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Algorithm Design

Start discussion of different ways of designing algorithms.
Greedy algorithms, divide and conquer, dynamic programming.
Discuss principles that can solve a variety of problem types.
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Design an algorithm, prove its correctness, analyse its complexity.
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Algorithm Design

Start discussion of different ways of designing algorithms.

Greedy algorithms, divide and conquer, dynamic programming.
Discuss principles that can solve a variety of problem types.
Design an algorithm, prove its correctness, analyse its complexity.

Greedy algorithms: make the current best choice.
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Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s(/), f(i)),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.
» Two jobs are compatible if they do not overlap.

» This problem models the situation where you have a resource, a set of fixed
jobs, and you want to schedule as many jobs as possible.
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Template for Greedy Algorithm

> Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.

» Key question: in what order should we process the jobs?
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Template for Greedy Algorithm

> Process jobs in some order. Add next job to the result if it is compatible with
the jobs already in the result.
» Key question: in what order should we process the jobs?
Earliest start time Increasing order of start time s(/).
Earliest finish time Increasing order of finish time f(/).
Shortest interval Increasing order of length f(i) — s(i).
Fewest conflicts Increasing order of the number of conflicting jobs. How fast
can you compute the number of conflicting jobs for each job?
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Greedy Ideas that Do Not Work
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Figure 4.1 Some instances of the Interval Scheduling Problem on which natural greedy
algorithms fail to find the optimal solution. In (a), it does not work to select the interval
that starts earliest; in (b), it does not work to select the shortest interval; and in (c), it
does not work to select the interval with the fewest conflicts.
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Interval Scheduling Algorithm: Earliest Finish Time

> Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests
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Interval Scheduling Algorithm: Earliest Finish Time

> Schedule jobs in order of earliest finish time (EFT).

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request ieR that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

» Claim: A is a compatible set of requests.
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Analysing the EFT Algorithm

> Let O be an optimal set of requests. We will show that |A| = |O].
» Let iy, h,..., Ik be the set of requests in A in order.

> Let j1,J2,...,jm be the set of requests in O in order, m > k.

» Claim: For all indices r < k, (i) < f(ji).
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> Let i1, k..., Ik be the set of requests in A in order.

> Let j1,J2,...,jm be the set of requests in O in order, m > k.

» Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.
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Analysing the EFT Algorithm

Let O be an optimal set of requests. We will show that |A| = |O].
Let i1, ip, ..., Ik be the set of requests in A in order.

Let j1,J2,--.,jm be the set of requests in O in order, m > k.

Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.
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Can the greedy algorithm’s
rthinterval really finish later?

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.
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rthinterval really finish later?
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» Claim: m = k.



Interval Scheduling Interval Partitioning Minimising Lateness

Analysing the EFT Algorithm

> Let O be an optimal set of requests. We will show that |A| = |O].
> Let i1, k..., Ik be the set of requests in A in order.

> Let j1,J2,...,jm be the set of requests in O in order, m > k.

» Claim: For all indices r < k, f(i,) < f(j.). Prove by induction on r.

Can the greedy algorithm’s
rthinterval really finish later?

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

» Claim: m = k.

> Claim: The greedy algorithm returns an optimal set A.
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Implementing the EFT Algorithm

. Reorder jobs so that they are in increasing order of finish time.
. Store starting time of jobs in an array S.

. Always select first interval. Let finish time be f.

. Iterate over S to find the first index i such that S[i] > f.

B W DN =



Interval Scheduling Interval Partitioning Minimising Lateness

Implementing the EFT Algorithm

1. Reorder jobs so that they are in increasing order of finish time.
2. Store starting time of jobs in an array S.

3. Always select first interval. Let finish time be f.

4. Iterate over S to find the first index i such that S[i] > f.

» Running time is O(nlog n), dominated by sorting.
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Interval Partitioning

INTERVAL PARTITIONING

INSTANCE: Set {(s(),f(i)),1 < i < n} of start and finish times of n
jobs.

SOLUTION: A partition of the jobs into k sets, where each set of jobs is
mutually compatible, and k is minimised.

» This problem models the situation where you a set of fixed jobs, and you
want to schedule all jobs using as few resources as possible.
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Depth of Intervals
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.
» The depth of a set of intervals is the maximum number of intervals that
contain any time point.
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

» The depth of a set of intervals is the maximum number of intervals that
contain any time point.

» Claim: In any instance of INTERVAL PARTITIONING, k > depth.
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Depth of Intervals
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Figure 4.4 (a) An instance of the Interval Partitioning Problem with ten intervals (a
through j). (b) A solution in which all intervals are scheduled using three resources:
each row represents a set of intervals that can all be scheduled on a single resource.

» The depth of a set of intervals is the maximum number of intervals that
contain any time point.

» Claim: In any instance of INTERVAL PARTITIONING, k > depth.

> Is it possible to compute k efficiently? Is k = depth?



Interval Scheduling Interval Partitioning Minimising Lateness

Interval Partitioning Algorithm

» Compute the depth d of the intervals.
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Interval Partitioning Algorithm

» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I ,...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval ; that precedes I; in sorted order and overlaps it
Exclude the label of I; from consideration for J;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave J; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.
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Interval Partitioning Algorithm

» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I ,...,I, denote the intervals in this order
For j=1,2,3,...,n
For each interval ; that precedes I; in sorted order and overlaps it
Exclude the label of I; from consideration for J;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave J; unlabeled
Endif
Endfor

» Claim: Every interval gets a label and no pair of overlapping intervals get the
same label.

> Claim: The greedy algorithm is optimal.
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Interval Partitioning Algorithm
» Compute the depth d of the intervals.

Sort the intervals by their start times, breaking ties arbitrarily
Let I}, I, ...,I;, denote the intervals in this order
For j=1,2,3,...,n
For each interval ; that precedes I; in sorted order and overlaps it
Exclude the label of I; from consideration for J;
Endfor
If there is any label from {1,2,...,d} that has not been excluded then
Assign a nonexcluded label to J;
Else
Leave J; unlabeled
Endif
Endfor

Minimising Lateness

» Claim: Every interval gets a label and no pair of overlapping intervals get the

same label.
» Claim: The greedy algorithm is optimal.
> The running time of the algorithm is O(nlog n).
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Scheduling to Minimise Lateness

v

Study different model: job i has a length t(/) and a deadline d(/).
We want to schedule all jobs on one resource.

v

v

Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.

A job i is delayed if f(i) > d(i); the lateness of the job is max(0, f(i) — d(i)).
The lateness of a schedule is max; (max (0, f(i) — d(i))).

v

v
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Scheduling to Minimise Lateness

v

Study different model: job i has a length t(/) and a deadline d(/).

We want to schedule all jobs on one resource.

v

v

Our goal is to assign a starting time s(/) to each job such that each job is
delayed as little as possible.

A job i is delayed if f(i) > d(i); the lateness of the job is max(0, f(i) — d(i)).
The lateness of a schedule is max; (max (0, f(i) — d(i))).

MINIMISE LATENESS

INSTANCE: Set {(t(i),d()),1 < i < n} of lengths and deadlines of n

jobs.

SOLUTION: Set {s(i),1 < i < n} of start times such that

max; (max (0,s(i) + t(i) — d(i))) is as small as possible.

v

v
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Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?
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Template for Greedy Algorithm

» Key question: In what order should we schedule the jobs?

Shortest length Increasing order of length t(/).
Shortest slack time Increasing order of d(i) — t(i).
Earliest deadline Increasing order of deadline d(/).
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Algorithm for Minimising Lateness: Earliest
Deadline First (EDF)

Order the jobs in order of their deadlines
Assume for simplicity of notation that d;<...=<d,

Initially, f=s

Consider the jobs i=1,...,n in this order
Assign job i to the time interval from s(i)=f to f()=f+¢
Let f=f+¢

End

Return the set of scheduled intervals [s(i), f()] for i=1,...,n

» Proof of correctness is more complex.

> We will use an exchange argument: gradually modify the optimal schedule O
till it is the same as the schedule A computed by the algorithm.
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Properties of Schedules

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).
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Properties of Schedules

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.
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Properties of Schedules

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

» Claim 2: All schedules with no inversions and no idle time have the same
lateness.
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Properties of Schedules

> A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

» Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

» Claim 2: All schedules with no inversions and no idle time have the same
lateness.

» Claim 3: There is an optimal schedule with no idle time.
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Properties of Schedules

v

A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

v

v

Claim 2: All schedules with no inversions and no idle time have the same
lateness.

v

Claim 3: There is an optimal schedule with no idle time.

v

Claim 4: There is an optimal schedule with no inversions and no idle time.
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Properties of Schedules

A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

Claim 2: All schedules with no inversions and no idle time have the same
lateness.

Claim 3: There is an optimal schedule with no idle time.
Claim 4: There is an optimal schedule with no inversions and no idle time.
Claim 5: The greedy algorithm produces an optimal schedule.
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Properties of Schedules

A schedule has an inversion if a job i with deadline d(/) is scheduled before a
job j with an earlier deadline d(j), i.e., d(j) < d(i) and s(i) < s(j).

Claim 1: The algorithm produces a schedule with no inversions and no idle
time.

Claim 2: All schedules with no inversions and no idle time have the same
lateness.

Claim 3: There is an optimal schedule with no idle time.
Claim 4: There is an optimal schedule with no inversions and no idle time.

Claim 5: The greedy algorithm produces an optimal schedule. Follows from
Claims 1, 2 and 4.
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Proving Claim 4

> Claim 4: There is an optimal schedule with no inversions and no idle time.
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Proving Claim 4

> Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger

than O.
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Proving Claim 4

> Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).
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Proving Claim 4

> Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger

than O.

1.

If O has an inversion, then there is a pair of jobs i and j such that j is

scheduled just after i and d(j) < d(i).
Let / and j be consecutive inverted jobs in O. After swapping i/ and j, we get
a schedule O’ with one less inversion.



Minimising Lateness

Proving Claim 4

> Claim 4: There is an optimal schedule with no inversions and no idle time.

» Approach: Start with an optimal schedule O and use an exchange argument
to convert O into a schedule that satisfies Claim 4 and has lateness not larger
than O.

1. If O has an inversion, then there is a pair of jobs i and j such that j is
scheduled just after i and d(j) < d(i).

2. Let i and j be consecutive inverted jobs in O. After swapping i and j, we get
a schedule O’ with one less inversion.

3. The maximum lateness of O’ is no larger than the maximum lateness of O.

> It is enough to prove the last item, since after (g) swaps, we obtain a schedule

with no inversions whose maximum lateness is no larger than that of O.
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
[
4 4
(a)
After swapping:
[ I Jobj I Job i
[
a4 dq
(b)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

> In O, assume each request r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of request r be /'(r).
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> In O, assume each request r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of request r be /'(r).

> Claim: /'(k) = I(k), for all k # i,j.
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> In O, assume each request r is scheduled for the interval [s(r), f(r)] and has
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
I
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After swapping:
[ I Jobj I Job i
[
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Figure 4.6 The effect of swapping two consecutive, inverted jobs.

v

In O, assume each request r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of request r be /'(r).

Claim: I'(k) = I(k), for all k # i, .
Claim: I'(j) < I(j).
Claim: /'(7) < I(j)

v
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Swapping Inverted Jobs

Only the finishing times of i and j
are affected by the swap.

Before swapping:

Job i [ Job j [ ]
I
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I Jobj I Job i
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Figure 4.6 The effect of swapping two consecutive, inverted jobs.

v

In O, assume each request r is scheduled for the interval [s(r), f(r)] and has
lateness /(r). For O’, let the lateness of request r be /'(r).

Claim: /'(k) = I(k), for all k #i,}.
Claim: I'(j) < I(j).
Claim: I'(i) < I(j) because I'(i) = f(j) — di < f(j) — d; = I(j).

v
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Summary

> Greedy algorithms make local decisions.
» Three analysis strategies:

Greedy algorithm stays ahead Show that after each step in the greedy
algorithm, its solution is at least as good as that produced by
any other algorithm.

Structural bound First, discover a property that must be satisfied by every
possible solution. Then show that the (greedy) algorithm
produces a solution with this property.

Exchange argument Transform the optimal solution in steps into the solution
by the greedy algorithm without worsening the quality of the
optimal solution.



	Interval Scheduling
	Interval Partitioning
	Minimising Lateness

