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Maximum Flow and Minimum Cut

I Two rich algorithmic problems.

I Fundamental problems in combinatorial optimization.

I Beautiful mathematical duality between flows and cuts.

I Numerous non-trivial applications:

I Bipartite matching.

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination.

I Image segmentation.

I Network connectivity.

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene
reconstruction.

I Gene function prediction.
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Matching in Bipartite Graphs

I Bipartite Graph: a graph G (V ,E ) where
1. V = X ∪ Y , X and Y are disjoint and
2. E ⊆ X × Y .

I Bipartite graphs model situations in which objects are matched with
or assigned to other objects: e.g., marriages, residents/hospitals,
jobs/machines.

I A matching in a bipartite graph G is a set M ⊆ E of edges such that
each node of V is incident on at most edge of M.

I A set of edges M is a perfect matching if every node in V is incident
on exactly one edge in M.
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Bipartite Graph Matching Problem

Bipartite Matching

INSTANCE: A Bipartite graph G .

SOLUTION: The matching of largest size in G .
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Algorithm for Bipartite Graph Matching

I Convert G to a flow network G ′: direct edges from X to Y , add
nodes s and t, connect s to each node in X , connect each node in Y
to t, set all edge capacities to 1.

I Compute the maximum flow in G ′.

I Claim: the value of the maximum flow is the size of the maximum
matching.
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Correctness of Bipartite Graph Matching Algorithm

I Matching → flow: if there is a matching with k edges in G , there is
an s-t flow of value k in G ′.

I Flow → matching: if there is an integer-valued flow f ′ in G ′ with
value k , there is a matching M in G with k edges.

I There is an integer-valued flow f of value k; flow along any edge is 0 or
1.

I Let M be the set of edges not incident on s or t with flow equal to 1.
I Claim: M contains k edges.
I Claim: Each node in X (respectively, Y ) is the tail (respectively, head)

of at most one edge in M.
I Conclusion: size of the maximum matching in G is equal to the value

of the maximum flow in G ′; the edges in this matching are those that
carry flow from X to Y in G ′.
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Running time of Bipartite Graph Matching
Algorithm

I Suppose G has m edges and n nodes in X and in Y .

I C ≤ n.

I Ford-Fulkerson algorithm runs in O(mn) time.

I How long does the scaling algorithm take? O(m2 log n) time.
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Bipartite Graphs without Perfect Matchings

I How do we determine if a bipartite graph G has a perfect matching?

Find the maximum matching and check if it is perfect.
I Suppose G has no perfect matching. Can we exhibit a short

“certificate” of that fact?
I What can such certificates look like?
I G has no perfect matching iff the maximum capacity of a cut in G ′ is

less than n. Therefore, the cut is a certificate.
I But we would like the certificate in terms of G .

I For example, two nodes in X with one incident edge each with the
same neighbour in Y .

I Generally, a subset A ⊆ X with neighbours Γ(A) ⊆ Y , such that
|A| > |Γ(A)|.

I Hall’s Theorem: Let G (X ∪ Y ,E ) be a bipartite graph such that
|X | = |Y |. Then G either has a perfect matching or there is a subset
A ⊆ X such that |A| > |Γ(A)|. A perfect matching or such a subset
can be computed in O(mn) time.
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Edge-Disjoint Paths

I A set of paths in a graph G is edge disjoint if each edge in G appears
in at most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph G (V ,E ) with two distinguished
nodes s and t.

SOLUTION: The maximum number of edge-disjoint paths
between s and t.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Edge-Disjoint Paths

I A set of paths in a graph G is edge disjoint if each edge in G appears
in at most one path.

Directed Edge-Disjoint Paths

INSTANCE: Directed graph G (V ,E ) with two distinguished
nodes s and t.

SOLUTION: The maximum number of edge-disjoint paths
between s and t.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Mapping to the Max-Flow Problem

I Convert G into a flow network: s is the source, t is the sink, each
edge has capacity 1.

I Paths → flow: if there are k edge-disjoint paths from s to t, send one
unit of flow along each to yield a flow with value k .

I Flow → paths: Suppose there is an integer-valued flow of value k .
Are there k edge-disjoint paths? If so, what are they?

I Construct k edge-disjoint paths from a flow of value ≥ k.
I There is an integral flow. Therefore, flow on each edge is 0 or 1.
I Claim: if f is a 0-1 valued flow of value ν, then the set of edges with

flow f (e) = 1 contains a set of ν edge-disjoint paths.
I Prove by induction on the number of edges in f that carry flow.

I We just proved: there are k edge-disjoint paths from s to t in a
directed graph G iff the maximum value of an s-t flow in G is ≥ k .

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Running Time of the Edge-Disjoint Paths
Algorithm

I Given a flow of value ≥ k , how quickly can we determine the k
edge-disjoint paths?

O(mn) time.

I Corollary: The Ford-Fulkerson algorithm can be used to find a
maximum set of edge-disjoint s-t paths in a directed graph G in
O(mn) time.
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Certificate for Edge-Disjoint Paths Algorithm

I A set F ⊆ E of edge separates s and t if the graph (V ,E − F )
contains no s-t paths.

I Menger’s Theorem: In every directed graph with nodes s and t, the
maximum number of edge-disjoint s-t paths is equal to the minimum
number of edges whose removal disconnects s from t.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Certificate for Edge-Disjoint Paths Algorithm

I A set F ⊆ E of edge separates s and t if the graph (V ,E − F )
contains no s-t paths.

I Menger’s Theorem: In every directed graph with nodes s and t, the
maximum number of edge-disjoint s-t paths is equal to the minimum
number of edges whose removal disconnects s from t.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Edge-Disjoint Paths in Undirected Graphs

I Can extend the theorem to undirected graphs.

I Replace each edge with two directed edges of capacity 1 and apply
the algorithm for directed graphs.

I Problem: Both two counterparts of an undirected edge (u, v) may be
used by the edge-disjoint paths in the directed graph.

I Can obtain an integral flow where only one of the directed
counterparts of (u, v) has non-zero flow.

I We can find the maximum number of edge-disjoint paths in O(mn)
time.

I We can prove a version of Menger’s theorem for undirected graphs.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Extension of Max-Flow Problem

I Suppose we have a set S of multiple sources and a set T of multiple
sinks.

I Each source can send flow to any sink.

I Let us not maximise flow here but formulate the problem in terms of
demands and supplies.
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Circulation with Demands

I We are given a graph G (V ,E ) with capacity function c : E → Z+

and a demand function d : V → Z:

I dv > 0: node is a sink, it has a “demand” for dv units of flow.
I dv < 0: node is a source, it has a “supply” of −dv units of flow.
I dv = 0: node simply receives and transmits flow.
I S is the set of nodes with negative demand and T is the set of nodes

with positive demand.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , 0 ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

Circulation with Demands

INSTANCE: A directed graph G (V ,E ), c : E → Z+, and
d : V → Z.

SOLUTION: Does there exist a circulation that is feasible, i.e., it
meets the capacity and demand conditions?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Properties of Feasible Circulations

I Claim: if there exists a feasible circulation with demands, then∑
v dv = 0.

I Corollary:
∑

v ,dv>0 dv =
∑

v ,dv<0−dv . Let D denote this common
value.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Mapping Circulation to Maximum Flow

I Create a new graph G ′ = G and
1. create two new nodes in G ′: a source s∗ and a sink t∗;
2. connect s∗ to each node in S using an edge with capacity −dv ;
3. connect each node in T to t∗ using an edge with capacity dv .

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Computing a Feasible Circulation

I We will look for a maximum s-t flow f in G ′; ν(f )

≤ D.

I Circulation → flow. If there is a feasible circulation, we send −dv

units of flow along each edge (s∗, v) and dv units of flow along each
edge (v , t∗). The value of this flow is D.

I Flow → circulation. If there is an s-t flow of value D in G ′, edges
incident on s∗ and on t∗ must be saturated with flow. Deleting these
edges from G ′ yields a feasible circulation in G .

I We have just proved that there is a feasible circulation with demands
in G iff the maximum s-t flow in G ′ has value D.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Circulation with Demands and Lower Bounds

I We want to force the flow to use certain edges.

I We are given a graph G (V ,E ) with a capacity c(e) and a lower bound
0 ≤ l(e) ≤ c(e) on each edge and a demand dv on each vertex.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , l(e) ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

I Is there a feasible circulation?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Circulation with Demands and Lower Bounds

I We want to force the flow to use certain edges.

I We are given a graph G (V ,E ) with a capacity c(e) and a lower bound
0 ≤ l(e) ≤ c(e) on each edge and a demand dv on each vertex.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , l(e) ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

I Is there a feasible circulation?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Circulation with Demands and Lower Bounds

I We want to force the flow to use certain edges.

I We are given a graph G (V ,E ) with a capacity c(e) and a lower bound
0 ≤ l(e) ≤ c(e) on each edge and a demand dv on each vertex.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , l(e) ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

I Is there a feasible circulation?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Circulation with Demands and Lower Bounds

I We want to force the flow to use certain edges.

I We are given a graph G (V ,E ) with a capacity c(e) and a lower bound
0 ≤ l(e) ≤ c(e) on each edge and a demand dv on each vertex.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , l(e) ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

I Is there a feasible circulation?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Circulation with Demands and Lower Bounds

I We want to force the flow to use certain edges.

I We are given a graph G (V ,E ) with a capacity c(e) and a lower bound
0 ≤ l(e) ≤ c(e) on each edge and a demand dv on each vertex.

I A circulation with demands is a function f : E → R+ that satisfies

(i) (Capacity conditions) For each e ∈ E , l(e) ≤ f (e) ≤ c(e).
(ii) (Demand conditions) For each internal node v , f in(v)− f out(v) = dv .

I Is there a feasible circulation?

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Algorithm for Circulation with Lower Bounds

I Strategy is to reduce the problem to one with no lower bounds on
edges.

I Suppose we define a circulation f0 that satisfies lower bounds on all
edges, i.e., set f0(e) = l(e) for all e ∈ E . What can go wrong?

I Demand conditions may be violated. Let
Lv = f in

0 (v)− f out
0 (v) =

∑
e into v l(e)−

∑
e out of v l(e). If Lv 6= dv ,

we must superimpose a circulation f1 on top of f0 such that
f in
1 (v)− f out

1 (v) = dv − Lv .

I How much capacity do we have left on each edge? c(e)− l(e).

I Approach: define a new graph G ′ with the same nodes and edges:
lower bound on each edge is 0, capacity of edge e is c(e)− l(e), and
demand of node v is dv − Lv .

I Claim: there is a feasible circulation in G iff there is a feasible
circulation in G ′.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow
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Data Mining

I Algorithmic study of unexpected patterns in large quantities of data.
I Study customer preferences is an important topic.

I Customers who buy diapers also buy beer:
I http://www.dssresources.com/newsletters/66.php
I http://www.forbes.com/forbes/1998/0406/6107128s1.html

I People who bought “Harry Potter and the Deathly Hallows” also
bought “Making Money (Discworld)”.

I Store cards allow companies to keep track of your history of shopping.
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Survey Design

I Company sells k products.

I Company has a database of purchase histories of many customers.

I Company wants to send a customised survey to each of its n
customers to further understand their preferences.

I Survey must satisfy certain constraints:

1. Each customer receives questions about a subset of products.
2. A customer receives questions only about products he/she has bought.
3. The questionnaire must be informative but not too long: each customer

i should be asked about a number of products between ci and c ′i .
4. Each product must have enough data collected: between pj and p′j

customers should be asked about product j .

I Is it possible to design a survey that satisfies this constraints?
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Formalising the Survey Design Problem

I Input is a bipartite graph G :
I Nodes are n customers and k products.
I There is an edge between customer i and product j iff the customer

has ever purchased the product.
I For each customer 1 ≤ i ≤ n, limits ci ≤ c ′i on the number of products

he or she can be asked about.
I For each product 1 ≤ j ≤ k , limits pj ≤ p′j on the number of distinct

customers asked about the product.
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Solving the Survey Design Problem

I Reduce the problem to a circulation problem on a flow network G ′

with demands and lower bounds (lbs).

I Orient edges in G from customers to products: capacity 1, lb 0.
I Add node s, edges (s, i) to each customer: capacity c ′i , lb ci .
I Add node t, edges (j , t) from each product: capacity p′i , lb pi .
I Set node demands to

0

.

I Add edge from t to s: capacity
∑

i c
′
i , lb

∑
i ci .

I Claim: G ′ has a feasible circulation iff there is a feasible survey.
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Image Segmentation

I A fundamental problem in computer vision is that of segmenting an
image into coherent regions.

I A basic segmentation problem is that of partitioning an image into a
foreground and a background: label each pixel in the image as
belonging to the foreground or the background.
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Formulating the Image Segmentation Problem

I Let V be the set of pixels in an image.

I Let E be the set of pairs of neighbouring pixels.

I V and E yield an undirected graph G (V ,E ).

I Each pixel i has a likelihood ai > 0 that it belongs to the foreground
and a likelihood bi > 0 that it belongs to the background.

I These likelihoods are specified in the input to the problem.

I We want the foreground/background boundary to be smooth: For
each pair (i , j) of pixels, assign separation penalty pij ≥ 0 for placing
one of them in the foreground and the other in the background.
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The Image Segmentation Problem

Image Segmentation

INSTANCE: Pixel graphs G (V ,E ), likelihood functions
a, b : V → R+, penalty function p : E → R+

SOLUTION: Optimum labelling: partition of the pixels into two
sets A and B that maximises

q(A,B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i ,j)∈E
|A∩{i ,j}|=1

pij .
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Developing an Algorithm for Image Segmentation

I There is a similarity between cuts and labellings.
I But there are differences:

I We are maximising an objective function rather than minimising it.
I There is no source or sink in the segmentation problem.
I We have values on the nodes.
I The graph is undirected.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow



Introduction Bipartite Matching Edge-Disjoint Paths Circulation with Demands Survey Design Image Segmentation

Maximization to Minimization
I Let Q =

∑
i (ai + bi ).

I Notice that
∑

i∈A ai +
∑

j∈B bj = Q −
∑

i∈A bi +
∑

j∈B aj .
I Therefore, maximising

q(A,B) =
∑
i∈A

ai +
∑
j∈B

bj −
∑

(i ,j)∈E
|A∪{i ,j}|=1

pij

= Q −
∑
i∈A

bi −
∑
j∈B

aj −
∑

(i ,j)∈E
|A∩{i ,j}|=1

pij

I is identical to minimising

q′(A,B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i ,j)∈E
|A∩{i ,j}|=1

pij
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Solving the Other Issues

I Solve the issues like we did earlier.

I Add a new “super-source” s to represent the foreground.
I Add a new “super-sink” t to represent the background.
I Connect s and t to every pixel and assign capacity ai to edge (s, i)

and capacity bi to edge (i , t).
I Direct edges away from s and into t.
I Replace each edge in E with two directed edges of capacity 1.
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Cuts in the Flow Network

I Let G ′ be this flow network and (A,B) an s-t cut.
I What does the capacity of the cut represent?

I Edges crossing the cut are of three types:

I (s, j), j ∈ B contributes aj .
I (i , t), i ∈ A contributes bi .
I (i , j), i ∈ A, j ∈ B contributes pij .

c(A,B) =
∑
i∈A

bi +
∑
j∈B

aj +
∑

(i ,j)∈E
|A∩{i ,j}|=1

pij = q′(A,B).
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Solving the Image Segmentation Problem

I The capacity of a s-t cut c(A,B) exactly measures the quantity
q′(A,B).

I To maximise q(A,B), we simply compute the s-t cut (A,B) of
minimum capacity.

I Deleting s and t from the cut yields the desired segmentation of the
image.

T. M. Murali March 31, April 2, 2008 Applications of Network Flow


	Introduction
	Bipartite Matching
	Edge-Disjoint Paths
	Circulation with Demands
	Survey Design
	Image Segmentation

