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Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step must take

O(log n) time.
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Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.
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Priority Queue

I Store a set S of elements, where each element v has a priority value key(v).

I Smaller key values ≡ higher priorities.

I Operations supported: �nd the element with smallest key, remove the

smallest element, update the key of an element, insert an element, delete an

element.

I Key update and element deletion require knowledge of the position of the

element in the priority queue.



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent

satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the number of

elements in the heap.
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Example of a Heap



Inserting an Element

I Insert new element at index n + 1.
I Fix heap order using Heapify-up.
I H is almost a heap with key of H[i ] too small if there is a value

α ≥ key(H[i ]) such that increasing key(H[i ]) to α makes H a heap.



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too small, after

Heapify-up(H, i), H is a heap or almost a heap with the key of H[j ] too
small.

I Running time is O(log i).
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Deleting an Element

I Suppose H has n + 1 elements.
I Delete element at H[i ] by moving element at H[n + 1] to H[i ].
I If element at H[i ] is too small, �x heap order using Heapify-up.
I If element at H[i ] is too large, �x heap order using Heapify-down.



Heapify-down



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value α ≤ key(H[i ])
such that decreasing key(H[i ]) to α makes H a heap.

I Proof base case:

2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or almost a

heap with the key of H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).
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Sorting a List of Numbers with the Priority

Queue

Sort
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I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of

O(n log n).
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