v) = 0.
I ν(f ) =

P
v∈A

`
f out(v)− f in(v)

´
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
P

v∈A

`
f out(v)− f in(v)

´
=
P

e out of A f (e)−
P

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm.

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).

I When the algorithm terminates, the residual graph has no s-t path.

I Claim: If f is an s-t flow such that Gf has no s-t path, then there is an s-t
cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not just to the
flow f̄ computed by the Ford-Fulkerson algorithm.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm.

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).

I When the algorithm terminates, the residual graph has no s-t path.

I Claim: If f is an s-t flow such that Gf has no s-t path, then there is an s-t
cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not just to the
flow f̄ computed by the Ford-Fulkerson algorithm.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e)

.

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0

.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut.

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where every flow value f (e) is an integer.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where every flow value f (e) is an integer.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where every flow value f (e) is an integer.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Real-Valued Capacities

I If capacities are real-valued, Ford-Fulkerson algorithm may not terminate!

I But Max-Flow Min-Cut theorem is still true. Why?



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Bad Augmenting Paths



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity.

Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Scaling Max-Flow Algorithm



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Scaling Max-Flow Algorithm

I Flow and residual capacities are integer valued throughout.

I When ∆ = 1, Gf (∆) and Gf are identical.

I Therefore, when the scaling algorithm terminates, the flow is a maximum
flow.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most

1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.

I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

I Claim: Let f be the flow at the end of a ∆-scaling phase. Then there is an
s-t cut in (A,B) in G such that ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆.

I Proof idea: construct cut based on nodes reachable from s in Gf (∆).

I Claim: the value of the maximum flow ν(f̄ ) ≤ ν(f ) + m∆.

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: Let f ′ be the flow at the end of the previous ∆-scaling phase:
ν(f ′) ≥ ν(f̄ )−+m∆

I Since each iteration increases the flow by ≥ ∆, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2m∆ ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.


	Introduction
	Ford-Fulkerson Algorithm
	Scaling Max-Flow Algorithm

