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Proving Problems NP-Complete

I Claim: If Y is NP-Complete and X ∈ NP such that Y ≤P X , then
X is NP-Complete.

I Given a new problem X , a general strategy for proving it
NP-Complete is

1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Prove that Y ≤P X .

I If we use Karp reductions, we can refine the strategy:

1. Prove that X ∈ NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance sY of problem Y . Show how to

construct, in polynomial time, an instance sX of problem X such that

(a) If sY ∈ Y , then sX ∈ X and
(b) If sX ∈ X , then sY ∈ Y .
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3-SAT is NP-Complete

I Why is 3-SAT in NP?

I Circuit Satisfiability ≤P 3-SAT.

1. Given an instance of Circuit Satisfiability, create an instance of
SAT, in which each clause has at most three variables.

2. Convert this instance of SAT into one of 3-SAT.
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Circuit Satisfiability ≤P 3-SAT: Transformation

I Given an arbitrary circuit K , associate each node v with a Boolean
variable xv .

I Encode the requirements of each gate as a clause.

I node v has ¬ and edge entering from node u: guarantee that xv = xu

using clauses (xv ∨ xu) and (xv ∨ xu).

I node v has ∨ and edges entering from nodes u and w : ensure
xv = xu ∨ xw using clauses (xv ∨ xu), (xv ∨ xw ), and (xv ∨ xu ∨ xw ).

I node v has ∧ and edges entering from nodes u and w : ensure
xv = xu ∧ xw using clauses (xv ∨ xu), (xv ∨ xw ), and (xv ∨ xu ∨ xw ).

I Constants at sources: single-variable clauses.

I Output: if o is the output node, use the clause (xo).
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Circuit Satisfiability ≤P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable → clauses are satisfiable.

I clauses are satisfiable → K is satisfiable. Observe that we have
constructed clauses so that the value assigned to a node’s variable is
precisely what the circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying

assignment will have z1 = z2 = 0 by adding clauses (zi ∨ z3 ∨ z4),
(zi ∨ z3 ∨ z4), (zi ∨ z3 ∨ z4), and (zi ∨ z3 ∨ z4), for i = 1 and i = 2.

I If a clause has a single term t, replace the clause with (t ∨ z1 ∨ z2).
I If a clause has a two terms t and t ′, replace the clause with t ∨ t ′ ∨ z1.
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More NP-Complete problems

I Circuit Satisfiability is NP-Complete.

I We just showed that Circuit Satisfiability ≤P 3-SAT.

I We know that

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover

I All these problems are in NP.

I Therefore, Independent Set, Vertex Cover, and Set Cover
are NP-Complete.
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Hamiltonian Cycle

I Problems we have seen so far involve searching over subsets of a
collection of objects.

I Another type of computationally hard problem involves searching over
the set of all permutations of a collection of objects.

I In a directed graph G (V ,E ), a cycle C is a Hamiltonian cycle if C
visits each vertex exactly once.

Hamiltonian Cycle

INSTANCE: A directed graph G .

QUESTION: Does G contain a Hamiltonian cycle?
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Hamiltonian Cycle is NP-Complete

I Why is the problem in NP?

I Claim: 3-SAT ≤P Hamiltonian Cycle.

I Consider an arbitrary instance of 3-SAT with variables x1, x2, . . . , xn

and clauses C1,C2, . . .Ck .
I Strategy:

1. Construct a graph G with O(nk) nodes and edges and 2n Hamiltonian
cycles with a one-to-one correspondence with 2n truth assignments.

2. Add nodes to impose constraints arising from clauses.
3. Construction takes O(nk) time.

I G contains n paths P1,P2, . . .Pn.

I Each Pi contains b = 3k + 3 nodes vi ,1, vi ,2, . . . vi ,b.
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3-SAT ≤P Hamiltonian Cycle: Constructing G
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3-SAT ≤P Hamiltonian Cycle: Modelling clauses

I Consider the clause C1 = x1 ∨ x2 ∨ x3.
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3-SAT ≤P Hamiltonian Cycle: Proof

I 3-SAT instance is satisfiable → G has a Hamiltonian cycle.

I Construct a Hamiltonian cycle C as follows:
I If xi = 1, traverse Pi from left to right in C.
I Otherwise, traverse Pi from right to left in C.
I For each clause Cj , there is at least one term set to 1. If the term is xi ,

splice cj into C using edge from vi,3j and edge to vi,3j+1. Analogous
construction if term is xi .

I G has a Hamiltonian cycle C → 3-SAT instance is satisfiable.
I If C enters cj on an edge from vi,3j , it must leave cj along the edge to

vi,3j+1.
I Analogous statement if C enters cj on an edge from vi,3j+1.
I Nodes immediately before and after cj in C are themselves connected

by an edge e in G .
I If we remove all such edges e from C, we get a Hamiltonian cycle C′ in

G − {c1, c2, . . . , ck}.
I Use C′ to construct truth assignment to variables.
I Argue that the assignment is a satisfying assignment.
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The Traveling Salesman Problem

I A salesman must visit n cities v1, v2, . . . vn starting at home city v1.

I Salesman must find a tour, an order in which to visit each city exactly
once, and return home.

I Goal is to find as short a tour as possible.

I For every pair of cities vi and vj , let d(vi , vj) > 0 be the distance
from vi to vj .

I A tour is a permutation vi1 = v1, vi2 , . . . vin .

I The length of the tour is
∑n−1

j=1 d(vij vij+1
) + d(vin , vi1).

Travelling Salesman

INSTANCE: A set V of n cities, a function d : V × V → R+,
and a number D > 0.

QUESTION: Is there a tour of length at most D?
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Travelling Salesman is NP-Complete

I Why is the problem in NP-Complete?

I Claim: Hamiltonian Cycle ≤P Travelling Salesman.
I Given a directed graph G (V ,E ),

I Create a city vi for each node i ∈ V .
I Define d(vi , vj) = 1 if (i , j) ∈ E .
I Define d(vi , vj) = 2 if (i , j) 6∈ E .

I Claim: G has a Hamiltonian cycle iff the instance of Travelling
Salesman has a tour of length at most n.
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Special Cases and Extensions that are
NP-Complete

I Hamiltonian Cycle for undirected graphs.

I Hamiltonian Path for directed and undirected graphs.

I Travelling Salesman with symmetric distances (by reducing
Hamiltonian Cycle for undirected graphs to it).

I Travelling Salesman with distances defined by points on the
plane.
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3-Dimensional Matching

I 3-Dimensional Matching is a harder version of Bipartite
Matching.

Bipartite Matching

INSTANCE: Disjoint sets X , Y , each of size n, and a set
T ⊆ X × Y of pairs

QUESTION: Is there a set of n pairs in T such that each element
of X ∪ Y is contained in exactly one of these pairs?

I Easy to show 3-Dimensional Matching ≤P Set Cover and
3-Dimensional Matching ≤P Set Packing.
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3-Dimensional Matching is NP-Complete

I Why is the problem in NP?

I Show that 3-SAT ≤P 3-Dimensional Matching.
I Strategy:

I Start with an instance of 3-SAT with n variables and k clauses.
I Create a gadget for each variable xi that encodes the choice of truth

assignment to xi .
I Add gadgets that encode constraints imposed by clauses.
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3-SAT ≤P 3-Dimensional Matching: Variables

I Each xi corresponds to a variable gadget i with 2k core elements
Ai = {ai ,1, ai ,2, . . . ai ,2k} and 2k tips Bi = {bi ,1, bi ,2, . . . bi ,2k}.

I For each 1 ≤ j ≤ 2k , variable gadget i includes a triple
tij = (ai ,j , ai ,j+1, bi ,j).

I A triple is even if j is even. Otherwise, the triple is odd.

I Analogous definition for tips.

I Only these triples contain elements in Ai .

I In any perfect matching, we either use all the even triples in gadget i
or all the odd triples in the gadget.

I If we use the even triples, odd tips are free and vice-versa.

I Even triples used, odd tips free ≡ xi = 0; odd triples used, even tips
free ≡ xi = 1.
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3-SAT ≤P 3-Dimensional Matching: Clauses

I Even triples used, odd tips free ≡ xi = 0; odd triples used, even tips
free ≡ xi = 1.

I Consider the clause C1 = x1 ∨ x2 ∨ x3.

I C1 says “The matching on the cores of the gadgets should leave the
even tips of gadget 1 free; or it should leave the odd tips of gadget 2
free; or it should leave the even tips of gadget 3 free.”

I Clause gadget j for clause Cj contains two core elements
Pj = {pj , p

′
j} and three triples:

I If Cj contains xi , add triple (pj , p
′
j , bi,2j).

I If Cj contains xi , add triple (pj , p
′
j , bi,2j−1).
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3-SAT ≤P 3-Dimensional Matching: Example
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3-SAT ≤P 3-Dimensional Matching: Proof

I Satisfying assignment → matching.

I Make appropriate choices for the core of each variable gadget.
I At least one free tip available for each clause gadget, allowing core

elements of clause gadgets to be covered.
I We have not covered all the tips!
I Add (n − 1)k cleanup gadgets to allow the remaining (n − 1)k tips to

be covered: cleanup gadget i contains two core elements Q = {qi , q
′
i}

and triple (qi , q
′
i , b) for every tip b in variable gadget i .

I Matching → satisfying assignment.
I Matching chooses all even aij (xi = 0) or all odd aij (xi = 1).
I Is clause Cj satisfied? Core in clause gadget j is covered by some triple
⇒ other element in the triple must be a tip element from the correct
odd/even set in the three variable gadgets corresponding to a term in
Cj .
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′
i}

and triple (qi , q
′
i , b) for every tip b in variable gadget i .

I Matching → satisfying assignment.
I Matching chooses all even aij (xi = 0) or all odd aij (xi = 1).
I Is clause Cj satisfied?

Core in clause gadget j is covered by some triple
⇒ other element in the triple must be a tip element from the correct
odd/even set in the three variable gadgets corresponding to a term in
Cj .
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3-SAT ≤P 3-Dimensional Matching: Finale

I Did we create an instance of 3-Dimensional Matching?

I We need three sets X ,Y , and Z of equal size.
I How many elements do we have?

I 2nk aij elements.
I 2nk bij elements.
I k pj elements.
I k p′j elements.
I (n − 1)k qi elements.
I (n − 1)k q′i elements.

I X is the union of aij with even j , the set of all pj and the set of all qi .

I Y is the union of aij with odd j , the set if all p′j and the set of all q′i .

I Z is the set of all bij .

I Each triple contains exactly one element from X , Y , and Z .
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Colouring maps

I Any map can be coloured with four colours (Appel and Hakken, 1976).
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Graph Colouring

I Given an undirected graph G (V ,E ), a k-colouring of G is a function
f : V → {1, 2, . . . k} such that for every edge (u, v) ∈ E ,
f (u) 6= f (v).

Graph Colouring (k-Colouring)

INSTANCE: An undirected graph G (V ,E ) and an integer k > 0.

QUESTION: Does G have a k-colouring?

T. M. Murali April 14, 21, 2008 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems NP vs. co-NP

Graph Colouring

I Given an undirected graph G (V ,E ), a k-colouring of G is a function
f : V → {1, 2, . . . k} such that for every edge (u, v) ∈ E ,
f (u) 6= f (v).

Graph Colouring (k-Colouring)

INSTANCE: An undirected graph G (V ,E ) and an integer k > 0.

QUESTION: Does G have a k-colouring?

T. M. Murali April 14, 21, 2008 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems NP vs. co-NP

Applications of Graph Colouring

1. Job scheduling: assign jobs to n processors under constraints that
certain pairs of jobs cannot be scheduled at the same time.

2. Compiler design: assign variables to k registers but two variables
being used at the same time cannot be assigned to the same register.

3. Wavelength assignment: assign one of k transmitting wavelengths to
each of n wireless devices. If two devices are close to each other, they
must get different wavelengths.

T. M. Murali April 14, 21, 2008 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems NP vs. co-NP

2-Colouring

I How hard is 2-Colouring?

I Claim: A graph is 2-colourable if and only if it is bipartite.

I Testing 2-colourability is possible in O(|V |+ |E |) time.

I What about 3-colouring? Is it easy to exhibit a certificate that a
graph cannot be coloured with three colours?
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3-Colouring is NP-Complete

I Why is 3-Colouring in NP?

I 3-SAT ≤P 3-Colouring.
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3-SAT ≤P 3-Colouring: Encoding Variables

I xi corresponds to node vi and xi

corresponds to node vi .

I In any 3-Colouring, nodes vi and
vi get a colour different from
Base.

I True colour: colour assigned to
the True node; False colour:
colour assigned to the False
node.

I Set xi to 1 iff vi gets the True
colour.
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3-SAT ≤P 3-Colouring: Encoding Clauses

I Consider the clause
C1 = x1 ∨ x2 ∨ x3.

I Attach a six-node
subgraph for this clause
to the rest of the graph.

I Claim: Top node in the
subgraph can be
coloured in a 3-colouring
iff one of v1, v2, or v3

does not get the False
colour.

I Claim: Graph is
3-colourable iff instance
of 3-SAT is satisfiable.
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Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn and a
target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn} whose sum is
W ?

I Subset Sum is a special case of the Knapsack Problem (see
Chapter 6.4 of the textbook).

I There is a dynamic programming algorithm for Subset Sum that
runs in O(nW ) time. This algorithm’s running time is exponential in
the size of the input.

I Claim: Subset Sum is NP-Complete,
3-Dimensional Matching ≤P Subset Sum.

I Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of
your textbook).
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Asymmetry of Certification

I Definition of efficient certification and NP is fundamentally
asymmetric:

I An input string s is a “yes” instance iff there exists a short string t
such that B(s, t) = yes.

I An input string s is a “no” instance iff for all short strings t,
B(s, t) = no.

The definition of NP does not guarantee a short proof
for “no” instances.
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co-NP

I For a decision problem X , its complementary problem X is the set of
strings s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.
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Good Characterisations: the Class NP ∩ co-NP

I If a problem belongs to both NP and co-NP, then
I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.
I Example is the problem of determining if a flow network contains a

flow of value at least ν, for some given value of ν.
I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?
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