NP-Complete Problems T. M. Murali April 14, 21, 2008 ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete. - ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete. - ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is - ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete. - ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is - 1. Prove that $X \in \mathcal{NP}$. - 2. Select a problem Y known to be \mathcal{NP} -Complete. - 3. Prove that $Y \leq_P X$. - ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete. - ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is - 1. Prove that $X \in \mathcal{NP}$. - 2. Select a problem Y known to be \mathcal{NP} -Complete. - 3. Prove that $Y \leq_P X$. - ▶ If we use Karp reductions, we can refine the strategy: - 1. Prove that $X \in \mathcal{NP}$. - 2. Select a problem Y known to be \mathcal{NP} -Complete. - 3. Consider an arbitrary instance s_Y of problem Y. Show how to construct, in polynomial time, an instance s_X of problem X such that - (a) If $s_Y \in Y$, then $s_X \in X$ and - (b) If $s_X \in X$, then $s_Y \in Y$. ### 3-SAT is \mathcal{NP} -Complete ▶ Why is 3-SAT in NP? ## 3-SAT is \mathcal{NP} -Complete - ▶ Why is 3-SAT in NP? - ► CIRCUIT SATISFIABILITY <_P 3-SAT. - 1. Given an instance of CIRCUIT SATISFIABILITY, create an instance of SAT, in which each clause has *at most* three variables. - 2. Convert this instance of SAT into one of 3-SAT. - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - Encode the requirements of each gate as a clause. Strategy - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - ► Encode the requirements of each gate as a clause. - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - ► Encode the requirements of each gate as a clause. Strategy - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - ► Encode the requirements of each gate as a clause. Strategy - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$. - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - ► Encode the requirements of each gate as a clause. Strategy - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$. - ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - Encode the requirements of each gate as a clause. Strategy 3-SAT - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$. - ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$. - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - ► Encode the requirements of each gate as a clause. - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$. - ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$. - ► Constants at sources: single-variable clauses. Strategy - ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v . - Encode the requirements of each gate as a clause. - ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$. - ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$. - ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$. - ► Constants at sources: single-variable clauses. Strategy ▶ Output: if o is the output node, use the clause (x_o) . - \triangleright Prove that K is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. - clauses are satisfiable $\rightarrow K$ is satisfiable. - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. Strategy - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ► Converting instance of SAT to an instance of 3-SAT. - ▶ Prove that *K* is equivalent to the instance of SAT. - \triangleright K is satisfiable \rightarrow clauses are satisfiable. Strategy - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ► Converting instance of SAT to an instance of 3-SAT. - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. Strategy - Clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ▶ Converting instance of SAT to an instance of 3-SAT. - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2. - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. Strategy - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ► Converting instance of SAT to an instance of 3-SAT. - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2. - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$. - ▶ Prove that *K* is equivalent to the instance of SAT. - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable. Strategy - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute. - ► Converting instance of SAT to an instance of 3-SAT. - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2. - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$. - ▶ If a clause has a two terms t and t', replace the clause with $t \lor t' \lor z_1$. ### More \mathcal{NP} -Complete problems - ightharpoonup Circuit Satisfiability is \mathcal{NP} -Complete. - ▶ We just showed that CIRCUIT SATISFIABILITY <_P 3-SAT. - ▶ We know that - $3\text{-SAT} \leq_P \text{Independent Set} \leq_P \text{Vertex Cover} \leq_P \text{Set Cover}$ - ightharpoonup All these problems are in \mathcal{NP} . - ▶ Therefore, INDEPENDENT SET, VERTEX COVER, and SET COVER are \mathcal{NP} -Complete. # Hamiltonian Cycle collection of objects. Another type of computationally hard problem involves searching over Problems we have seen so far involve searching over subsets of a ▶ Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects. # Hamiltonian Cycle collection of objects. Another type of computationally hard problem involves searching over Problems we have seen so far involve searching over subsets of a - Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects. - ▶ In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each vertex exactly once. HAMILTONIAN CYCLE **INSTANCE:** A directed graph *G*. **QUESTION:** Does G contain a Hamiltonian cycle? # Hamiltonian Cycle is \mathcal{NP} -Complete ▶ Why is the problem in \mathcal{NP} ? # Hamiltonian Cycle is \mathcal{NP} -Complete - ▶ Why is the problem in \mathcal{NP} ? - ▶ Claim: $3\text{-SAT} \leq_P \text{Hamiltonian Cycle}$. # Hamiltonian Cycle is \mathcal{NP} -Complete - ▶ Why is the problem in \mathcal{NP} ? - ▶ Claim: 3-SAT \leq_P HAMILTONIAN CYCLE. - ▶ Consider an arbitrary instance of 3-SAT with variables $x_1, x_2, ..., x_n$ and clauses $C_1, C_2, ..., C_k$. - ► Strategy: - 1. Construct a graph G with O(nk) nodes and edges and 2^n Hamiltonian cycles with a one-to-one correspondence with 2^n truth assignments. - 2. Add nodes to impose constraints arising from clauses. - 3. Construction takes O(nk) time. - G contains n paths $P_1, P_2, \dots P_n$. - ▶ Each P_i contains b = 3k + 3 nodes $v_{i,1}, v_{i,2}, \dots v_{i,b}$. \mathcal{NP} vs. co- \mathcal{NP} ### 3-SAT \leq_P Hamiltonian Cycle: Constructing G Strategy 3-SAT ## 3-SAT \leq_P Hamiltonian Cycle: Modelling clauses ▶ Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$. Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2. ▶ 3-SAT instance is satisfiable \rightarrow G has a Hamiltonian cycle. - ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle. - ▶ Construct a Hamiltonian cycle C as follows: - ▶ If $x_i = 1$, traverse P_i from left to right in C. - ▶ Otherwise, traverse P_i from right to left in C. - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into \mathcal{C} using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$. - ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle. - ▶ Construct a Hamiltonian cycle C as follows: - ▶ If $x_i = 1$, traverse P_i from left to right in C. - ▶ Otherwise, traverse P_i from right to left in C. - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$. - ▶ G has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable. - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$. - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$. - ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle. - ▶ Construct a Hamiltonian cycle C as follows: - ▶ If $x_i = 1$, traverse P_i from left to right in C. - ▶ Otherwise, traverse P_i from right to left in C. - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$. - ▶ G has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable. - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$. - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$. - Nodes immediately before and after c_j in \mathcal{C} are themselves connected by an edge e in \mathcal{G} . - ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle. - ▶ Construct a Hamiltonian cycle C as follows: - ▶ If $x_i = 1$, traverse P_i from left to right in C. - ▶ Otherwise, traverse P_i from right to left in C. - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$. - ▶ *G* has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable. - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$. - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$. - Nodes immediately before and after c_j in C are themselves connected by an edge e in G. - ▶ If we remove all such edges e from C, we get a Hamiltonian cycle C' in $G \{c_1, c_2, \dots, c_k\}$. - Use C' to construct truth assignment to variables. - Argue that the assignment is a satisfying assignment. # The Traveling Salesman Problem - ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 . - ► Salesman must find a *tour*, an order in which to visit each city exactly once, and return home. - Goal is to find as short a tour as possible. # The Traveling Salesman Problem - ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 . - ► Salesman must find a *tour*, an order in which to visit each city exactly once, and return home. - ▶ Goal is to find as short a tour as possible. Strategy - ▶ For every pair of cities v_i and v_j , let $d(v_i, v_j) > 0$ be the distance from v_i to v_i . - A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$. - ▶ The *length* of the tour is $\sum_{i=1}^{n-1} d(v_{i_i}v_{i_{i+1}}) + d(v_{i_n}, v_{i_1})$. # The Traveling Salesman Problem - ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 . - Salesman must find a tour, an order in which to visit each city exactly once, and return home. - ▶ Goal is to find as short a tour as possible. - ▶ For every pair of cities v_i and v_j , let $d(v_i, v_j) > 0$ be the distance from v_i to v_i . - ▶ A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$. - ▶ The *length* of the tour is $\sum_{j=1}^{n-1} d(v_{i_j} v_{i_{j+1}}) + d(v_{i_n}, v_{i_1})$. TRAVELLING SALESMAN **INSTANCE:** A set V of n cities, a function $d: V \times V \to \mathbb{R}^+$, and a number D > 0. **QUESTION:** Is there a tour of length at most *D*? ▶ Why is the problem in \mathcal{NP} -Complete? - ▶ Why is the problem in \mathcal{NP} -Complete? - ▶ Claim: Hamiltonian Cycle ≤_P Travelling Salesman. - ▶ Why is the problem in \mathcal{NP} -Complete? - ► Claim: HAMILTONIAN CYCLE ≤ P TRAVELLING SALESMAN. - ▶ Given a directed graph G(V, E), - ▶ Create a city v_i for each node $i \in V$. - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$. - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$. - ▶ Why is the problem in \mathcal{NP} -Complete? - ▶ Claim: HAMILTONIAN CYCLE ≤_P TRAVELLING SALESMAN. - ▶ Given a directed graph G(V, E), - ▶ Create a city v_i for each node $i \in V$. - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$. - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$. - ► Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most - ▶ Why is the problem in \mathcal{NP} -Complete? - ▶ Claim: HAMILTONIAN CYCLE ≤_P TRAVELLING SALESMAN. - ▶ Given a directed graph G(V, E), - ▶ Create a city v_i for each node $i \in V$. - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$. - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$. - ► Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most *n*. # Special Cases and Extensions that are $\mathcal{NP} ext{-}\mathbf{Complete}$ - ► HAMILTONIAN CYCLE for undirected graphs. - ► HAMILTONIAN PATH for directed and undirected graphs. - ► TRAVELLING SALESMAN with symmetric distances (by reducing HAMILTONIAN CYCLE for undirected graphs to it). - ► TRAVELLING SALESMAN with distances defined by points on the plane. BIPARTITE MATCHING **INSTANCE:** Disjoint sets X, Y, each of size n, and a set $T \subseteq X \times Y$ of pairs **QUESTION:** Is there a set of n pairs in T such that each element of $X \cup Y$ is contained in exactly one of these pairs? ▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING. BIPARTITE MATCHING **INSTANCE:** Disjoint sets X, Y, each of size n, and a set $T \subseteq X \times Y$ of pairs **QUESTION:** Is there a set of n pairs in T such that each element of $X \cup Y$ is contained in exactly one of these pairs? ▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING. 3-Dimensional Matching **INSTANCE:** Disjoint sets X, Y, and Z, each of size n, and a set $T \subset X \times Y \times Z$ of triples **QUESTION:** Is there a set of *n* triples in *T* such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples? ▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING. 3-Dimensional Matching **INSTANCE:** Disjoint sets X, Y, and Z, each of size n, and a set $T \subset X \times Y \times Z$ of triples **QUESTION:** Is there a set of *n* triples in T such that each element of $X \cup Y$ is contained in exactly one of these triples? ▶ Easy to show 3-DIMENSIONAL MATCHING \leq_P SET COVER and 3-DIMENSIONAL MATCHING \leq_P SET PACKING. # 3-Dimensional Matching is $\mathcal{NP}\text{-}\mathsf{Complete}$ ▶ Why is the problem in \mathcal{NP} ? # **3-Dimensional Matching is** \mathcal{NP} -Complete - Why is the problem in \mathcal{NP} ? - ▶ Show that $3\text{-SAT} <_P 3\text{-DIMENSIONAL MATCHING.}$ - Strategy: - ▶ Start with an instance of 3-SAT with *n* variables and *k* clauses. - ► Create a gadget for each variable x_i that encodes the choice of truth assignment to x_i . - ▶ Add gadgets that encode constraints imposed by clauses. - ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - ► Analogous definition for tips. Strategy - ► Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - Analogous definition for tips. Strategy \triangleright Only these triples contain elements in A_i . - ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - Analogous definition for tips. - ▶ Only these triples contain elements in A_i . - ▶ In any perfect matching, Strategy - ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - Analogous definition for tips. Strategy - ▶ Only these triples contain elements in A_i . - ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget. - ▶ If we use the even triples. - ► Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - ► Analogous definition for tips. Strategy - ▶ Only these triples contain elements in A_i . - ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget. - ▶ If we use the even triples, odd tips are free and vice-versa. - ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$. - For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$. - ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*. - Analogous definition for tips. Strategy - ▶ Only these triples contain elements in A_i . - ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget. - ▶ If we use the even triples, odd tips are free and vice-versa. - ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$. \mathcal{NP} vs. co- \mathcal{NP} #### 3-SAT \leq_P 3-Dimensional Matching: Clauses - ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$. - ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$. Strategy #### 3-SAT \leq_P 3-Dimensional Matching: Clauses - ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$. - ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$. Strategy ▶ C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free." \mathcal{NP} vs. co- \mathcal{NP} ## 3-SAT \leq_P 3-Dimensional Matching: Clauses - ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$. - ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$. Strategy - ▶ C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free." - ► Clause gadget j for clause C_j contains two core elements $P_i = \{p_i, p_i'\}$ and three triples: - ▶ If C_j contains x_i , add triple $(p_j, p'_i, b_{i,2j})$. - If C_i contains $\overline{x_i}$, add triple $(p_j, p'_i, b_{i,2j-1})$. ## 3-SAT \leq_P 3-Dimensional Matching: Example ▶ Satisfying assignment → matching. - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i. - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i. - ► Matching → satisfying assignment. - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i. - ► Matching → satisfying assignment. - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ii} ($x_i = 1$). - ► Satisfying assignment → matching. - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i. - ► Matching → satisfying assignment. - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$). - ▶ Is clause *C_i* satisfied? ► Satisfying assignment → matching. Strategy - Make appropriate choices for the core of each variable gadget. - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered. - ▶ We have not covered all the tips! - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i. - ► Matching → satisfying assignment. - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$). - ▶ Is clause C_j satisfied? Core in clause gadget j is covered by some triple \Rightarrow other element in the triple must be a tip element from the correct odd/even set in the three variable gadgets corresponding to a term in C_i . ▶ Did we create an instance of 3-DIMENSIONAL MATCHING? - ▶ Did we create an instance of 3-DIMENSIONAL MATCHING? - \blacktriangleright We need three sets X, Y, and Z of equal size. - ▶ Did we create an instance of 3-DIMENSIONAL MATCHING? - ▶ We need three sets *X*, *Y*, and *Z* of equal size. - ▶ How many elements do we have? - ▶ 2nk a_{ij} elements. - ▶ 2nk b_{ij} elements. - k p_j elements. - ▶ *k p'_i* elements. - (n-1)k q_i elements. - $(n-1)k q_i'$ elements. ### 3-SAT \leq_P 3-Dimensional Matching: Finale - ▶ Did we create an instance of 3-DIMENSIONAL MATCHING? - \blacktriangleright We need three sets X, Y, and Z of equal size. - ▶ How many elements do we have? - ▶ 2nk a_{ij} elements. - ▶ 2nk b_{ij} elements. - k p_j elements. - ▶ *k p'_i* elements. - (n-1)k q_i elements. - $(n-1)k q_i'$ elements. - ▶ X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i . - ▶ Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i . - \triangleright Z is the set of all b_{ii} . ## 3-SAT \leq_P 3-Dimensional Matching: Finale - ▶ Did we create an instance of 3-DIMENSIONAL MATCHING? - \blacktriangleright We need three sets X, Y, and Z of equal size. - How many elements do we have? - 2nk a_{ij} elements. - ▶ 2*nk b_{ij}* elements. - k p_j elements. - ▶ k p'_i elements. - (n-1)k q_i elements. - $(n-1)k q_i'$ elements. - ▶ X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i . - ▶ Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i . - \triangleright Z is the set of all b_{ii} . - \triangleright Each triple contains exactly one element from X, Y, and Z. # **Colouring maps** ### **Colouring maps** ▶ Any map can be coloured with four colours (Appel and Hakken, 1976). # **Graph Colouring** ▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ... k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$. ## **Graph Colouring** ▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ..., k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$. GRAPH COLOURING (k-COLOURING) **INSTANCE:** An undirected graph G(V, E) and an integer k > 0. **QUESTION:** Does G have a k-colouring? ## **Applications of Graph Colouring** certain pairs of jobs cannot be scheduled at the same time. Compiler design: assign variables to k registers but two variables 1. Job scheduling: assign jobs to n processors under constraints that - 2. Compiler design: assign variables to k registers but two variables being used at the same time cannot be assigned to the same register. - 3. Wavelength assignment: assign one of *k* transmitting wavelengths to each of *n* wireless devices. If two devices are close to each other, they must get different wavelengths. ▶ How hard is 2-Colouring? - ▶ How hard is 2-Colouring? - ► Claim: A graph is 2-colourable if and only if it is bipartite. - ▶ How hard is 2-Colouring? - ▶ Claim: A graph is 2-colourable if and only if it is bipartite. - ▶ Testing 2-colourability is possible in O(|V| + |E|) time. - ▶ How hard is 2-Colouring? - ▶ Claim: A graph is 2-colourable if and only if it is bipartite. - ▶ Testing 2-colourability is possible in O(|V| + |E|) time. - ▶ What about 3-COLOURING? Is it easy to exhibit a certificate that a graph *cannot* be coloured with three colours? **Figure 8.10** A graph that is not 3-colorable. # **3-Colouring is** \mathcal{NP} -Complete ▶ Why is 3-Colouring in \mathcal{NP} ? # **3-Colouring is** \mathcal{NP} **-Complete** - ▶ Why is 3-Colouring in \mathcal{NP} ? - ▶ 3-SAT \leq_P 3-Colouring. ### 3-SAT \leq_P 3-Colouring: Encoding Variables Figure 8.11 The beginning of the reduction for 3-Coloring. ▶ x_i corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$. ## 3-SAT \leq_P 3-Colouring: Encoding Variables Figure 8.11 The beginning of the reduction for 3-Coloring. - ▶ x_i corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$. - In any 3-Colouring, nodes v_i and $\overline{v_i}$ get a colour different from *Base*. - True colour: colour assigned to the True node; False colour: colour assigned to the False node. - Set x_i to 1 iff v_i gets the True colour. ► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$. **Figure 8.12** Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$. - Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$. - Attach a six-node subgraph for this clause to the rest of the graph. **Figure 8.12** Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$. - ► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$. - ► Attach a six-node subgraph for this clause to the rest of the graph. - Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v₂, or v₃ does not get the False colour. **Figure 8.12** Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$. - ► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$. - Attach a six-node subgraph for this clause to the rest of the graph. - Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v₂, or v₃ does not get the False colour. - ➤ Claim: Graph is 3-colourable iff instance of 3-SAT is satisfiable. Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? #### Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? ▶ Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook). T. M. Murali **NP-Complete Problems** April 14, 21, 2008 #### Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? - ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook). - ▶ There is a dynamic programming algorithm for SUBSET SUM that runs in O(nW) time. #### Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? - ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook). - ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input. #### Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? - ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook). - ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input. - Claim: SUBSET SUM is NP-Complete, 3-DIMENSIONAL MATCHING ≤_P SUBSET SUM. #### Subset Sum **INSTANCE:** A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W? - ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook). - ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input. - Claim: SUBSET SUM is NP-Complete, 3-DIMENSIONAL MATCHING ≤_P SUBSET SUM. - ▶ Caveat: Special case of Subset Sum in which W is bounded by a polynomial function of n is not \mathcal{NP} -Complete (read pages 494–495 of your textbook). ## **Asymmetry of Certification** - ▶ Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric: - An input string s is a "yes" instance iff there exists a short string t such that B(s,t) = yes. - An input string s is a "no" instance iff for all short strings t, B(s,t) = no. ### **Asymmetry of Certification** - ▶ Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric: - An input string s is a "yes" instance iff there exists a short string t such that B(s,t) = yes. - An input string s is a "no" instance iff for all short strings t, B(s,t) = no. The definition of \mathcal{NP} does not guarantee a short proof for "no" instances. ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, $$co$$ - \mathcal{NP} - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$. $$co$$ - \mathcal{NP} - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$. - ▶ If $X \in \mathcal{NP}$. then is $\overline{X} \in \mathcal{NP}$? - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$. - ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general. - ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} . - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$. - ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general. - ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} . - ▶ Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$? - ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$. - ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$. - ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general. - ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} . - ▶ Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$? - ▶ Claim: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then $\mathcal{P} \neq \mathcal{NP}$. - ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then - When the answer is yes, there is a short proof. - ▶ When the answer is no, there is a short proof. - ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then - When the answer is yes, there is a short proof. - ▶ When the answer is no, there is a short proof. - ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation. - ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then - When the answer is yes, there is a short proof. - When the answer is no, there is a short proof. - ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation. - Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν . - \triangleright Yes: construct a flow of value at least ν . - ▶ No: demonstrate a cut with capacity less than ν . - ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then - When the answer is yes, there is a short proof. - When the answer is no, there is a short proof. - ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation. - Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν . - Yes: construct a flow of value at least ν . - ▶ No: demonstrate a cut with capacity less than ν . - ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$. Strategy - ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then - When the answer is yes, there is a short proof. - When the answer is no, there is a short proof. - ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation. - Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν . - Yes: construct a flow of value at least ν . - ▶ No: demonstrate a cut with capacity less than ν . - ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$. Strategy ▶ Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?