NP-Complete Problems

T. M. Murali

April 14, 21, 2008

▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.

- ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is

- ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.

- ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.
- ▶ If we use Karp reductions, we can refine the strategy:
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Consider an arbitrary instance s_Y of problem Y. Show how to construct, in polynomial time, an instance s_X of problem X such that
 - (a) If $s_Y \in Y$, then $s_X \in X$ and
 - (b) If $s_X \in X$, then $s_Y \in Y$.

3-SAT is \mathcal{NP} -Complete

▶ Why is 3-SAT in NP?

3-SAT is \mathcal{NP} -Complete

- ▶ Why is 3-SAT in NP?
- ► CIRCUIT SATISFIABILITY <_P 3-SAT.
 - 1. Given an instance of CIRCUIT SATISFIABILITY, create an instance of SAT, in which each clause has *at most* three variables.
 - 2. Convert this instance of SAT into one of 3-SAT.

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.

Strategy

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- ► Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- ► Encode the requirements of each gate as a clause.

Strategy

- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- ► Encode the requirements of each gate as a clause.

Strategy

- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- ► Encode the requirements of each gate as a clause.

Strategy

- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.

Strategy

3-SAT

- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- ► Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.
- ► Constants at sources: single-variable clauses.

Strategy

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.
- ► Constants at sources: single-variable clauses.

Strategy

▶ Output: if o is the output node, use the clause (x_o) .

- \triangleright Prove that K is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.
 - clauses are satisfiable $\rightarrow K$ is satisfiable.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.
 - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

Strategy

- ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ► Converting instance of SAT to an instance of 3-SAT.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - \triangleright K is satisfiable \rightarrow clauses are satisfiable.

Strategy

- ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ► Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

Strategy

- Clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

Strategy

- ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ► Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.
 - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$.

- ▶ Prove that *K* is equivalent to the instance of SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

Strategy

- ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ► Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.
 - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$.
 - ▶ If a clause has a two terms t and t', replace the clause with $t \lor t' \lor z_1$.

More \mathcal{NP} -Complete problems

- ightharpoonup Circuit Satisfiability is \mathcal{NP} -Complete.
- ▶ We just showed that CIRCUIT SATISFIABILITY <_P 3-SAT.
- ▶ We know that
- $3\text{-SAT} \leq_P \text{Independent Set} \leq_P \text{Vertex Cover} \leq_P \text{Set Cover}$
 - ightharpoonup All these problems are in \mathcal{NP} .
 - ▶ Therefore, INDEPENDENT SET, VERTEX COVER, and SET COVER are \mathcal{NP} -Complete.

Hamiltonian Cycle

collection of objects.

Another type of computationally hard problem involves searching over

Problems we have seen so far involve searching over subsets of a

▶ Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.

Hamiltonian Cycle

collection of objects.

Another type of computationally hard problem involves searching over

Problems we have seen so far involve searching over subsets of a

- Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.
- ▶ In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each vertex exactly once.

HAMILTONIAN CYCLE

INSTANCE: A directed graph *G*.

QUESTION: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is \mathcal{NP} -Complete

▶ Why is the problem in \mathcal{NP} ?

Hamiltonian Cycle is \mathcal{NP} -Complete

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Claim: $3\text{-SAT} \leq_P \text{Hamiltonian Cycle}$.

Hamiltonian Cycle is \mathcal{NP} -Complete

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Claim: 3-SAT \leq_P HAMILTONIAN CYCLE.
- ▶ Consider an arbitrary instance of 3-SAT with variables $x_1, x_2, ..., x_n$ and clauses $C_1, C_2, ..., C_k$.
- ► Strategy:
 - 1. Construct a graph G with O(nk) nodes and edges and 2^n Hamiltonian cycles with a one-to-one correspondence with 2^n truth assignments.
 - 2. Add nodes to impose constraints arising from clauses.
 - 3. Construction takes O(nk) time.
- G contains n paths $P_1, P_2, \dots P_n$.
- ▶ Each P_i contains b = 3k + 3 nodes $v_{i,1}, v_{i,2}, \dots v_{i,b}$.

 \mathcal{NP} vs. co- \mathcal{NP}

3-SAT \leq_P Hamiltonian Cycle: Constructing G

Strategy

3-SAT

3-SAT \leq_P Hamiltonian Cycle: Modelling clauses

▶ Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.

Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

▶ 3-SAT instance is satisfiable \rightarrow G has a Hamiltonian cycle.

- ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle.
 - ▶ Construct a Hamiltonian cycle C as follows:
 - ▶ If $x_i = 1$, traverse P_i from left to right in C.
 - ▶ Otherwise, traverse P_i from right to left in C.
 - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into \mathcal{C} using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$.

- ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle.
 - ▶ Construct a Hamiltonian cycle C as follows:
 - ▶ If $x_i = 1$, traverse P_i from left to right in C.
 - ▶ Otherwise, traverse P_i from right to left in C.
 - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$.
- ▶ G has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$.

- ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle.
 - ▶ Construct a Hamiltonian cycle C as follows:
 - ▶ If $x_i = 1$, traverse P_i from left to right in C.
 - ▶ Otherwise, traverse P_i from right to left in C.
 - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$.
- ▶ G has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$.
 - Nodes immediately before and after c_j in \mathcal{C} are themselves connected by an edge e in \mathcal{G} .

- ▶ 3-SAT instance is satisfiable \rightarrow *G* has a Hamiltonian cycle.
 - ▶ Construct a Hamiltonian cycle C as follows:
 - ▶ If $x_i = 1$, traverse P_i from left to right in C.
 - ▶ Otherwise, traverse P_i from right to left in C.
 - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$.
- ▶ *G* has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$.
 - Nodes immediately before and after c_j in C are themselves connected by an edge e in G.
 - ▶ If we remove all such edges e from C, we get a Hamiltonian cycle C' in $G \{c_1, c_2, \dots, c_k\}$.
 - Use C' to construct truth assignment to variables.
 - Argue that the assignment is a satisfying assignment.

The Traveling Salesman Problem

- ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 .
- ► Salesman must find a *tour*, an order in which to visit each city exactly once, and return home.
- Goal is to find as short a tour as possible.

The Traveling Salesman Problem

- ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 .
- ► Salesman must find a *tour*, an order in which to visit each city exactly once, and return home.
- ▶ Goal is to find as short a tour as possible.

Strategy

- ▶ For every pair of cities v_i and v_j , let $d(v_i, v_j) > 0$ be the distance from v_i to v_i .
- A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$.
- ▶ The *length* of the tour is $\sum_{i=1}^{n-1} d(v_{i_i}v_{i_{i+1}}) + d(v_{i_n}, v_{i_1})$.

The Traveling Salesman Problem

- ▶ A salesman must visit *n* cities $v_1, v_2, ..., v_n$ starting at home city v_1 .
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- ▶ Goal is to find as short a tour as possible.
- ▶ For every pair of cities v_i and v_j , let $d(v_i, v_j) > 0$ be the distance from v_i to v_i .
- ▶ A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$.
- ▶ The *length* of the tour is $\sum_{j=1}^{n-1} d(v_{i_j} v_{i_{j+1}}) + d(v_{i_n}, v_{i_1})$.

TRAVELLING SALESMAN

INSTANCE: A set V of n cities, a function $d: V \times V \to \mathbb{R}^+$, and a number D > 0.

QUESTION: Is there a tour of length at most *D*?

▶ Why is the problem in \mathcal{NP} -Complete?

- ▶ Why is the problem in \mathcal{NP} -Complete?
- ▶ Claim: Hamiltonian Cycle ≤_P Travelling Salesman.

- ▶ Why is the problem in \mathcal{NP} -Complete?
- ► Claim: HAMILTONIAN CYCLE ≤ P TRAVELLING SALESMAN.
- ▶ Given a directed graph G(V, E),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$.

- ▶ Why is the problem in \mathcal{NP} -Complete?
- ▶ Claim: HAMILTONIAN CYCLE ≤_P TRAVELLING SALESMAN.
- ▶ Given a directed graph G(V, E),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$.
- ► Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most

- ▶ Why is the problem in \mathcal{NP} -Complete?
- ▶ Claim: HAMILTONIAN CYCLE ≤_P TRAVELLING SALESMAN.
- ▶ Given a directed graph G(V, E),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_i) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_i) = 2$ if $(i, j) \notin E$.
- ► Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most *n*.

Special Cases and Extensions that are $\mathcal{NP} ext{-}\mathbf{Complete}$

- ► HAMILTONIAN CYCLE for undirected graphs.
- ► HAMILTONIAN PATH for directed and undirected graphs.
- ► TRAVELLING SALESMAN with symmetric distances (by reducing HAMILTONIAN CYCLE for undirected graphs to it).
- ► TRAVELLING SALESMAN with distances defined by points on the plane.

BIPARTITE MATCHING

INSTANCE: Disjoint sets X, Y, each of size n, and a set

 $T \subseteq X \times Y$ of pairs

QUESTION: Is there a set of n pairs in T such that each element

of $X \cup Y$ is contained in exactly one of these pairs?

▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.

BIPARTITE MATCHING

INSTANCE: Disjoint sets X, Y, each of size n, and a set

 $T \subseteq X \times Y$ of pairs

QUESTION: Is there a set of n pairs in T such that each element

of $X \cup Y$ is contained in exactly one of these pairs?

▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.

3-Dimensional Matching

INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set $T \subset X \times Y \times Z$ of triples

QUESTION: Is there a set of *n* triples in *T* such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples?

▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.

3-Dimensional Matching

INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set $T \subset X \times Y \times Z$ of triples

QUESTION: Is there a set of *n* triples in T such that each element of $X \cup Y$ is contained in exactly one of these triples?

▶ Easy to show 3-DIMENSIONAL MATCHING \leq_P SET COVER and 3-DIMENSIONAL MATCHING \leq_P SET PACKING.

3-Dimensional Matching is $\mathcal{NP}\text{-}\mathsf{Complete}$

▶ Why is the problem in \mathcal{NP} ?

3-Dimensional Matching is \mathcal{NP} -Complete

- Why is the problem in \mathcal{NP} ?
- ▶ Show that $3\text{-SAT} <_P 3\text{-DIMENSIONAL MATCHING.}$
- Strategy:
 - ▶ Start with an instance of 3-SAT with *n* variables and *k* clauses.
 - ► Create a gadget for each variable x_i that encodes the choice of truth assignment to x_i .
 - ▶ Add gadgets that encode constraints imposed by clauses.

- ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- ► Analogous definition for tips.

Strategy

- ► Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- Analogous definition for tips.

Strategy

 \triangleright Only these triples contain elements in A_i .

- ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- Analogous definition for tips.
- ▶ Only these triples contain elements in A_i .
- ▶ In any perfect matching,

Strategy

- ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- Analogous definition for tips.

Strategy

- ▶ Only these triples contain elements in A_i .
- ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget.
- ▶ If we use the even triples.

- ► Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- ► Analogous definition for tips.

Strategy

- ▶ Only these triples contain elements in A_i .
- ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget.
- ▶ If we use the even triples, odd tips are free and vice-versa.

- ▶ Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}$.
- For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ▶ A triple is *even* if *j* is even. Otherwise, the triple is *odd*.
- Analogous definition for tips.

Strategy

- ▶ Only these triples contain elements in A_i .
- ▶ In any perfect matching, we either use all the even triples in gadget *i* or all the odd triples in the gadget.
- ▶ If we use the even triples, odd tips are free and vice-versa.
- ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$.

 \mathcal{NP} vs. co- \mathcal{NP}

3-SAT \leq_P 3-Dimensional Matching: Clauses

- ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$.
- ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$.

Strategy

3-SAT \leq_P 3-Dimensional Matching: Clauses

- ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$.
- ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$.

Strategy

▶ C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."

 \mathcal{NP} vs. co- \mathcal{NP}

3-SAT \leq_P 3-Dimensional Matching: Clauses

- ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$.
- ▶ Consider the clause $C_1 = x_1 \lor \overline{x_2} \lor x_3$.

Strategy

- ▶ C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."
- ► Clause gadget j for clause C_j contains two core elements $P_i = \{p_i, p_i'\}$ and three triples:
 - ▶ If C_j contains x_i , add triple $(p_j, p'_i, b_{i,2j})$.
 - If C_i contains $\overline{x_i}$, add triple $(p_j, p'_i, b_{i,2j-1})$.

3-SAT \leq_P 3-Dimensional Matching: Example

▶ Satisfying assignment → matching.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ii} ($x_i = 1$).

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$).
 - ▶ Is clause *C_i* satisfied?

► Satisfying assignment → matching.

Strategy

- Make appropriate choices for the core of each variable gadget.
- At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
- ▶ We have not covered all the tips!
- Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$).
 - ▶ Is clause C_j satisfied? Core in clause gadget j is covered by some triple \Rightarrow other element in the triple must be a tip element from the correct odd/even set in the three variable gadgets corresponding to a term in C_i .

▶ Did we create an instance of 3-DIMENSIONAL MATCHING?

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- \blacktriangleright We need three sets X, Y, and Z of equal size.

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- ▶ We need three sets *X*, *Y*, and *Z* of equal size.
- ▶ How many elements do we have?
 - ▶ 2nk a_{ij} elements.
 - ▶ 2nk b_{ij} elements.
 - k p_j elements.
 - ▶ *k p'_i* elements.
 - (n-1)k q_i elements.
 - $(n-1)k q_i'$ elements.

3-SAT \leq_P 3-Dimensional Matching: Finale

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- \blacktriangleright We need three sets X, Y, and Z of equal size.
- ▶ How many elements do we have?
 - ▶ 2nk a_{ij} elements.
 - ▶ 2nk b_{ij} elements.
 - k p_j elements.
 - ▶ *k p'_i* elements.
 - (n-1)k q_i elements.
 - $(n-1)k q_i'$ elements.
- ▶ X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i .
- ▶ Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i .
- \triangleright Z is the set of all b_{ii} .

3-SAT \leq_P 3-Dimensional Matching: Finale

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- \blacktriangleright We need three sets X, Y, and Z of equal size.
- How many elements do we have?
 - 2nk a_{ij} elements.
 - ▶ 2*nk b_{ij}* elements.
 - k p_j elements.
 - ▶ k p'_i elements.
 - (n-1)k q_i elements.
 - $(n-1)k q_i'$ elements.
- ▶ X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i .
- ▶ Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i .
- \triangleright Z is the set of all b_{ii} .
- \triangleright Each triple contains exactly one element from X, Y, and Z.

Colouring maps

Colouring maps

▶ Any map can be coloured with four colours (Appel and Hakken, 1976).

Graph Colouring

▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ... k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

Graph Colouring

▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ..., k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

GRAPH COLOURING (k-COLOURING)

INSTANCE: An undirected graph G(V, E) and an integer k > 0.

QUESTION: Does G have a k-colouring?

Applications of Graph Colouring

certain pairs of jobs cannot be scheduled at the same time.

Compiler design: assign variables to k registers but two variables

1. Job scheduling: assign jobs to n processors under constraints that

- 2. Compiler design: assign variables to k registers but two variables being used at the same time cannot be assigned to the same register.
- 3. Wavelength assignment: assign one of *k* transmitting wavelengths to each of *n* wireless devices. If two devices are close to each other, they must get different wavelengths.

▶ How hard is 2-Colouring?

- ▶ How hard is 2-Colouring?
- ► Claim: A graph is 2-colourable if and only if it is bipartite.

- ▶ How hard is 2-Colouring?
- ▶ Claim: A graph is 2-colourable if and only if it is bipartite.
- ▶ Testing 2-colourability is possible in O(|V| + |E|) time.

- ▶ How hard is 2-Colouring?
- ▶ Claim: A graph is 2-colourable if and only if it is bipartite.
- ▶ Testing 2-colourability is possible in O(|V| + |E|) time.
- ▶ What about 3-COLOURING? Is it easy to exhibit a certificate that a graph *cannot* be coloured with three colours?

Figure 8.10 A graph that is not 3-colorable.

3-Colouring is \mathcal{NP} -Complete

▶ Why is 3-Colouring in \mathcal{NP} ?

3-Colouring is \mathcal{NP} **-Complete**

- ▶ Why is 3-Colouring in \mathcal{NP} ?
- ▶ 3-SAT \leq_P 3-Colouring.

3-SAT \leq_P 3-Colouring: Encoding Variables

Figure 8.11 The beginning of the reduction for 3-Coloring.

▶ x_i corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$.

3-SAT \leq_P 3-Colouring: Encoding Variables

Figure 8.11 The beginning of the reduction for 3-Coloring.

- ▶ x_i corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$.
- In any 3-Colouring, nodes v_i and $\overline{v_i}$ get a colour different from *Base*.
- True colour: colour assigned to the True node; False colour: colour assigned to the False node.
- Set x_i to 1 iff v_i gets the True colour.

► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.

Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- Attach a six-node subgraph for this clause to the rest of the graph.

Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- ► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- ► Attach a six-node subgraph for this clause to the rest of the graph.
- Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v₂, or v₃ does not get the False colour.

Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- ► Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- Attach a six-node subgraph for this clause to the rest of the graph.
- Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v₂, or v₃ does not get the False colour.
- ➤ Claim: Graph is 3-colourable iff instance of 3-SAT is satisfiable.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a

target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is

W?

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a

target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

▶ Subset Sum is a special case of the Knapsack Problem (see Chapter 6.4 of the textbook).

T. M. Murali **NP-Complete Problems** April 14, 21, 2008

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for SUBSET SUM that runs in O(nW) time.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.
- Claim: SUBSET SUM is NP-Complete, 3-DIMENSIONAL MATCHING ≤_P SUBSET SUM.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.
- Claim: SUBSET SUM is NP-Complete, 3-DIMENSIONAL MATCHING ≤_P SUBSET SUM.
- ▶ Caveat: Special case of Subset Sum in which W is bounded by a polynomial function of n is not \mathcal{NP} -Complete (read pages 494–495 of your textbook).

Asymmetry of Certification

- ▶ Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input string s is a "yes" instance iff there exists a short string t such that B(s,t) = yes.
 - An input string s is a "no" instance iff for all short strings t, B(s,t) = no.

Asymmetry of Certification

- ▶ Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input string s is a "yes" instance iff there exists a short string t such that B(s,t) = yes.
 - An input string s is a "no" instance iff for all short strings t, B(s,t) = no. The definition of \mathcal{NP} does not guarantee a short proof for "no" instances.

▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$,

$$co$$
- \mathcal{NP}

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.

$$co$$
- \mathcal{NP}

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- ▶ If $X \in \mathcal{NP}$. then is $\overline{X} \in \mathcal{NP}$?

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .
- ▶ Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?

- ▶ For a decision problem X, its *complementary problem* \overline{X} is the set of strings s such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- ▶ A problem X belongs to the class $co-\mathcal{NP}$ iff \overline{X} belongs to \mathcal{NP} .
- ▶ Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?
- ▶ Claim: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then $\mathcal{P} \neq \mathcal{NP}$.

- ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
 - ▶ When the answer is no, there is a short proof.

- ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
 - ▶ When the answer is no, there is a short proof.
- ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.

- ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - \triangleright Yes: construct a flow of value at least ν .
 - ▶ No: demonstrate a cut with capacity less than ν .

- ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν .
 - ▶ No: demonstrate a cut with capacity less than ν .
- ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Strategy

- ▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- ▶ Problems in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν , for some given value of ν .
 - Yes: construct a flow of value at least ν .
 - ▶ No: demonstrate a cut with capacity less than ν .
- ▶ Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Strategy

▶ Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?