
Priority Queues

T. M. Murali

January 23, 2008

T. M. Murali January 23, 2008 Priority Queues



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn
such that yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and

remove it.

I To get O(n log n) running time, each ��nd minimum� step must

take O(log n) time.

T. M. Murali January 23, 2008 Priority Queues



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn
such that yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and

remove it.

I To get O(n log n) running time, each ��nd minimum� step must

take O(log n) time.

T. M. Murali January 23, 2008 Priority Queues



Motivation: Sort a List of Numbers

Sort

INSTANCE: Nonempty list x1, x2, . . . , xn of integers.

SOLUTION: A permutation y1, y2, . . . , yn of x1, x2, . . . , xn
such that yi ≤ yi+1, for all 1 ≤ i < n.

I Possible algorithm:
I Store all the numbers in a data structure D.
I Repeatedly �nd the smallest number in D, output it, and

remove it.

I To get O(n log n) running time, each ��nd minimum� step must

take O(log n) time.

T. M. Murali January 23, 2008 Priority Queues



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum,

and deleting minimum.

List Insertion and deletion take O(1) time but �nding

minimum requires scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and

deletion can take Ω(n) time in the worst case.

T. M. Murali January 23, 2008 Priority Queues



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum,

and deleting minimum.

List

Insertion and deletion take O(1) time but �nding

minimum requires scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and

deletion can take Ω(n) time in the worst case.

T. M. Murali January 23, 2008 Priority Queues



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum,

and deleting minimum.

List Insertion and deletion take O(1) time but �nding

minimum requires scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and

deletion can take Ω(n) time in the worst case.

T. M. Murali January 23, 2008 Priority Queues



Candidate Data Structures for Sorting

Data structure must support insertion, �nding minimum,

and deleting minimum.

List Insertion and deletion take O(1) time but �nding

minimum requires scanning the list and takes Ω(n) time.

Sorted array Finding minimum takes O(1) time but insertion and

deletion can take Ω(n) time in the worst case.

T. M. Murali January 23, 2008 Priority Queues



Priority Queue

I Store a set S of elements, where each element v has a priority

value key(v).

I Smaller key values ≡ higher priorities.

I Operations supported: �nd the element with smallest key,

remove the smallest element, update the key of an element,

insert an element, delete an element.

I Key update and element deletion require knowledge of the

position of the element in the priority queue.

T. M. Murali January 23, 2008 Priority Queues



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at

i 's parent satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent

at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the

number of elements in the heap.

T. M. Murali January 23, 2008 Priority Queues



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at

i 's parent satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent

at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the

number of elements in the heap.

T. M. Murali January 23, 2008 Priority Queues



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at

i 's parent satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent

at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf?

If 2i > n, the

number of elements in the heap.

T. M. Murali January 23, 2008 Priority Queues



Heaps

I Combine bene�ts of both lists and sorted arrays.

I Conceptually, a heap is a balanced binary tree.

I Heap order: For every element v at a node i , the element w at

i 's parent satis�es key(w) ≤ key(v).

I We can implement a heap in a pointer-based data structure.

I Assume maximum number N of elements is known in advance.

I Store nodes of the heap in an array.
I Node at index i has children at indices 2i and 2i + 1 and parent

at index bi/2c.
I Index 1 is the root.
I How do you know that a node at index i is a leaf? If 2i > n, the

number of elements in the heap.

T. M. Murali January 23, 2008 Priority Queues



Example of a Heap

T. M. Murali January 23, 2008 Priority Queues



Inserting an Element

I Insert new element at index n + 1.
I Fix heap order using Heapify-up.
I H is almost a heap with key of H[i ] too small if there is a value

α ≥ key(H[i ]) such that increasing key(H[i ]) to α makes H a

heap.

T. M. Murali January 23, 2008 Priority Queues



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too
small, after Heapify-up(H, i), H is a heap or a heap with the

key of H[j ] too small.

I Running time is O(log i).

T. M. Murali January 23, 2008 Priority Queues



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too
small, after Heapify-up(H, i), H is a heap or a heap with the

key of H[j ] too small.

I Running time is O(log i).

T. M. Murali January 23, 2008 Priority Queues



Heapify-up

I Proof base case: i = 1.

I Proof inductive step: If H is almost a heap with key of H[i ] too
small, after Heapify-up(H, i), H is a heap or a heap with the

key of H[j ] too small.

I Running time is O(log i).

T. M. Murali January 23, 2008 Priority Queues



Deleting an Element

I Delete element at H[i ] by moving element at H[n] to H[i ].
I If element at H[i ] is too small, �x heap order using Heapify-up.
I If element at H[i ] is too large, �x heap order using

Heapify-down.

T. M. Murali January 23, 2008 Priority Queues



Heapify-down

T. M. Murali January 23, 2008 Priority Queues



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value

α ≤ key(H[i ]) such that decreasing key(H[i ]) to α makes H a

heap.

I Proof base case:

2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or

a heap with H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).

T. M. Murali January 23, 2008 Priority Queues



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value

α ≤ key(H[i ]) such that decreasing key(H[i ]) to α makes H a

heap.

I Proof base case: 2i > n.

I Proof inductive step:

after Heapify-down(H, i), H is a heap or

a heap with H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).

T. M. Murali January 23, 2008 Priority Queues



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value

α ≤ key(H[i ]) such that decreasing key(H[i ]) to α makes H a

heap.

I Proof base case: 2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or

a heap with H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).

T. M. Murali January 23, 2008 Priority Queues



Why Does Heapify-down Work?

I H is almost a heap with key of H[i ] too big if there is a value

α ≤ key(H[i ]) such that decreasing key(H[i ]) to α makes H a

heap.

I Proof base case: 2i > n.

I Proof inductive step: after Heapify-down(H, i), H is a heap or

a heap with H[j ] too big.

I Running time of Heapify-down(H, i) is O(log n).

T. M. Murali January 23, 2008 Priority Queues


