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Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.
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Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.

2. Greedy
» Pro: natural approach to algorithm design.
» Con: many greedy approaches a problem. Only some may work.
» Con: many problems for which no greedy approach is known.
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Algorithm Design Techniques

1. Goal: design efficient (polynomial-time) algorithms.
2. Greedy
» Pro: natural approach to algorithm design.
» Con: many greedy approaches a problem. Only some may work.
» Con: many problems for which no greedy approach is known.
3. Divide and conquer
» Pro: simple to develop algorithm skeleton.
» Con: conquer step can be very hard to implement efficiently.
» Con: usually reduces time for a problem known to be solvable in
polynomial time.
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Algorithm Design Techniques

=

. Goal: design efficient (polynomial-time) algorithms.
. Greedy
» Pro: natural approach to algorithm design.
» Con: many greedy approaches a problem. Only some may work.
» Con: many problems for which no greedy approach is known.
3. Divide and conquer
» Pro: simple to develop algorithm skeleton.
» Con: conquer step can be very hard to implement efficiently.
» Con: usually reduces time for a problem known to be solvable in
polynomial time.
4. Dynamic programming
» More powerful than greedy and divide-and-conquer strategies.
» Implicitly explore space of all possible solutions.
» Solve multiple sub-problems and build up correct solutions to larger
and larger sub-problems.
> Careful analysis needed to ensure number of sub-problems solved is
polynomial in the size of the input.

N
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History of Dynamic Programming

» Bellman pioneered the systematic study of dynamic programming in
the 1950s.
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History of Dynamic Programming

» Bellman pioneered the systematic study of dynamic programming in
the 1950s.

» Dynamic programming = “planning over time."
» The Secretary of Defense at that time was hostile to mathematical
research.

» Bellman sought an impressive name to avoid confrontation.

» “it's impossible to use dynamic in a pejorative sense”
» ‘“something not even a Congressman could object to" Reference:
» Bellman, R. E., Eye of the Hurricane, An Autobiography.
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Applications of Dynamic Programming

» Computational biology: Smith-Waterman algorithm for sequence
alignment.

» Operations research: Bellman-Ford algorithm for shortest path
routing in networks.

» Control theory: Viterbi algorithm for hidden Markov models.

» Computer science (theory, graphics, Al, ...): Unix diff command
for comparing two files.
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Review: Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;, f;),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

» Two jobs are compatible if they do not overlap.
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Review: Interval Scheduling

INTERVAL SCHEDULING

INSTANCE: Nonempty set {(s;, f;),1 < i < n} of start and finish
times of n jobs.

SOLUTION: The largest subset of mutually compatible jobs.

» Two jobs are compatible if they do not overlap.

> Greedy algorithm: sort jobs in increasing order of finish times. Add
next job to current subset only if it is compatible with
previously-selected jobs.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING
INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish
times of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that
>ics Vi is maximised.

Index
1 . Value = 1
Value = 3
2 [ |
Value = 1
3 f |

Figure 6.1 A simple instance of weighted interval scheduling.
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Weighted Interval Scheduling

WEIGHTED INTERVAL SCHEDULING
INSTANCE: Nonempty set {(s;,f;),1 < i < n} of start and finish
times of n jobs and a weight v; > 0 associated with each job.

SOLUTION: A set S of mutually compatible jobs such that
>ics Vi is maximised.

Index
) . Value = 1
Value = 3
2 [ |
Value = 1
3 f |

Figure 6.1 A simple instance of weighted interval scheduling.

> Greedy algorithm can produce arbitrarily bad results for this problem.
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Approach

» Sort jobs in increasing order of finish time and relabel:
h<h<...<fp

» Request i comes before request j if i < j.

» p(j) is the largest index i < j such that job i is compatible with job j.
p(j) = 0 if there is no such job i.

Index
v =2
J O e EE— p(1) =0
v, =4
2 —_— pR2) =0
v; =4
3 —_ pB3) = 1
vy =7

4 ' I @) =0
vs =2

5 — p(5) =3
ve =1

6 ———  p6) =3

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.

» We will develop optimal algorithm from very obvious statements
about the problem.
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Detour: a Binomial Identity
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Detour: a Binomial Identity

» Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.
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Detour: a Binomial Identity

» Pascal’s triangle:
» Each element is a binomial co-efficient.
» Each element is the sum of the two elements above it.

» Proof: either we select the nth element or not . ..
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Sub-problems

> Let O be the optimal solution. Two cases to consider.
Case 1 job nis not in O.

Case 2 job nisin O.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs
S P A e MMS

Sub-problems

> Let O be the optimal solution. Two cases to consider.
Case 1 job nis not in O. O must be the optimal solution for
jobs {1,2,...,n—1}.
Case 2 job nisin O.
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Sub-problems

» Let O be the optimal solution. Two cases to consider.
Case 1 job nis not in O. O must be the optimal solution for
jobs {1,2,...,n—1}.
Case 2 job nisin O.
» O cannot use incompatible jobs
{p(n) +1,p(n) +2,...,n—1}.
» Remaining jobs in O must be the optimal solution for
jobs {1,2,...,p(n)}.
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Sub-problems

» Let O be the optimal solution. Two cases to consider.
Case 1 job nis not in O. O must be the optimal solution for
jobs {1,2,...,n—1}.
Case 2 job nisin O.

» O cannot use incompatible jobs

{p(n)+1,p(n)+2,...,n—1}.
» Remaining jobs in O must be the optimal solution for

jobs {1,2,...,p(n)}.
» O must be the best of these two choices!
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Sub-problems

» Let O be the optimal solution. Two cases to consider.
Case 1 job nis not in O. O must be the optimal solution for
jobs {1,2,...,n—1}.
Case 2 job nisin O.

» O cannot use incompatible jobs

{p(n)+1,p(n)+2,...,n—1}.
» Remaining jobs in O must be the optimal solution for

jobs {1,2,...,p(n)}.
» O must be the best of these two choices!
> Suggests finding optimal solution for sub-problems consisting of jobs
{1,2,...,j—1,j}, for all values of j.
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT(j):
Case 1 j € O;:
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT()):
Case 1 j ¢ O;: OPT(j) = OPT(j — 1).
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT()):
Case 1 j ¢ O;: OPT(j) = OPT(j — 1).
Case 2 j € O;:
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT()):
Case 1 j ¢ O;: OPT(j) = OPT(j — 1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))
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Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT()):
Case 1 j ¢ O;: OPT(j) = OPT(j — 1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))
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e
Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT(j):
Case 1 j & O;: OPT(j) =OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

» When does request j belong to O;?
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e
Recursion

> Let O; be the optimal solution for jobs {1,2,...,/} and OPT(j) be
the value of this solution (OPT(0) = 0).

» We are seeking O, with a value of OPT(n).

» To compute OPT(j):
Case 1 j & O;: OPT(j) =OPT(j —1).
Case 2 j € O;: OPT(j) = v; + OPT(p()))

OPT(j) = max(v; + OPT(p(j)), OPT(j — 1))

» When does request j belong to O;? If and only if
vj + OPT(p(j)) = OPT(j — 1).
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Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif
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Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt (p(3)), Compute-Opt(j — 1))
Endif

» Correctness of algorithm follows by induction.
» What is the running time of the algorithm?
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Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif

» Correctness of algorithm follows by induction.

» What is the running time of the algorithm? Can be exponential in n.
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Recursive Algorithm

Compute-0pt (j)
If j=0 then
Return 0
Else
Return max(vj+Compute-Opt(p(j)), Compute-Opt(j— 1))
Endif

» Correctness of algorithm follows by induction.
» What is the running time of the algorithm? Can be exponential in n.
» When p(j) =/ —2, for all j > 2: recursive calls are for j — 1 and j — 2.

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute~
Opt recursion will take exponential time. The values of all intervals in this instance
are 1.
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Memoisation

» Store OPT(j) values in a cache and reuse them rather than
recompute them.
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Memoisation

» Store OPT(j) values in a cache and reuse them rather than
recompute them.

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M([j] is not empty then
Return M/j]

Else
Define MJ[j] = rnax(vj-l-M-Compute-Opt(p(j)), M-Compute-0pt(j — 1))
Return M][j]

Endif
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Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define M[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-Opt(j— 1))
Return M([j]

Endif

» Claim: running time of this algorithm is O(n) (after sorting).
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Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define M[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-Opt(j— 1))
Return M([j]

Endif

» Claim: running time of this algorithm is O(n) (after sorting).

> Time spent in a single call to M-Compute-0pt is O(1) apart from time spent
in recursive calls.

» Total time spent is the order of the number of recursive calls to
M-Compute-0pt.

» How many such recursive calls are there in total?
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Running Time of Memoisation

M-Compute-0pt (j)

If j=0 then
Return 0

Else if M][j] is not empty then
Return M(j]

Else
Define M[j] = max(vj+M-Compute-0pt(p(j)), M-Compute-Opt(j— 1))
Return M([j]

Endif

» Claim: running time of this algorithm is O(n) (after sorting).

> Time spent in a single call to M-Compute-0pt is O(1) apart from time spent
in recursive calls.

» Total time spent is the order of the number of recursive calls to
M-Compute-0pt.

» How many such recursive calls are there in total?

> Use number of filled entries in M as a measure of progress.

> Each time M-Compute-0Opt issues two recursive calls, it fills in a new entry
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Computing O in Addition to OPT(n)
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Computing O in Addition to OPT(n)

» Explicitly store O; in addition to OPT(j).
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Computing O in Addition to OPT(n)

» Explicitly store O; in addition to OPT(j). Running time becomes
o(n?).
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Computing O in Addition to OPT(n)

» Explicitly store O; in addition to OPT(j). Running time becomes
o(n?).

> Recall: request j belong to O; if and only if
Vi +OPT(p(})) > OPT(j — 1).

» Can recover O; from values of the optimal solutions in O(j) time.
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Computing O in Addition to OPT(n)

» Explicitly store O; in addition to OPT(j). Running time becomes
o(n?).

> Recall: request j belong to O; if and only if
Vi +OPT(p(})) > OPT(j — 1).

» Can recover O; from values of the optimal solutions in O(j) time.

Find-Solution(j)
If j=0 then
Output nothing
Else
If v;+MIp()]= M[j — 1] then
Output j together with the result of Find-Solution(p(j))
Else
Output the result of Find-Solution(j—1)
Endif
Endif
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From Recursion to lteration

» Unwind the recursion and convert it into iteration.
» Can compute values in M iteratively in O(n) time.

» Find-Solution works as before.

Iterative-Compute-Opt
M[0]=0
For j=1,2,...,n
M[jl=maxv; + M[p(], M[j — 1))
Endfor

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Basic Outline of Dynamic Programming

» To solve a problem, we need a collection of sub-problems that satisfy
a few properties:
1. There are a polynomial number of sub-problems.
2. The solution to the problem can be computed easily from the solutions
to the sub-problems.
3. There is a natural ordering of the sub-problems from “smallest” to
“largest” .
4. There is an easy-to-compute recurrence that allows us to compute the
solution to a sub-problem from the solutions to some smaller
sub-problems.
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Basic Outline of Dynamic Programming

» To solve a problem, we need a collection of sub-problems that satisfy
a few properties:

1.
2.

There are a polynomial number of sub-problems.
The solution to the problem can be computed easily from the solutions
to the sub-problems.

. There is a natural ordering of the sub-problems from “smallest” to

“largest” .

There is an easy-to-compute recurrence that allows us to compute the
solution to a sub-problem from the solutions to some smaller
sub-problems.

» Difficulties in designing dynamic programming algorithms:

1.
2.
3.

Which sub-problems to define?

How can we tie up sub-problems using a recurrence?

How do we order the sub-problems (to allow iterative computation of
optimal solutions to sub-problems)?

T. M. Murali

February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs
S P A e MMS

Least Squares Problem

o » Given scientific or statistical
P data plotted on two axes.
L o° » Find the “best” line that
“passes” through these points.

Figure 6.6 A “line of best fit.”

T. M. Murali
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Least Squares Problem

o » Given scientific or statistical
s data plotted on two axes.
L o° » Find the “best” line that
“passes” through these points.

» How do we formalise the
Figure 6.6 A “line of best fit.” problem?
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Least Squares Problem

T » Given scientific or statistical
& data plotted on two axes.
P » Find the “best” line that
“passes” through these points.

» How do we formalise the
Figure 6.6 A “line of best fit.” pro blem?

LEAST SQUARES

INSTANCE: Set P = {(x1,y1), (x2,¥2),- ., (Xn,¥n)} of n points.

SOLUTION: Line L: y = ax —|—nb that minimises

Error(L, P) = Z(y; — ax; — b)%.
i=1
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Least Squares Problem

T » Given scientific or statistical
& data plotted on two axes.
Pl » Find the “best” line that
“passes” through these points.

» How do we formalise the
Figure 6.6 A “line of best fit.” problem?

LEAST SQUARES
INSTANCE: Set P = {(x1,y1), (x2,¥2),- ., (Xn,¥n)} of n points.
SOLUTION: Line L: y = ax —|—nb that minimises

Error(L, P) = Z(y; — ax; — b)%.
i=1
» Solution is achieved by
_ nd i xiyi — (2 xi) (2 i) and b — doiYi—aylXi
Ny xE = (%) n

a
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Segmented Least Squares

Figure 6.7 A set of points that lie approximately on two lines.
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Figure 6.8 A set of points that lie approximately on three lines.

Figure 6.7 A set of points that lie approximately on two lines.
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Segmented Least Squares
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Figure 6.8 A set of points that lie approximately on three lines.

Figure 6.7 A set of points that lie approximately on two lines.

» Want to fit multiple lines through P.
» Each line must fit contiguous set of x-coordinates.

» Lines must minimise total error.

Dynamic Programming
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Segmented Least Squares

Figure 6.7 A set of points that lie approximately on two lines.  Figure 6.8 A set of points that lie approximately on three lines.
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Segmented Least Squares

o
05 4

o

000

0o
o
o so00

000

Figure 6.7 A set of points that lie approximately on two lines.  Figure 6.8 A set of points that lie approximately on three lines.

SEGMENTED LEAST SQUARES
INSTANCE: Set P = {p; = (xi,yi),1 < i < n} of n points,
X1 < Xp < --- < Xp

SOLUTION: A integer k, a partition of P into k segments
{P1,P2,...,P«}, klines L : y = ajx + bj,1 < j < k that

minimise k
Z Error(L;, Pj)
j=1

A subset P’ of P is a segment if 1 < i < j < n exist such that
P = {(Xia.yf)7 (Xi-‘rl:yi-l-l)a ceey (Xj—layj—l)a (Xjayj)}

February 25, 27, March 17, 19 2008 Dynamic Programming
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Segmented Least Squares
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Figure 6.7 A set of points that lie approximately on two lines.  Figure 6.8 A set of points that lie approximately on three lines.

SEGMENTED LEAST SQUARES
(xi,yi),1 < i < n} of n points,

INSTANCE: Set P = {p;
X1 < xp < --- < xp and a parameter C > 0.

SOLUTION: A integer k, a partition of P into k segments
{P1,P2,...,P«}, klines L : y = ajx + bj,1 < j < k that
minimise k
Z Error(L;, P;) + Ck.
j=1

» A subset P’ of Pis a segment if 1 <i < j < n exist such that

P = {(Xia.yf)7 (Xi+1a)/i+1), ceey (Xj—layj—l)a (Xjayj)}
Dynamic Programming

February 25, 27, March 17, 19 2008
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Formulating the Recursion: |

» Observation: p, is part of some segment in the optimal solution. This
segment starts at some point p;.

» Let OPT(/) be the optimal value for the points {p1, p2,...,pi}.

> Let e ; denote the minimum error of any line that fits {p;, po, ..., p;}.

» We want to compute OPT(n).

OPT(i - 1) i n
— -0
o500

o
o
o
o
o

o
o
000000

Figure 6.9 A possible solution: a single line segment fits points p;, piy.1, . . . » Dn»and then
an optimal solution is found for the remaining points py, p;, ..., pi_1.

> If the last segment in the optimal partition is {p;, pi+1,.-.,Pn}, then
OPT(n) =en+ C+OPT(i—1)

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Formulating the Recursion: |l

» Consider the sub-problem on the points {p1, p2, ... p;}
» To obtain OPT(j), if the last segment in the optimal partition is
{pi;pit1,---,pj}, then

OPT(j) = e;j + C + OPT(i — 1)

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Formulating the Recursion: |l

» Consider the sub-problem on the points {p1, p2, ... p;}
» To obtain OPT(j), if the last segment in the optimal partition is
{pi;piy1,---,pj}, then

OPT(j) = e+ C+ OPT(i — 1)

» Since i can take only j distinct values,
OPT(j) = min (e; + C+ OPT(i —1))
1<i<j
> Segment {p;, pi+1,...pj} is part of the optimal solution for this

sub-problem if and only if the minimum value of OPT(j) is obtained
using index /. solution

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Algorithm

OPT(j) = min (e; + C+ OPT(i — 1))
1<i<j

Segmented-Least-Squares(n)
Array M[0...n]
Set M[0]=0
For all pairs i<j
Compute the least squares error e;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M][j]
Endfor
Return M([n]

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Algorithm

OPT(j) = min (e; + C+ OPT(i — 1))
1<i<j

Segmented-Least-Squares(n)
Array M[0...n]
Set M[0]=0
For all pairs i<j
Compute the least squares error e;; for the segment p;,...,p;
Endfor
For j=1,2,...,n
Use the recurrence (6.7) to compute M][j]
Endfor
Return M([n]

» Running time is O(n3), can be improved to O(n?).
AJn T I TP . . . L
T. M. Murali Dynamic Programming
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RNA Molecules

» RNA is a basic biological molecule. It is single stranded.

» RNA molecules fold into complex “secondary structures.”
» Secondary structure often governs the behaviour of an RNA molecule.

» Various rules govern secondary structure formation:

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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RNA Molecules

» RNA is a basic biological molecule. It is single stranded.

» RNA molecules fold into complex “secondary structures.”
» Secondary structure often governs the behaviour of an RNA molecule.

» Various rules govern secondary structure formation:

Pairs of bases match up; each base matches
with < 1 other base.

Adenine always matches with Uracil.
Cytosine always matches with Guanine.
There are no kinks in the folded molecule.

Structures are “knot-free".

. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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RNA Molecules

» RNA is a basic biological molecule. It is single stranded.

» RNA molecules fold into complex “secondary structures.”
» Secondary structure often governs the behaviour of an RNA molecule.

» Various rules govern secondary structure formation:

Pairs of bases match up; each base matches
with < 1 other base.

Adenine always matches with Uracil.

Cytosine always matches with Guanine.

There are no kinks in the folded molecule.

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the
sequence; thin lines indicate pairs of elements that are matched.

Structures are “knot-free".

. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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RNA Molecules

» RNA is a basic biological molecule. It is single stranded.

» RNA molecules fold into complex “secondary structures.”
» Secondary structure often governs the behaviour of an RNA molecule.

» Various rules govern secondary structure formation:

1. Pairs of bases match up; each base matches
with < 1 other base.

Adenine always matches with Uracil.

Cytosine always matches with Guanine.

There are no kinks in the folded molecule.

Figure 6.13 An RNA secondary structure, Thick lines connect adjacent elements of the

Structures are knOt free . sequence; thin lines indicate pairs of elements that are matched.
» Problem: given an RNA molecule, predict its secondary structure.

o A woN
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RNA Molecules

» RNA is a basic biological molecule. It is single stranded.

» RNA molecules fold into complex “secondary structures.”
» Secondary structure often governs the behaviour of an RNA molecule.

» Various rules govern secondary structure formation:

1. Pairs of bases match up; each base matches
with < 1 other base.

Adenine always matches with Uracil.

Cytosine always matches with Guanine.

There are no kinks in the folded molecule.

Figure 6.13 An RNA secondary structure, Thick lines connect adjacent elements of the

Structures are knOt free . sequence; thin lines indicate pairs of elements that are matched.
» Problem: given an RNA molecule, predict its secondary structure.

o A woN

» Hypothesis: In the cell, RNA molecules form the secondary structure
with the lowest total free energy.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Formulating the Problem

» An RNA molecule is a string B = bib, ... b,; each b; € {A, C, G, U}.
» A secondary structure on B is a set of pairs S = {(i,)}, where
1<i,j<nand

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Formulating the Problem

» An RNA molecule is a string B = bib, ... b,; each b; € {A, C, G, U}.
» A secondary structure on B is a set of pairs S = {(i,)}, where
1<i,j<nand
1. (No kinks.) If (i,j) € S, then i < j — 4.
2. (Watson-Crick) The elements in each pair in S consist of either {A, U}
or {C, G} (in either order).
3. S is a matching: no index appears in more than one pair.
4. (No knots) If (i,j) and (k, /) are two pairs in S, then we cannot have
i<k<j<l

Q

A

v,
ACAUGAUGGCCAUGU

G

[

@ ®

6.14 Two views of an RNA secondary structure. In the second view, (), the
string has been *stretched” lengthwise, and edges connecting matched pairs appear as
noncrossing “bubbles” over the string.

> The energy of a secondary structure is proportional to the number of
base pairs in it.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for by by ... b;.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;
1. if j is not a member of any pair, use OPT(j — 1).

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;

1. if j is not a member of any pair, use OPT(j — 1).
2. if j pairs with some t < j — 4,

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;

1. if j is not a member of any pair, use OPT(j — 1).
2. if j pairs with some t < j — 4, knot condition yields two independent

sub-problems!

two independent subproblems.

oo

[Inc]uding the pair (¢, j) results in]

1 2 -1t t+1 j-1j
(a)

i t-1 t t+1 -1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;

1. if j is not a member of any pair, use OPT(j — 1).
2. if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and ?7?

two independent subproblems.

oo

[Inc]uding the pair (¢, j) results in]

1 2 -1t t+1 j-1j
(a)

i t-1 t t+1 -1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.
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Dynamic Programming Approach

» OPT(j) is the maximum number of base pairs in a secondary
structure for byby ... bj. OPT(j) =0, if j < 5.
» In the optimal secondary structure on bib>... b;

1. if j is not a member of any pair, use OPT(j — 1).
2. if j pairs with some t < j — 4, knot condition yields two independent

sub-problems! OPT(t — 1) and 777
» Insight: need sub-problems indexed both by start and by end.

Including the pair (t, j) results in
two independent subproblems.

oo

1 2 -1t t+1 -1
(a)

i t-1 tt+1 -1
(b)

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one
variable, and (b) two variables.
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby ... b;.

OPT(i,j) = max (OPT(i,j—l), )

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.

OPT(i,j) = max (OPT(i,j—l), )
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;

OPT(i,j) = max (OPT(i,j—l)» )
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;
1. if j is not a member of any pair, compute OPT(/,j — 1).

OPT(i,j) = max (OPT(i,j—l)» )

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;

1. if j is not a member of any pair, compute OPT(/,j — 1).
2. if j pairs with some t < j — 4, compute OPT(/,t — 1) and
OPT(t+1,j—1).

OPT(i,j) = max (OPT(i,j—l)» )

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;

1. if j is not a member of any pair, compute OPT(/,j — 1).
2. if j pairs with some t < j — 4, compute OPT(i,t — 1) and
OPT(t+1,j—1).

» Since t can range from j to j — 1,

OPT(i,j) = max (OPT(i,j—l)» )
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;

1. if j is not a member of any pair, compute OPT(/,j — 1).
2. if j pairs with some t < j — 4, compute OPT(i,t — 1) and
OPT(t+1,j—1).

» Since t can range from j to j — 1,

OPT(i,j) = max (OPT(i,j—l), max (1+OPT(/, t—1)-|—OPT(t+1,j—1)))
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Correct Dynamic Programming Approach

» OPT(i,j) is the maximum number of base pairs in a secondary
structure for biby...b;. OPT(i,j) =0, if i >j—4.
> In the optimal secondary structure on b;b> ... b;

1. if j is not a member of any pair, compute OPT(/,j — 1).
2. if j pairs with some t < j — 4, compute OPT(i,t — 1) and
OPT(t+1,j—1).

» Since t can range from j to j — 1,

OPT(i,j) = max (OPT(i,j—l), max (1+OPT(/, t—1)-|—OPT(t+1,j—1)))

» In the “inner” maximisation, t runs over all indices between i and
j — 1 that are allowed to pair with j.
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Dynamic Programming Algorithm
OPT(i,j) = max (OPT(i,j—l), max (1+OPT(i, t—l)—i—OPT(t—i—l,j—l)))

» There are O(n?) sub-problems.
» How do we order them from “smallest” to “largest”?

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j—l), max (14+OPT (i, t—l)—i—OPT(t—i—l,j—l)))

» There are O(n?) sub-problems.
» How do we order them from “smallest” to “largest”?

» Note that computing OPT(/, ) involves sub-problems OPT(k, /)
where [ — k < j —i.

T. M. Murali

February 25, 27, March 17, 19 2008

Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j—l), max (14+OPT (i, t—l)—i—OPT(t—i—l,j—l)))

» There are O(n?) sub-problems.
» How do we order them from “smallest” to “largest”?

» Note that computing OPT(/, ) involves sub-problems OPT(k, /)
where [ — k < j —i.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,...,n—1
For i=1,2,...n—k
Set j=i+k
Compute OPT({,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)

T. M. Murali
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Dynamic Programming Algorithm

OPT(i,j) = max (OPT(i,j—l), max (14+OPT (i, t—l)—i—OPT(t—i—l,j—l)))

» There are O(n?) sub-problems.
» How do we order them from “smallest” to “largest”?

» Note that computing OPT(/, ) involves sub-problems OPT(k, /)
where [ — k < j —i.

Initialize OPT(i,j) =0 whenever i>j—4

For k=5, 6,...,n—1
For i=1,2,...n—k
Set j=i+k
Compute OPT({,j) using the recurrence in (6.13)
Endfor
Endfor

Return orPT(1, n)

» Running time of the algorithm is O(n%).

T. M. Murali
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Example of Algorithm

RNA sequence ACCGGUAGU

4101010 410(0(0|0 410(0(0|0
3{010 3(0(0]1 3/0f(0|1]|1
210 21010 210101
i=1 t=1]1 i=1|1]1
j=6 7 8 9 j=6 7 8 9 j=6 7 8 9
Initial values Filling in the values Filling in the values
fork = 5 fork = 6
4{0|0j0]|0 4|10(0f0|0
3(0(0|1]1 3(010)1]1
201011 2101011
i=1|1]1]1 i=1|1]1([1]2
j=6 7 8 9 j=6 7 89
Filling in the values Filling in the values
fork = 7 fork = 8

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs
S P A e MMS

Sequence Similarity

> Given two strings, measure how similar they are.

» Given a database of strings and a query string, compute the string
most similar to query in the database.

» Applications:

Online searches (Web, dictionary).

Spell-checkers.

Computational biology

Speech recognition.

Basis for Unix diff.

vV vy vy VvYyy
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Defining Sequence Similarity

o—currance

occurrence

o—curr-—ance

occurre—nce

abbbaa--bbbbaab
ababaaabbbbba-b

February 25, 27, March 17, 19 2008
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Defining Sequence Similarity

o—currance

occurrence

o—curr-—ance

occurre—nce

abbbaa--bbbbaab
ababaaabbbbba-b

» Edit distance model: how many changes must you to make to one
string to transform it into another?

» Changes allowed are deleting a letter, adding a letter, changing a
letter.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Edit Distance

abbbaa--bbbbaab
ababaaabbbbba-b

» Proposed by Needleman and Wunsch in the early 1970s.
> Input: two string x = x1x0X3...Xm and ¥y = y1yo ... ¥n.
» Sets {1,2,...,m} and {1,2,..., n} represent positions in x and y.
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Edit Distance

abbbaa--bbbbaab
ababaaabbbbba-b

» Proposed by Needleman and Wunsch in the early 1970s.
> Input: two string x = x1x0X3...Xm and ¥y = y1yo ... ¥n.
» Sets {1,2,...,m} and {1,2,..., n} represent positions in x and y.
» A matching of these sets is a set M of ordered pairs such that
1. in each pair (i,j), 1 <i<mand1<j<mand
2. no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.
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Edit Distance

abbbaa--bbbbaab
ababaaabbbbba-b

Proposed by Needleman and Wunsch in the early 1970s.
Input: two string x = x1x0X3...Xm and y = y1yo ... ¥n.
Sets {1,2,...,m} and {1,2,...,n} represent positions in x and y.
A matching of these sets is a set M of ordered pairs such that
1. in each pair (i,j), 1 <i<mand1<j<mand
2. no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.
A matching M is an alignment if there are no “crossing pairs” in M:
if (i,j) € M and (i',j/) € M and i < i then j </’
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Edit Distance

abbbaa--bbbbaab
ababaaabbbbba-b

vvyyywy

Proposed by Needleman and Wunsch in the early 1970s.
Input: two string x = x1x0X3...Xm and y = y1yo ... ¥n.
Sets {1,2,...,m} and {1,2,...,n} represent positions in x and y.
A matching of these sets is a set M of ordered pairs such that

1. in each pair (i,j), 1 <i<mand1<j<mand

2. no index from x (respectively, from y) appears as the first (respectively,

second) element in more than one ordered pair.

A matching M is an alignment if there are no “crossing pairs” in M:
if (i,j) € M and (i',j/) € M and i < i then j </’
Cost of an alignment is the sum of gap and mismatch penalties:
Gap penalty Penalty 6 > 0 for every unmatched index.
Mismatch penalty Penalty ay,, > 0 if (i,j) € M.
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Edit Distance

abbbaa--bbbbaab
ababaaabbbbba-b

vvyyywy

Proposed by Needleman and Wunsch in the early 1970s.
Input: two string x = x1x0X3...Xm and y = y1yo ... ¥n.
Sets {1,2,...,m} and {1,2,...,n} represent positions in x and y.
A matching of these sets is a set M of ordered pairs such that
1. in each pair (i,j), 1 <i<mand1<j<mand
2. no index from x (respectively, from y) appears as the first (respectively,
second) element in more than one ordered pair.
A matching M is an alignment if there are no “crossing pairs” in M:
if (i,j) € M and (i',j/) € M and i < i then j </’
Cost of an alignment is the sum of gap and mismatch penalties:
Gap penalty Penalty 6 > 0 for every unmatched index.
Mismatch penalty Penalty ay,, > 0 if (i,j) € M.
Output: compute an alignment of minimal cost.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

y =yiy2...Yyj-
- (i) € M:
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

y=y1y2... Y
> (i,j) € M: OPT(i,j) = cxy, + OPT(i — 1,j — 1).

February 25, 27, March 17, 19 2008 Dynamic Programming

T. M. Murali



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

y =yiy2...Yyj-
> (i,j) € M: OPT(i,j) = Qxy; + OPT(i—1,j—1).
» j not matched:
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

y=y1y2... Y
> (i,j) € M: OPT(i,j) = cxy, + OPT(i — 1,j — 1).
» i not matched: OPT(i,j) = 6 + OPT(i — 1, ).
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

Yy =yiy2...yj.
> (i,j) € M: OPT(i,}) = ary, + OPT(i — 1,j — 1).
> i not matched: OPT(i, j) = 6 + OPT(i — 1, ).
» j not matched: OPT(i,j) =8 + OPT(i,j —1).
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

Yy =yiy2...yj.
> (i,j) € M: OPT(i,}) = ary, + OPT(i — 1,j — 1).
> i not matched: OPT(i, j) = 6 + OPT(i — 1, ).
» j not matched: OPT(i,j) =8 + OPT(i,j —1).

OPT(/,j) = min (ax,yj—l—OPT(i—l,j—l),5+OPT(i—1,j),5+OPT(i,j—1))

> (i,j) € M if and only if minimum is achieved by the first term.

» What are the base cases?
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Dynamic Programming Approach

» Consider index m € x and index n € y. Is (m,n) € M?
» Claim: (m,n) € M = m € x not matched or n € y not matched.
» OPT(i,J): cost of optimal alignment between x = x;x2x3 ... X; and

Yy =yiy2...yj.
> (i,j) € M: OPT(i,}) = ary, + OPT(i — 1,j — 1).
> i not matched: OPT(i, j) = 6 + OPT(i — 1, ).
» j not matched: OPT(i,j) =8 + OPT(i,j —1).

OPT(/,j) = min (ax,yj—l—OPT(i—l,j—l),5+OPT(i—1,j),5+OPT(i,j—1))

> (i,j) € M if and only if minimum is achieved by the first term.
» What are the base cases? OPT(/,0) = OPT(0, /) = /9.
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,.yj+OPT(i—1,j—1), 6+OPT(i—1,/),6+OPT(i,j—1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,jl=j§ for each j
For j=1,...,n
For i=1,...,m
Use the recurrence (6.16) to compute A[i,j]
Endfor
Endfor
Return A[m,n]
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,.yj+OPT(i—1,j—1), 6+OPT(i—1,/),6+OPT(i,j—1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,jl=j§ for each j
For j=1,...,n
For i=1,...,m
Use the recurrence (6.16) to compute A[i,j]
Endfor
Endfor
Return A[m, n]

» Running time is O(mn). Space used in O(mn).
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,.yj+OPT(i—1,j—1), 6+OPT(i—1,/),6+OPT(i,j—1))

Alignment(X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,jl=j§ for each j

For j=1,..., n
For i=1,...,m
Use the recurrence (6.16) to compute A[i,j]
Endfor
Endfor

Return A[m, n]

» Running time is O(mn). Space used in O(mn).
» Can compute OPT(m, n) in O(mn) time and O(m + n) space
(Hirschberg 1975, Chapter 6.7).
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Dynamic Programming Algorithm

OPT(i,j) = min (ax,yj+OPT(i—1,j—1), 6+OPT(i—1,/),6+OPT(i,j—1))

Alignment (X,Y)
Array A[0...m,0...n]
Initialize A[i,0]=i§ for each i
Initialize A[0,jl=j§ for each j
For j=1,..., n
For i=1,...,m
Use the recurrence (6.16) to compute A[i,j]
Endfor
Endfor
Return A[m, n]

» Running time is O(mn). Space used in O(mn).

» Can compute OPT(m, n) in O(mn) time and O(m + n) space
(Hirschberg 1975, Chapter 6.7).

» Can compute alignment in the same bounds by combining dynamic
programming with divide and conquer.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Graph-theoretic View of Sequence Alignment

X1

1 V2 V3 Va

Figure 6.17 A graph-based picture of sequence alignment.

> Grid graph Gy :

Rows labelled by symbols in x and columns labelled by symbols in y.
Edges from node (i,j) to (i,j + 1)), to (i +1,/), and to (i + 1,5 + 1).
Edges directed upward and to the right have cost §.

Edge directed from (/,) to (i + 1,j + 1) has cost alphay,,y,., -

\4

vV vy

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Graph-theoretic View of Sequence Alignment

X1

1 V2 V3 Va

Figure 6.17 A graph-based picture of sequence alignment.

> Grid graph Gy :

Rows labelled by symbols in x and columns labelled by symbols in y.

Edges from node (i,j) to (i,j + 1)), to (i +1,/), and to (i + 1,5 + 1).

Edges directed upward and to the right have cost §.

Edge directed from (/,) to (i + 1,j + 1) has cost alphay,,y,., -

» (i, j): minimum cost of a path in Gxy from (0,0) to (/,/).

» Claim: f(i,j) = OPT(i,j) and diagonal edges in the shortest path are
the matched pairs in the alignment.

\4

vV vy
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Motivation

» Computational finance:
» Each node is a financial agent.
» The cost ¢,, of an edge (u, v) is the cost of a transaction in which we
buy from agent u and sell to agent v.
» Negative cost corresponds to a profit.

> Internet routing protocols
» Dijkstra's algorithm needs knowledge of the entire network.
» Routers only know which other routers they are connected to.
» Algorithm for shortest paths with negative edges is decentralised.
» We will not study this algorithm in the class. See Chapter 6.9.
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Problem Statement

» Input: a directed graph G = (V, E) with a cost function ¢ : E — R,
i.e., cyy is the cost of the edge (u,v) € E.
» A negative cycle is a directed cycle whose edges have a total cost that
is negative.
» Two related problems:
1. If G has no negative cycles, find the shortest s-t path: a path of from

source s to destination t with minimum total cost.
2. Does G have a negative cycle?

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Problem Statement

» Input: a directed graph G = (V, E) with a cost function ¢ : E — R,
i.e., cyy is the cost of the edge (u,v) € E.
» A negative cycle is a directed cycle whose edges have a total cost that
is negative.
» Two related problems:
1. If G has no negative cycles, find the shortest s-t path: a path of from

source s to destination t with minimum total cost.
2. Does G have a negative cycle?

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going
around the cycle C many times).
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Approaches for Shortest Path Algorithm

1. Dijsktra’s algorithm.

2. Add some large constant to
each edge.

. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Approaches for Shortest Path Algorithm

1. Dijsktra’s algorithm. Computes
incorrect answers because it is
greedy.

2. Add some large constant to
each edge. Computes incorrect ®)
answers because the minimum Figure 6.21 (2) With negative

cost path cha nges. edge costs, Dijkstra’s Algo-
rithm can give the wrong

answer for the Shortest-Path
Problem. (b) Adding 3 to the

cost of each edge will make

all edges nonnegative, but it
will change the identity of the
shortest s-t path.
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Dynamic Programming Approach

> Assume G has no negative cycles.

» Claim: There is a shortest path from s to t that is simple (does not
repeat a node)
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Dynamic Programming Approach

> Assume G has no negative cycles.

» Claim: There is a shortest path from s to t that is simple (does not
repeat a node) and hence has at most n — 1 edges.
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Dynamic Programming Approach

> Assume G has no negative cycles.

» Claim: There is a shortest path from s to t that is simple (does not
repeat a node) and hence has at most n — 1 edges.

» How do we define sub-problems?
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Dynamic Programming Approach

> Assume G has no negative cycles.

» Claim: There is a shortest path from s to t that is simple (does not
repeat a node) and hence has at most n — 1 edges.

» How do we define sub-problems?

> Since the shortest s-t path has < n — 1 edges, let us consider how we
can reach t using i edges, for different values of /.

» Since we do not know which nodes will be in the shortest s-t path, let
us consider how we can reach t from each node in V.
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Dynamic Programming Approach

> Assume G has no negative cycles.
» Claim: There is a shortest path from s to t that is simple (does not
repeat a node) and hence has at most n — 1 edges.
» How do we define sub-problems?
> Since the shortest s-t path has < n — 1 edges, let us consider how we
can reach t using i edges, for different values of /.

» Since we do not know which nodes will be in the shortest s-t path, let
us consider how we can reach t from each node in V.

» Sub-problems defined by varying the number of edges in the shortest
path and by varying the starting node in the shortest path.
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Dynamic Programming Sub-problems

» OPT(i,v): minimum cost of a v-t path that uses at most i edges.
> t is not explicitly mentioned in the sub-problems.
» Goal is to compute OPT(n — 1, ).
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Dynamic Programming Sub-problems

» OPT(i,v): minimum cost of a v-t path that uses at most i edges.
> t is not explicitly mentioned in the sub-problems.
» Goal is to compute OPT(n — 1, ).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

» Let P be the optimal path whose cost is OPT(/, v).
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Dynamic Programming Sub-problems

» OPT(i,v): minimum cost of a v-t path that uses at most i edges.
> t is not explicitly mentioned in the sub-problems.
» Goal is to compute OPT(n — 1, ).

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

» Let P be the optimal path whose cost is OPT(/, v).
1. If P actually uses i — 1 edges, then OPT(i,v) = OPT(i — 1,v).
2. If first node on P is w, then OPT(i,v) = c,w + OPT(i — 1, w).
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Dynamic Programming Sub-problems

v

OPT(i,v): minimum cost of a v-t path that uses at most i edges.

v

t is not explicitly mentioned in the sub-problems.
Goal is to compute OPT(n —1,s).

v

P

Figure 6.22 The minimum-cost path P from v to ¢ using at most i edges.

v

Let P be the optimal path whose cost is OPT(i, v).
1. If P actually uses i — 1 edges, then OPT(i,v) = OPT(i — 1,v).
2. If first node on P is w, then OPT(i,v) = c,w + OPT(i — 1, w).

OPT(i,v) = min (OPT(i —1,v), mir\} (cww +OPT(i — 1, w)))
we
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Alternate Dynamic Programming Formulation

» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.
Goal is to compute
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Alternate Dynamic Programming Formulation

» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.
Goal is to compute

n—1
r_ni{l OPT(i,s).
=
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Alternate Dynamic Programming Formulation
» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.

Goal is to compute

n—1
r_ni{l OPT(i,s).
=

> Let P be the optimal path whose cost is OPT(/, v).
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Alternate Dynamic Programming Formulation

» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.
Goal is to compute

n—1
r_ni{l OPT(i,s).
=

> Let P be the optimal path whose cost is OPT(/, v).
» If first node on P is w, then OPT(i,v) = ¢, + OPT(i — 1, w).
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Alternate Dynamic Programming Formulation

» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.
Goal is to compute

n—1
r_ni{l OPT(i,s).
=

> Let P be the optimal path whose cost is OPT(/, v).
» If first node on P is w, then OPT(i,v) = ¢, + OPT(i — 1, w).

OPT(i,v) = min, (cww + OPT(i — 1,w))
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Alternate Dynamic Programming Formulation

» OPT(i,v): minimum cost of a v-t path that uses exactly i edges.
Goal is to compute

n—1
mi? OPT(i,s).
=

> Let P be the optimal path whose cost is OPT(/, v).
» If first node on P is w, then OPT(i,v) = ¢, + OPT(i — 1, w).

OPT(i,v) = min, (cww + OPT(i — 1,w))

» Compare the recurrence above to the previous recurrence:

OPT(i,v) = min (OPT(i —1,v), mlr\} (cww + OPT(i — 1, W)))
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Bellman-Ford Algorithm

OPT(i, v) = min { OPT(i — 1,v), min (cww + OPT(i — 1,w))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=00 for all other veV
For i=1,...,n—1
For veV in any order
Compute M[i,v] using the recurrence (6.23)
Endfor
Endfor
Return M([n —1,s]
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Bellman-Ford Algorithm

OPT(i,v) = min (OPT(i —1,v), mir\I/ (cow + OPT(i — 1, W)))
we

Shortest-Path(G, s, t)
n= number of nodes in G
Array M[0...n—1,V]
Define M[0,t]=0 and M[0,v]=0c0 for all other veV
For i=1,...,n—1
For veV in any order
Compute M[i,v] using the recurrence (6.23)
Endfor
Endfor
Return M([n —1,s]

> Space used is O(n?). Running time is O(n3).
» If shortest path uses k edges, we can recover it in O(kn) time by
tracing back through smaller sub-problems.
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An Improved Bound on the Running Time

» Suppose G has n nodes and m <« ('2’) edges. Can we demonstrate a
better upper bound on the running time?
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An Improved Bound on the Running Time

» Suppose G has n nodes and m <« ('2’) edges. Can we demonstrate a
better upper bound on the running time?

M[i, v] = min (M[i —1,v], min, (cw + M[i —1, w])>
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An Improved Bound on the Running Time

» Suppose G has n nodes and m <« ('27) edges. Can we demonstrate a
better upper bound on the running time?

M[i, v] = min (M[i —1,v], min, (cw + M[i —1, w])>

» w only needs to range over neighbours of v.

» If n, is the number of neighbours of v, then in each round, we spend
time equal to
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An Improved Bound on the Running Time

» Suppose G has n nodes and m <« ('27) edges. Can we demonstrate a
better upper bound on the running time?

M[i, v] = min (M[i —1,v], min, (cw + M[i —1, w])>

» w only needs to range over neighbours of v.

» If n, is the number of neighbours of v, then in each round, we spend
time equal to

» The total running time is O(mn).

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming
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Improving the Memory Requirements

M[i, v] = min (M[i —1,v], min (cvww + M[i — 1, w])>

> The algorithm uses O(n?) space to store the array M.
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Improving the Memory Requirements

M[i, v] = min (M[i —1,v], min (cvww + M[i — 1, w]))

> The algorithm uses O(n?) space to store the array M.
» Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
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Improving the Memory Requirements

M[i, v] = min (M[i —1,v], min (cvww + M[i — 1, w]))

> The algorithm uses O(n?) space to store the array M.
» Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
» Modified algorithm:

1. Maintain two arrays M and N indexed over V.

2. At the beginning of each iteration, copy M into N.
3. To update M, use

M[v] = min (N[v], min (cw + N[W]))
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Improving the Memory Requirements

M[i, v] = min (M[i —1,v], min (cvww + M[i — 1, w]))

> The algorithm uses O(n?) space to store the array M.
» Observe that M[i, v] depends only on M[i — 1, %] and no other indices.
» Modified algorithm:

1. Maintain two arrays M and N indexed over V.

2. At the beginning of each iteration, copy M into N.

3. To update M, use

M[v] = min (N[v], min (cw + N[W]))

» Claim: at the beginning of iteration i, M stores values of
OPT(i — 1, v) for all nodes v € V.
» Space used is O(n).

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Algorithm

M[v] = min (N[v], min (cpw + N[Wl))

» How can we recover the shortest path that has cost M[v]?
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Computing the Shortest Path: Algorithm

M[v] = min <N[v], min (cpw + N[W1)>

» How can we recover the shortest path that has cost M[v]?

» For each node v, maintain f(v), the first node after v in the current
shortest path from v to t.

> To maintain f(v), if we ever set M[v] to minycv (¢ + N[w]), set
f(v) to be the node w that attains this minimum.

> At the end, follow f(v) pointers from s to t.
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Computing the Shortest Path: Correctness

» Pointer graph P(V, F): each edge in F is (v, f(v)).
» Can P have cycles?

Is there a path from s to t in P?

Can there be multiple paths s to t in P?

Which of these is the shortest path?

v vy
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Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[w])>

» Claim: If P has a cycle C, then C has negative cost.
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Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[W])>

» Claim: If P has a cycle C, then C has negative cost.

> If we set f(v) = w at any time, then M[v] > c,,, + M[w] after that
time.
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Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[w])>

» Claim: If P has a cycle C, then C has negative cost.
> If we set f(v) = w at any time, then M[v] > c,, + M[w] after that
time.
> Let vq,vs,... v be the nodes in C and assume that (v, vi) is the last
edge to have been added.
» What is the situation just before this addition?

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



Weighted Interval Scheduling Segmented Least Squares RNA Secondary Structure Sequence Alignment Shortest Paths in Graphs

Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[w])>

» Claim: If P has a cycle C, then C has negative cost.

> If we set f(v) = w at any time, then M[v] > c,, + M[w] after that
time.

> Let vq,vs,... v be the nodes in C and assume that (v, vi) is the last
edge to have been added.

» What is the situation just before this addition?

> M[vi] > cyv,,y, + M[vigq], forall 1 <i < k—1.

> M[Vk] > Cyvy T M[V1].
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Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[W])>

» Claim: If P has a cycle C, then C has negative cost.

>

vV v.Vv VY

If we set f(v) = w at any time, then M[v] > c,,, + M[w] after that
time.

Let vi, va,... vk be the nodes in C and assume that (vk, v1) is the last
edge to have been added.

What is the situation just before this addition?

Mlvi] > cyvi,y + M[visq], forall 1 <i < k—1.

M[Vk] > Cywn T+ M[V1]

Adding all these inequalities, 0 > Z, 1 Cviviar T Cuny -

T. M. Murali
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Computing the Shortest Path: Cycles in P

M[v] = min <N[v], min (cu + N[W])>

» Claim: If P has a cycle C, then C has negative cost.
> If we set f(v) = w at any time, then M[v] > c,, + M[w] after that
time.
> Let vq,vs,... vk be the nodes in C and assume that (v, v1) is the last
edge to have been added.
What is the situation just before this addition?
Mlvi] > cyvi,y + M[visq], forall 1 <i < k—1.
M[Vk] > Cywn T+ M[V1]
Adding all these inequalities, 0 > Z, 1 Cviviar T Cuny -

vV v.Vv VY

» Corollary: if G has no negative cycles that P does not either.
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Computing the Shortest Path: Paths in P

> Let P be the pointer graph upon termination of the algorithm.

» Consider the path P, in P obtained by following the pointers from v
to f(v) = vy, to f(v1) = v», and so on.
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Computing the Shortest Path: Paths in P

> Let P be the pointer graph upon termination of the algorithm.

» Consider the path P, in P obtained by following the pointers from v
to f(v) = vy, to f(v1) = v», and so on.

» Claim: P, terminates at t.
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Computing the Shortest Path: Paths in P

> Let P be the pointer graph upon termination of the algorithm.

» Consider the path P, in P obtained by following the pointers from v
to f(v) = vy, to f(v1) = v», and so on.

» Claim: P, terminates at t.

» Claim: P, is the shortest path in G from v to t.
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Bellman-Ford Algorithm: Early Termination

M[v] = min <N[v], min (cu + N[w])>

» In general, after / iterations, the path whose length is M[v] may have
many more than j edges.
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Bellman-Ford Algorithm: Early Termination

M[v] = min <N[v], min (cu + N[W])>

» In general, after / iterations, the path whose length is M[v] may have
many more than j edges.

» Early termination: If M equals N after processing all the nodes, we
have computed all the shortest paths to t.

T. M. Murali February 25, 27, March 17, 19 2008 Dynamic Programming



	Weighted Interval Scheduling
	Segmented Least Squares
	RNA Secondary Structure
	Sequence Alignment
	Shortest Paths in Graphs

