Applications of Minimum Spanning Trees

T. M. Murali

February 17, 2009

Minimum Spanning Trees

- We motivated MSTs through the problem of finding a low-cost network connecting a set of nodes.
- ▶ MSTs are useful in a number of seemingly disparate applications.
- ▶ We will consider two problems: clustering (Chapter 4.7) and minimum bottleneck graphs (problem 9 in Chapter 4).

Motivation for Clustering

- Given a set of objects and distances between them.
- ▶ Objects can be images, web pages, people, species
- Distance function: increasing distance corresponds to decreasing similarity.
- Goal: group objects into clusters, where each cluster is a set of similar objects.

- ▶ Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- ▶ For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$

- ▶ Let *U* be the set of *n* objects labelled $p_1, p_2, ..., p_n$.
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.

- ▶ Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$\operatorname{spacing}(C_1, C_2, \dots C_k) = \min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_j}} d(p, q)$$

- ▶ Let U be the set of n objects labelled p_1, p_2, \ldots, p_n .
- For every pair p_i and p_j , we have a distance $d(p_i, p_j)$.
- ▶ We require $d(p_i, p_i) = 0$, $d(p_i, p_j) > 0$, if $i \neq j$, and $d(p_i, p_j) = d(p_j, p_i)$
- ▶ Given a positive integer k, a k-clustering of U is a partition of U into k non-empty subsets or "clusters" $C_1, C_2, \ldots C_k$.
- The spacing of a clustering is the smallest distance between objects in two different subsets:

$$\operatorname{spacing}(C_1, C_2, \dots C_k) = \min_{\substack{1 \le i, j \le k \\ i \ne j, \\ p \in C_i, q \in C_j}} d(p, q)$$

CLUSTERING OF MAXIMUM SPACING

INSTANCE: A set U of objects, a distance function $d: U \times U \to \mathbb{R}^+$, and a positive integer K

SOLUTION: A k-clustering of U whose spacing is the largest over all possible k-clusterings.

Algorithm for Clustering of Maximum Spacing

▶ Intuition: greedily cluster objects in increasing order of distance.

Algorithm for Clustering of Maximum Spacing

- ▶ Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- ▶ Process pairs of objects in increasing order of distance.
 - ▶ Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - ▶ If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- ▶ Stop when there are k clusters in C.

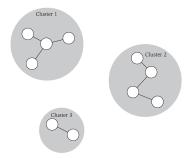


Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters are formed by adding edges between points in order of increasing distance.

Algorithm for Clustering of Maximum Spacing

- ▶ Intuition: greedily cluster objects in increasing order of distance.
- Let C be a set of n clusters, with each object in U in its own cluster.
- ▶ Process pairs of objects in increasing order of distance.
 - Let (p,q) be the next pair with $p \in C_p$ and $q \in C_q$.
 - ▶ If $C_p \neq C_q$, add new cluster $C_p \cup C_q$ to C, delete C_p and C_q from C.
- ▶ Stop when there are k clusters in C.
- ▶ Same as Kruskal's algorithm but do not add last k-1 edges in MST.



Figure 4.14 An example of single-linkage clustering with k = 3 clusters. The clusters are formed by adding edges between points in order of increasing distance.

Why does the Algorithm Work?

- ▶ Let $\mathcal C$ be the clustering produced by the algorithm and let $\mathcal C'$ be any other clustering.
- ▶ What is spacing(C)?

Why does the Algorithm Work?

- ▶ Let C be the clustering produced by the algorithm and let C' be any other clustering.
- ▶ What is spacing(C)? It is the cost of the (k-1)st most expensive edge in the MST. Let this cost be d^* .
- ▶ We will prove that spacing(C') ≤ d^* .

$\mathsf{spacing}(\mathcal{C}') \leq d^*$

▶ There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C':

$spacing(C') \leq d^*$

▶ There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$.

$\mathsf{spacing}(\mathcal{C}') \leq d^*$

- ▶ There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.
- ▶ Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.

$\mathsf{spacing}(\mathcal{C}') \leq d^*$

- ▶ There must be two points p_i and p_j in U in the same cluster C_r in C but in different clusters in C': spacing $(C') \leq d(p_i, p_j)$. But $d(p_i, p_j)$ could be $> d^*$.
- ▶ Suppose $p_i \in C'_s$ and $p_j \in C'_t$ in C'.
- ▶ All edges in the path Q connecting p_i and p_j in the MST have length $\leq d^*$.
- ▶ In particular, there is a point $p \in C'_s$ and a point $p' \notin C'_s$ such that p and p' are adjacent in Q.
- ▶ $d(p, p') \le d*$ \Rightarrow spacing $(C') \le d(p, p') \le d^*$.

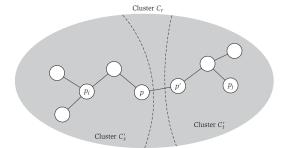


Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any other clustering can be no larger than that of the clustering found by the single-linkage algorithm.

Minimum Bottleneck Spanning Tree (MBST)

- ▶ The MST minimises the total cost of a spanning network.
- ▶ Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.

Minimum Bottleneck Spanning Tree (MBST)

- ▶ The MST minimises the total cost of a spanning network.
- ▶ Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.
- ▶ In an undirected graph G(V, E), let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

Minimum Bottleneck Spanning Tree (MBST)

- ▶ The MST minimises the total cost of a spanning network.
- ▶ Consider another network design criterion: compute a spanning tree in which the most expensive edge is as cheap as possible.
- ▶ In an undirected graph G(V, E), let (V, T) be a spanning tree. The bottleneck edge in T is the edge with largest cost in T.

MINIMUM BOTTLENECK SPANNING TREE (MBST)

INSTANCE: An undirected graph G(V, E) and a function $c: E \to \mathbb{R}^+$

SOLUTION: A set $T \subseteq E$ of edges such that (V, T) is a spanning tree and there is no spanning tree in G with a cheaper bottleneck edge.

Two Questions on MBSTs

- 1. Assume edge costs are distinct.
- 2. Is every MBST tree an MST?
- 3. Is every MST an MBST?

Two Questions on MBSTs

- 1. Assume edge costs are distinct.
- 2. Is every MBST tree an MST? No. It is easy to create a counterexample.
- 3. Is every MST an MBST? Yes. Use the cycle property.
 - ▶ Let T be the MST and let T' be a spanning tree with a cheaper bottleneck edge. Let e be the bottleneck edge in T.
 - Every edge in T' is cheaper than e.
 - ▶ Adding e to T' creates a cycle consisting only of edges in T' and e.
 - Since e is the costliest edge in this cycle, by the cycle property, e cannot belong to any MST, which contradicts the fact that T is an MST.