
Priority Queues

T. M. Murali

January 29, 2009



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step must take

O(log n) time.



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step must take

O(log n) time.



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and remove it.

I To get O(n log n) running time, each ��nd minimum� step must take

O(log n) time.



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List

Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array

Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum, and

deleting minimum.

List Insertion and deletion take O(1) time but �nding minimum requires

scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and deletion can

take Ω(n) time in the worst case.



Priority Queue

I Store a set S of elements, where each element v has a priority value key(v).

I Smaller key values ≡ higher priorities.

I Operations supported: �nd the element with smallest key, remove the

smallest element, update the key of an element, insert an element, delete an

element.

I Key update and element deletion require knowledge of the position of the

element in the priority queue.



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent

satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the number of

elements in the heap.



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent

satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the number of

elements in the heap.



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent

satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf?

If 2i > n, the number of

elements in the heap.



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at i 's parent

satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the number of

elements in the heap.



Example of a Heap



Inserting an Element

I Insert new element at index n + 1.
I Fix heap order using Heapify-up.
I H is almost a heap with key of H[i ] too small if there is a value

α ≥ key(H[i ]) such that increasing key(H[i ]) to α makes H a heap.



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too small, after

Heapify-up(H, i), H is a heap or almost a heap with the key of H[j ] too
small.

I Running time is O(log i).



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too small, after

Heapify-up(H, i), H is a heap or almost a heap with the key of H[j ] too
small.

I Running time is O(log i).



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too small, after

Heapify-up(H, i), H is a heap or almost a heap with the key of H[j ] too
small.

I Running time is O(log i).



Deleting an Element

I Suppose H has n + 1 elements.
I Delete element at H[i ] by moving element at H[n + 1] to H[i ].
I If element at H[i ] is too small, �x heap order using Heapify-up.
I If element at H[i ] is too large, �x heap order using Heapify-down.



Heapify-down



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value α ≤ key(H[i ])
such that decreasing key(H[i ]) to α makes H a heap.

I Proof base case:

2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or almost a

heap with the key of H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value α ≤ key(H[i ])
such that decreasing key(H[i ]) to α makes H a heap.

I Proof base case: 2i > n.

I Proof inductive step:

after Heapify-down(H, i), H is a heap or almost a

heap with the key of H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value α ≤ key(H[i ])
such that decreasing key(H[i ]) to α makes H a heap.

I Proof base case: 2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or almost a

heap with the key of H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value α ≤ key(H[i ])
such that decreasing key(H[i ]) to α makes H a heap.

I Proof base case: 2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or almost a

heap with the key of H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).



Sorting a List of Numbers with the Priority

Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of

O(n log n).



Sorting a List of Numbers with the Priority

Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of

O(n log n).



Sorting a List of Numbers with the Priority

Queue

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

yi ≤ yi+1, for all 1 ≤ i < n.

I Final algorithm:
I Insert each number in a priority queue H.
I Repeatedly �nd the smallest number in H, output it, and delete it from H.

I Each insertion and deletion takes O(log n) time for a total running time of

O(n log n).


