
COURSENOTES

CS5114:
Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Copyright c©1998–2004

CS5114: Theory of Algorithms

Emphasis:

• Creation of Algorithms

[Exploration, discovery, techniques, intuition: largely by lots of

examples and lots of practice (HW exercises)]

Less important:

• Analysis of algorithms [We will use this as a tool]

• Problem statement [in the software eng. sense.

Our problems are easily described, if not easily solved.]

• Programming

Central Paradigm

• Mathematical Induction

– Find a way to solve a problem by solving
one or more smaller problems [divide and

conquer]

[Smaller problems may or may not be the same as the original

problem.]

[Claim: The processes of constructing proofs and constructing

algorithms are similar.]

1

Review of Mathematical Induction

The paradigm of Mathematical Induction can
be used to solve an enormous range of
problems.

Purpose: To prove a parameterized theorem of
the form:

Theorem: ∀n ≥ c,P(n).

• Use only positive integers ≥ c for n.

[P(n) is a statement containing n as a variable.]

Sample P(n):

n + 1 ≤ n2

[This P(n) is true for n ≥ 2, but false for n = 1.]

2

Principle of Mathematical Induction

IF the following two statements are true:

1. P(c) is true.

2. For n > c,P(n− 1) is true → P (n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

[There are many variations on this.]

Step 1: Base case

Step 2: Induction step

The assumption “P(n− 1) is true” is the
induction hypothesis.

[The power of induction is that the induction hypothesis

“comes for free.” We often try to make the most of the extra

information provided by the induction hypothesis.]

What does this remind you of?

[Recursion! There you have a base case and a recursive call

that must make progress toward the base case.]

3

Induction Example

Theorem: Let

S(n) =
n

∑

i=1

i = 1 + 2 + · · ·+ n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .

[Base Case: P(n) is true since S(1) = 1 = 1(1 + 1)/2.

Induction Step: Suppose n > 1.

Assume P(n− 1), that is, S(n− 1) = (n−1)n
2

.

S(n) = S(n− 1) + n = (n− 1)n/2 + n

=
n(n + 1)

2

Therefore, P(n− 1)→ P(n).

By the principle of Mathematical Induction,

∀n ≥ 1, S(n) = n(n+1)
2

.

MI is often an ideal tool for verification of a hypothesis.

Unfortunately it does not help to construct a hypothesis.]

4

Induction Example

Theorem: ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx.

[What do we do induction on? Can’t be a real number, so
must be n.

P(n) : (1 + x)n ≥ 1 + nx.

Base Case: (1 + x)1 = 1 + x ≥ 1 + 1x

Induction Hypothesis: Assume (1 + x)n−1 ≥ 1 + (n− 1)x

Induction Step:

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n− 1)x)

= 1 + nx− x + x + nx2 − x2

= 1 + nx + (n− 1)x2

≥ 1 + nx.

]

5

Induction Example

Theorem: 2c/ and 5c/ stamps can be used to
form any denomination (for denominations ≥
4).

[Base case: 4 = 2 + 2.

IH: Assume P(k) for 4 ≤ k < n.

Induction:

Case 1: n− 1 is made up of all 2c/ stamps. Then, replace 2 of
these with a 5c/ stamp.

Case 2: n− 1 includes a 5c/ stamp. Then, replace this with 3

2c/ stamps.]

6

Colorings

[Induction is useful for much more than checking equations!]

4-color problem: For any set of polygons, 4
colors are sufficient to guarentee that no two
adjacent polygons share the same color.

Restrict the problem to regions formed by
placing (infinite) lines in the plane. How many
colors do we need?

Candidates:

• 4: Certainly

• 3: ?

• 2: ?

• 1: No!

Let’s try it for 2...

7

Two-coloring Problem

Given: Regions formed by a collection of
(infinite) lines in the plane.

Rule: Two regions that share an edge cannot
be the same color.

Theorem: It is possible to two-color the
regions formed by n lines.

[Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try
induction on lines.

Base Case: n = 1. Any line divides the plane into two regions.

Induction Hypothesis: It is possible to two-color the regions
formed by n− 1 lines.

Induction Step: Introduce the n’th line.

This line cuts some colored regions in two.

Reverse the region colors on one side of the n’th line.

A valid two-coloring results.

• Any boundary surviving the addition still has opposite
colors.

• Any new boundary also has opposite colors after the
switch.

]

8

Strong Induction

IF the following two statements are true:

1. P(c)

2. P(i), i = 1,2, · · · , n− 1→ P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than
P(n− 1) in proving P(n).

[The previous examples were all very straightforward – simply
add in the n’th item and justify that the IH is maintained.

Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

• go backwards from n.

• prove a stronger IH.

to make the most of the IH.]

9

Graph Problem

An Independent Set of vertices is one for
which no two vertices are adjacent.

Theorem: Let G = (V, E) be a directed graph.
Then, G contains some independent set S(G)
such that every vertex can be reached from a
vertex in S(G) by a path of length at most 2.

[It should be obvious that this is true for an undirected graph.]

Example: a graph with 3 vertices in a cycle.
Pick any one vertex as S(G).

[Naive approach: Assume the theorem is true for any graph of

n− 1 vertices. Now add the nth vertex and its edges. But this

won’t work for the graph 1← 2. Initially, vertex 1 is the

independent set. We can’t add 2 to the graph. Nor can we

reach it from 1.]

10

Graph Problem (cont)

Theorem: Let G = (V, E) be a directed graph.
Then, G contains some independent set S(G)
such that every vertex can be reached from a
vertex in S(G) by a path of length at most 2.

Base Case: Easy if n ≤ 3 because there can be
no path of length > 2.

Induction Hypothesis: The theorem is true if
|V | < n.

Induction Step (n > 3):

Pick any v ∈ V .

Define: N(v) = {v} ∪ {w ∈ V |(v, w) ∈ E}.
H = G−N(v). [H is the graph induced by V −N(v).]

Since the number of vertices in H is less than
n, there is an independent set S(H) that
satisfies the theorem for H.

11

Graph Proof (cont)

There are two cases:

1. S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2. S(H) ∪ {v} is not independent.[There is an edge

from something in S(H) to v.]

Let w ∈ S(H) such that (w, v) ∈ E.

Every vertex in N(v) can be reached by w
with path of length ≤ 2.

So, set S(G) = S(H).

By Strong Induction, the theorem holds for all
G. [Need strong induction because we don’t know how many

vertices are in N(v).]

12

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1

F (n) = F (n− 1) + F (n− 2), n > 2.

Theorem:
∀n ≥ 1, F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:

F (n− 1)2 + F (n)2 = F (2n− 1).

[Expand both sides of the theorem, then cancel like terms:

F (2n + 1) = F (2n) + F (2n− 1)

and,

F (n)2 + F (n + 1)2 = F (n)2 + (F (n) + F (n− 1))2

= F (n)2 + F (n)2 + 2F (n)F (n− 1) + F (n− 1)2

= F (n)2 + F (n− 1)2 + F (n)2 + 2F (n)F (n− 1)

= F (2n− 1) + F (n)2 + 2F (n)F (n− 1).

Since we want

F (n)2 + F (n + 1)2 = F (2n + 1) = F (2n) + F (2n− 1),

we need to show that

F (n)2 + 2F (n)F (n− 1) = F (2n).

To prove the original theorem, we must prove this. Since we

must do it anyway, we should take advantage of this in our IH!

]

13

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger IH!

Theorem:

F (n)2 + F (n + 1)2 = F (2n + 1) and

F (n)2 + 2F (n)F (n− 1) = F (2n).

Induction Hypothesis:

F (n− 1)2 + F (n)2 = F (2n− 1) and

F (n− 1)2 + 2F (n− 1)F (n− 2) = F (2n− 2).

[

F (n)2 + 2F (n)F (n− 1)

= F (n)2 + 2(F (n− 1) + F (n− 2))F (n− 1)

= F (n)2 + F (n− 1)2 + 2F (n− 1)F (n− 2) + F (n− 1)2

= F (2n− 1) + F (2n− 2)

= F (2n).

F (n)2 + F (n + 1)2 = F (n)2 + F (n)2 + 2F (n)F (n− 1) + F (n− 1)2

= F (n)2 + F (2n) + F (n− 1)2

= F (2n− 1) + F (2n)

= F (2n + 1).

... which proves the theorem. The original result could not

have been proved without the stronger induction hypothesis.]

14

Another Example

Theorem: All horses are the same color.

Proof: P(n): If S is a set of n horses, then all
horses in S have the same color.

Base case: n = 1 is easy.

Induction Hypothesis: Assume P(i), i < n.

Induction Step:

• Let S be a set of horses, |S|= n.

• Let S′ be S − {h} for some horse h.

• By induction hypothesis, all horses in S′
have the same color.

• Let h′ be some horse in S′.
• Induction hypothesis implies {h, h′} have all

the same color.

Therefore, P(n) holds.

[The problem is that the base case does not give enough

strength to give the particular instance of n = 2 used in the

last step.]

15

Algorithm Analysis

We want to “measure” algorithms.

What do we measure? [

• time to run

• space needed to run

• ease of implementation (this changes with language and
tools)

• code size

]

What factors affect measurement? [

• Computer speed and architecture

• Programming language

• Compiler

• System load

• Programmer skill

• Specifics of input (size, arrangement)

]

Objective: Measures that are independent of all
factors except input.

[If you compare two programs running on the same computer

under the same conditions, all the other factors (should)

cancel out.]

[Want to measure the relative efficiency of two algorithms

without needing to implement them on a real computer.]

16

Time Complexity

Time and space are the most important
computer resources.

Function of input: T(input)

Growth of time with size of input:

• Establish an (integer) size n for inputs
[Sometimes analyze in terms of more than one variable.]

– n numbers in a list

– n edges in a graph

Consider time for all inputs of size n:

• Time varies widely with specific input

• Best case [usually not of interest]

• Average case [usually what we want, but can be hard

to measure]

• Worst case [Appropriate for “real-time” applications,

often best we can do in terms of measurement]

Time complexity T(n) counts steps in an
algorithm.

[Ex: comparisons, assignments, arithmetic/logical operations.

What we choose for “step” depends on the algorithm. Step

cost must be “constant” – not dependent on n.]

17

Asymptotic Analysis

It is undesirable/impossible to count the exact
number of steps in most algorithms.

[Undesirable because issues like processor speed muddy the

waters.]

Instead, concentrate on main characteristics.

Solution: Asymptotic analysis

• Ignore small cases:

– consider behavior approaching infinity

• Ignore constant factors, low order terms

– 2n2 looks the same as 5n2 + n to us.

18

O Notation

O notation is a measure for “upper bound” of
a growth rate.

• pronounced “Big-oh”

Definition: For T(n) a non-negatively valued
function, T(n) is in the set O(f(n)) if there
exist two positive constants c and n0 such that
T(n) ≤ cf(n) for all n > n0.

Examples:

• 5n + 8 ∈ O(n)

• 2n2 + n logn ∈ O(n2) ∈ O(n3 + 5n2)

• 2n2 + n logn ∈ O(n2) ∈ O(n3 + n2)

We seek the “simplest” and “strongest” f .

Note O is somewhat like “≤”:

n2 ∈ O(n3) and n2 logn ∈ O(n3), but

• n2 6= n2 logn

• n2 ∈ O(n2) while n2 logn /∈ O(n2)

[Remember: The time equation is for some particular set of

inputs – best, worst, or average case.]

19

Growth Rate Graph
[2n is an exponential algorithm. 10n and 20n differ only by a

constant.]

�

�����

�����

�����

�����

���	�

���	�

����

����������

���

� � ��� ���

� ��� ��� ��� ��� ���

����������� ��!#"$�

���	�

�����

��������������
���

�
�����
�����
%����
&����

�����	�
�����	�
�'���	�

20

Speedups

What happens when we buy a computer 10
times faster? [How much speedup? 10 times. More

important: How much increase in problem size for same time?

Depends on growth rate.]

T(n) n n′ Change n′/n
10n 1,000 10,000 n′ = 10n 10
20n 500 5,000 n′ = 10n 10

5n logn 250 1,842
√

10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

[For n2, if n = 1000, then n′ would be 1003]

n: Size of input that can be processed in one
hour (10,000 steps).

n′: Size of input that can be processed in one
hour on the new machine (100,000 steps).

[Compare T(n) = n2 to T(n) = n logn. For n > 58, it is faster to

have the Θ(n logn) algorithm than to have a computer that is

10 times faster.]

21

Some Rules for Use

Definition: f is monotonically growing if
n1 ≥ n2 implies f(n1) ≥ f(n2).

We typically assume our time complexity
function is monotonically growing. [Because larger

problems should take longer to solve. However, many real

problems have “cyclically growing” behavior.]

Theorem 3.1: Suppose f is monotonically
growing.

∀c > 0 and ∀a > 1, (f(n))c ∈ O(af(n))

In other words, an exponential function grows
faster than a polynomial function.

[O(2f(n)) ∈ O(3f(n))? Yes, but not vice versa. 3n = 1.5n × 2n so

no constant could ever make 2n bigger than 3n for all n.]

Lemma 3.2: If f(n) ∈ O(s(n)) and
g(n) ∈ O(r(n)) then

• f(n) + g(n) ∈ O(s(n) + r(n)) ≡
O(max(s(n), r(n)))

• f(n)g(n) ∈ O(s(n)r(n)). [functional composition]

• If s(n) ∈ O(h(n)) then f(n) ∈ O(h(n))

• For any constant k, f(n) ∈ O(ks(n))

22

Other Asymptotic Notation

Ω(f(n)) – lower bound (≥)

Definition: For T(n) a non-negatively valued
function, T(n) is in the set Ω(g(n)) if there
exist two positive constants c and n0 such that
T(n) ≥ cg(n) for all n > n0.

Ex: n2 logn ∈ Ω(n2).

Θ(f(n)) – Exact bound (=)

Definition: g(n) = Θ(f(n)) if g(n) ∈ O(f(n))
and g(n) ∈ Ω(f(n)).

Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

23

Other Asymptotic Notation (cont)

o(f(n)) – little o (<)

Definition: g(n) ∈ o(f(n)) if limn→∞ g(n)
f(n)

= 0

Ex: n2 ∈ o(n3)

ω(f(n)) – little omega (>)

Definition: g(n) ∈ w(f(n)) if f(n) ∈ o(g(n)).

Ex: n5 ∈ w(n2)

∞(f(n))

Definition: T (n) =∞(f(n)) if T (n) = O(f(n))
but the constant in the O is so large that the
algorithm is impractical.

24

Aim of Algorithm Analysis

Typically want to find “simple” f(n) such that
T (n) = Θ(f(n)).

• Sometimes we settle for O(f(n)).

[For problems we are often interested in Ω – but this is often

hard for non-trivial situations!]

Usually we measure T as “worst case” time
complexity. [Often prefer average case (except for

real-time programming), but worst case is simpler to compute

than average case since we need not be concerned with

distribution of input.]

Approach: Estimate number of “steps”

• Appropriate step depends on the problem.

• Ex: measure key comparisons for sorting
[Must be constant-time]

Summation: Since we typically count steps in
different parts of an algorithm and sum the
counts, techniques for computing sums are
important (loops).

Recurrence Relations: Used for counting
steps in recursion.

25

Summation: Guess and Test

Technique 1: Guess the solution and use
induction to test.

Technique 1a: Guess the form of the solution,
and use simultaneous equations to generate
constants. Finally, use induction to test.

S(n) =
n

∑

i=0

i2.

Guess that S(n) ≤ n3.

Equivalently, guess that it has the form
S(n) = an3 + bn2 + cn + d.

For n = 0 we have S(n) = 0 so d = 0.

For n = 1 we have a + b + c + 0 = 1.

For n = 2 we have 8a + 4b + 2c = 5.

For n = 3 we have 27a + 9b + 3c = 14.

Solving these equations yields a = 1
3, b = 1

2, c = 1
6

Now, prove the solution with induction.

26

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract
to eliminate intermediate terms.

G(n) =
n

∑

i=0

ari = a + ar + ar2 + · · ·+ arn

Shift by multiplying by r.

rG(n) = ar + ar2 + · · ·+ arn + arn+1

Subtract.

G(n)− rG(n) = G(n)(1− r) = a− arn+1

G(n) =
a− arn+1

1− r
r 6= 1

27

Example 3.3

G(n) =
n

∑

i=1

i2i = 1×2+2×22+3×23+· · ·+n×2n

[Multiply by 2. 2G(n) = 1× 22 + 2× 23 + 3× 24 + · · ·+ n× 2n+1

Subtract

2G(n)−G(n) = n2n+1 − 2n · · ·22 − 2

= n2n+1 − 2n+1 + 2

= (n− 1)2n+1 + 2

]

28

Recurrence Relations

[We won’t spend a lot of time on techniques... just enough to

be able to use them.]

A function defined in terms of itself.

Fibonacci numbers:
F (n) = F (n− 1) + F (n− 2) general case
F (1) = F (2) = 1 base cases

There are always one or more general cases and
one or more base cases.

We will use recurrences for time complexity.

General format is T (n) = E(T, n) where E(T, n)
is an expression in T and n.

• T (n) = 2T (n/2) + n

Alternately, an upper bound: T (n) ≤ E(T, n).

29

Solving Recurrences

We would like to find a closed form solution for
T (n) such that:

T (n) = Θ(f(n))

Alternatively, find lower bound

• Not possible for inequalities of form
T (n) ≤ E(T, n). [You do not know enough...

because you don’t know how much bigger E(T, n) is than

T (n), the result might not be Ω(T (n)).]

Methods:

• Guess a solution [asymptotic solution]

• Expand recurrence

• Theorems

30

Guessing

T (n) = 2T (n/2) + 5n2 n ≥ 2
T (1) = 7

Note that T is defined only for powers of 2.

Guess a solution: [For Big-oh, not many choices...]

T (n) ≤ c1n3 = f(n)

T (1) = 7 implies that c1 ≥ 7 [7× 13 = 7]

Inductively, assume T (n/2) ≤ f(n/2).

T (n) ≤ 2T (n/2) + 5n2

≤ 2c1(n/2)3 + 5n2

≤ c1(n
3/4) + 5n2

≤ c1n3 if c1 ≥ 20/3.

Therefore, if c1 = 7, a proof by induction yields:

T (n) ≤ 7n3

T (n) ∈ O(n3)

Is this the best possible solution? [No - try

something tighter.]

31

Guessing (cont)

Guess again.

T (n) ≤ c2n2 = g(n)

T (1) = 7 implies c2 ≥ 7.

Inductively, assume T (n/2) ≤ g(n/2).

T (n) ≤ 2T (n/2) + 5n2

≤ 2c2(n/2)2 + 5n2

= c2(n
2/2) + 5n2

≤ c2n2 if c2 ≥ 10

Therefore, if c2 = 10, T (n) ≤ 10n2.
T (n) = O(n2).

Is this the best possible upper bound? [Yes, since

T (n) can be as bad as 5n2.]

32

Guessing (cont)

Now, reshape the recurrence so that T is
defined for all values of n.

T (n) ≤ 2T (bn/2c) + 5n2 n ≥ 2

For arbitrary n, let 2k−1 < n ≤ 2k.

We have already shown that T (2k) ≤ 10(2k)2.

T (n) ≤ T (2k) ≤ 10(2k)2

= 10(2k/n)2n2 ≤ 10(2)2n2

≤ 40n2

Hence, T (n) = O(n2) for all values of n.

Typically, the bound for powers of two
generalizes to all n.

33

Expanding Recurrences

Usually, start with equality version of
recurrence.

T (n) = 2T (n/2) + 5n2

T (1) = 7

Assume n is a power of 2; n = 2k.

T(n) = 2T(n/2) + 5n2

= 2(2T(n/4) + 5(n/2)2) + 5n2

= 2(2(2T(n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT(1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · ·+ 2 · 5(n/2)2 + 5n2

= 7n + 5

k−1
∑

i=0

n2/2i

= 7n + 5n2
k−1
∑

i=0

1/2i

= 7n + 5n2(2− 1/2k−1)

= 7n + 5n2(2− 2/n).

This it the exact solution for powers of 2.

T (n) = Θ(n2).

34

Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a
subproblems of size n/b, while cnk is the
amount of work needed to combine the two
solutions.

35

Divide and Conquer Recurrences

(cont)

Expand the sum; n = bm.

T(n) = a(aT(n/b2) + c(n/b)k) + cnk

= amT(1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m

∑

i=0

(bk/a)i

am = alogb n = nlogb a
[Set a = blogb a. Switch order of logs,

giving (blogb n)logb a = nlogb a.]

The summation is a geometric series whose
sum depends on the ratio

r = bk/a.

There are 3 cases.

36

D & C Recurrences (cont)

(1) r < 1

m
∑

i=0

ri < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1 [Since r = bk/a, a = bk, k = logb a.]

m
∑

i=0

ri = m + 1 = logb n + 1

T (n) = Θ(nlogb a logn) = Θ(nk logn)

(3) r > 1

m
∑

i=0

ri =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam ∑

ri,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

37

Summary

Theorem 3.4:

T (n) =

Θ(nlogb a) if a > bk

Θ(nk logn) if a = bk

Θ(nk) if a < bk

Apply the theorem:

T (n) = 3T (n/5) + 8n2.

a = 3, b = 5, c = 8, k = 2.

bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

[We simplify by approximating summations.]

38

Amortized Analysis

Consider this variation on STACK:

void init(STACK S);

element examineTop(STACK S);

void push(element x, STACK S);

void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:

O(n) for n elements on the stack.

Given m1 calls to push, m2 calls to pop:

Naive worst case:
m1 + m2 · n = m1 + m2 ·m1.

39

Alternate Analysis

Use amortized analysis on multiple calls to
push, pop:

Cannot pop more elements than get pushed
onto the stack.

After many pushes, a single pop has high
potential.

Once that potential has been expended, it is
not available for future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)

40

Creative Design of Algorithms by

Induction

Analogy: Induction ↔ Algorithms

Begin with a problem:

• “Find a solution to problem Q.”

Think of Q as a set containing an infinite
number of problem instances.

Example: Sorting

• Q contains all finite sequences of integers.

[Now that we have completed the tool review, we will do two
things:

1. Survey algorithms in application areas

2. Try to understand how to create efficient algorithms

This chapter is about the second.]

41

Solving Q

First step:

• Parameterize problem by size: Q(n)

Example: Sorting

• Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:

• Q(1), Q(2), ..., Q(n)

Algorithm: Solve for an instance in Q(n) by
solving instances in Q(i), i < n and combining
as necessary.

42

Induction

Goal: Prove that we can solve for an instance
in Q(n) by assuming we can solve instances in
Q(i), i < n. [Strong induction]

Don’t forget the base cases!

Theorem: ∀n ≥ 1, we can solve instances in
Q(n).

• This theorem embodies the correctness of
the algorithm.

[It is proved by induction.]

Since an induction proof is mechanistic, this
should lead directly to an algorithm (recursive
or iterative).

Just one (new) catch:

• Different inductive proofs are possible.

• We want the most efficient algorithm!

[Example: Sorting

• Sort n− 1 items, add nth item (insertion sort)

• Sort 2 sets of n/2, merge together (mergesort)

• Sort values < x and > x (quicksort)

]

43

Interval Containment

Start with a list of non-empty intervals with
integer endpoints.

Example:

[6,9], [5,7], [0,3], [4,8], [6,10], [7,8], [0,5], [1,3], [6,8]

100 1 2 3 4 5 6 7 8 9

Problem: Identify and mark all intervals that
are contained in some other interval.

Example:

• Mark [6,9] since [6,9] ⊆ [6,10]
[[5,7] ⊆ [4,8]

[0,3] ⊆ [0,5]

[7,8] ⊆ [6,10]

[1,3] ⊆ [0,5]

[6,8] ⊆ [6,10]

[6,9] ⊆ [6,10]]

44

Interval Containment (cont)

Q(n): Instances of n intervals

Base case: Q(1) is easy.

Inductive Hypothesis: For n > 1, we know
how to solve an instance in Q(n− 1).

Induction step: Solve for Q(n).

• Solve for first n− 1 intervals, applying
inductive hypothesis.

• Check the nth interval against intervals
i = 1,2, · · ·
• If interval i contains interval n, mark

interval n. (stop)

• If interval n contains interval i, mark
interval i.

Analysis:

T (n) = T (n− 1) + cn

T (n) = Θ(n2)

45

“Creative” Algorithm

Idea: Choose a special interval as the nth
interval.

Choose the nth interval to have rightmost left
endpoint, and if there are ties, leftmost right
endpoint.

[In example, nth interval is [7,8].]

(1) No need to check whether nth interval
contains other intervals.

[Every other interval has left endpoint to left, or right

endpoint to right.]

(2) nth interval should be marked iff the
rightmost endpoint of the first n− 1 intervals
exceeds or equals the right endpoint of the nth
interval.

Solution: Sort as above.

46

“Creative” Solution Induction

Induction Hypothesis: Can solve for Q(n− 1)
AND interval n is the “rightmost” interval AND
we know R (the rightmost endpoint
encountered so far) for the first n− 1 segments.

Induction Step: (to solve Q(n))

• Solve for first n− 1 intervals recursively, and
remember R.

• If the rightmost endpoint of nth interval is
≤ R, then mark the nth interval.

• Else R ← right endpoint of nth interval.

Analysis: Θ(n logn) + Θ(n).

[Time for sort + constant time per interval.]

Lesson: Preprocessing, often sorting, can help
sometimes.

47

Maximal Induced Subgraph

Problem: Given a graph G = (V, E) and an
integer k, find a maximal induced subgraph
H = (U, F) such that all vertices in H have
degree ≥ k.

[Induced subgraph: U is a subset of V , F is a subset of E such

that both ends of e ∈ E are members of U.]

Example: Scientists interacting at a
conference. Each one will come only if k
colleagues come, and they know in advance if
somebody won’t come.

Example: For k = 3.

5

1

3

6

2

7
4

Solution: [U = {1,3,4,5}]

48

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed
integer.

Theorem: ∀s, k > 0, we can solve an instance
in Q(s, k).

[Base Case: s = 1 H is the empty graph.

Induction Hypothesis: Assume s > 1. we can solve instances of
Q(s− 1, k).

Induction Step: Show that we can solve an instance of G(V, E)
in Q(s, k).

Two cases:

(1) Every vertex in G has degree ≥ k.

H = G is the only solution.

(2) Otherwise, let v ∈ V have degree < k.

G− v is an instance of Q(s− 1, k) which we know how to
solve.

By induction, the theorem follows.]

Analysis: Should be able to implement
algorithm in time Θ(|V |+ |E|).

49

Celebrity Problem

In a group of n people, a celebrity is somebody
whom everybody knows, but who knows no one
else.

Problem: If we can ask questions of the form
“does person i know person j?” how many
questions do we need to find a celebrity, if one
exists?

50

Celebrity Problem (cont)

Formulate as an n× n boolean matrix M.

Mij = 1 iff i knows j.

Example:

1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1

A celebrity has all 0’s in his row and all 1’s in
his column.

[The celebrity in this example is 4.]

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do
better?
[Wrong approach:

Assume that we can solve for n− 1. What happens when we
add nth person?

• Celebrity candidate in n− 1 – just ask two questions.

• Celebrity is n – must check 2(n− 1) positions. O(n2).

• No celebrity. Again, O(n2).

]

51

Efficient Celebrity Algorithm

Appeal to induction:

• If we have an n× n matrix, how can we
reduce it to an (n− 1)× (n− 1) matrix? [Go

backwards – test for non-celebrity.]

Eliminate one person if he is a non-celebrity.

• Strike one row and one column.

1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1

Does 1 know 3? No.

3 is a non-celebrity.

Does 2 know 5? Yes.

2 is a non-celebrity.

Observation: Every question eliminates one
person as a non-celebrity.

52

Celebrity Algorithm

Algorithm:

1. Ask n− 1 questions to eliminate n− 1
non-celebrities. This leaves one candidate
who might be a celebrity.

2. Ask 2(n− 1) questions to check candidate.

Analysis:

• Θ(n) questions are asked.

1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1

Example:

• Does 1 know 2? No. Eliminate 2

• Does 1 know 3? No. Eliminate 3

• Does 1 know 4? Yes. Eliminate 1

• Does 4 know 5? No. Eliminate 5

4 remains as candidate.

53

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.

• It follows that the maximum subsequence
of a sequence of all negative numbers is the
empty subsequence.

Example:

2, 11, -9, 3, 4, -6, -7, 7, -3, 5, 6, -2

Maximum subsequence:

7, -3, 5, 6 Sum: 15

54

Finding an Algorithm

Induction Hypothesis: We can find the
maximum subsequence sum for a sequence of
< n numbers.

Note: We have changed the problem.

• First, figure out how to compute the sum.

• Then, figure out how to get the
subsequence that computes that sum.

55

Finding an Algorithm (cont)

Induction Hypothesis: We can find the
maximum subsequence sum for a sequence of
< n numbers.

Let S = x1, x2, · · · , xn be the sequence.

Base case: n = 1

Either x1 < 0⇒ sum = 0

Or sum = x1.

Induction Step:

• We know the maximum subsequence
SUM(n-1) for x1, x2, · · · , xn−1.

• Where does xn fit in?

– Either it is not in the maximum
subsequence or it ends the maximum
subsequence.

[That is, of the numbers seen so far.]

• If xn ends the maximum subsequence, it is
appended to trailing maximum subsequence
of x1, · · · , xn−1.

56

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the
maximum sum of a subsequence that ends
x1, · · · , xn−1.

To get this, we need a stronger induction
hypothesis.

57

Maximum Subsequence Solution

New Induction Hypothesis: We can find
SUM(n-1) and TRAILINGSUM(n-1) for any
sequence of n− 1 integers.

Base case:

SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:

SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).

TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).

Analysis: [O(n). T (n) = T (n− 1) + 2.]

Important Lesson: If we calculate and
remember some additional values as we go
along, we are often able to obtain a more
efficient algorithm.

This corresponds to strengthening the
induction hypothesis so that we compute more
than the original problem (appears to) require.

How do we find sequence as opposed to sum?

[Remember position information as well.]

58

The Knapsack Problem

Problem: [one of several variations]

• Given an integer capacity K and n items
such that item i has an integer size ki, find
a subset of the n items whose sizes exactly
sum to K, if possible.

• That is, find S ⊆ {1,2, · · · , n} such that
∑

i∈S

ki = K.

Example:

Knapsack capacity K = 163.

10 items with sizes

4,9,15,19,27,44,54,68,73,101

[Think about solving this:

S = {9,27,54,73}

Now, try solving for K = 164.

S = {19,44,101}.

No relationship in solutions!]

59

Knapsack Algorithm Approach

Instead of parameterizing the problem just by
the number of items n, we parameterize by
both n and by K.

P (n, K) is the problem with n items and
capacity K.

First consider the decision problem: Is there a
subset S?

[i.e., such that
∑

Si = K?]

Induction Hypothesis:

We know how to solve P (n− 1, K).

60

Knapsack Induction

Induction Hypothesis:

We know how to solve P (n− 1, K).

Solving P (n, K):

• If P (n− 1, K) has a solution, then it is also
a solution for P (n, K).

• Otherwise, P (n, K) has a solution iff
P (n− 1, K − kn) has a solution.

[To solve this second problem, we must strengthen the

induction hypothesis.

Induction Hypothesis:

We know how to solve P (n− 1, k),0 ≤ k ≤ K.]

61

Knapsack: New Induction

New Induction Hypothesis:

We know how to solve P (n− 1, k),0 ≤ k ≤ K.

Resulting algorithm complexity:

T (n) = 2T (n− 1) + c n ≥ 2

T (n) = Θ(2n) by expanding sum.

Alternate: change variables as m = 2n.

2T (m/2) + c1n0.

From Theorem 3.4, we get Θ(mlog2 2) = Θ(2n).

But, there are only n(K + 1) problems defined.

• Problems are being re-solved many times by
this algorithm.

Try another hypothesis...

[We know how to solve P (i, k),1 ≤ i ≤ n− 1,0 ≤ k ≤ K.]

62

Improved Algorithm

Induction Hypothesis:

We know how to solve
P (i, k),1 ≤ i ≤ n− 1,0 ≤ k ≤ K.

To solve P (n, K):

If P (n− 1, K) has a solution,

Then P (n, K) has a solution.

Else If P (n− 1, K − kn) has a solution,

Then P (n, K) has a solution.

Else P (n, K) has no solution.

Implementation:

• Store an n× (K + 1) matrix to contain
solutions for all the P (i, k).

• Fill in the table row by row.

• Alternately, fill in table using logic above.

[To solve P (i, k) look at entry in the table. If it is marked, then

OK, otherwise solve recursively. Initially, fill in all P (i,0).]

Analysis:

T (n) = Θ(nK).

Space needed is also Θ(nK).

63

Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.

Matrix M:

0 1 2 3 4 5 6 7 8 9 10
k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:

− No solution for P (i, k)

O Solution(s) for P (i, k) with i omitted.

I Solution(s) for P (i, k) with i included.

I/O Solutions for P (i, k) both with i included
and with i omitted.

Example: M(3, 9) contains O because P (2, 9)
has a solution.

It contains I because P (2,2) = P (2,9− 7) has
a solution.

How can we find a solution to P (5,10) from M?

How can we find all solutions for P (5,10)?

64

Solution Graph

Find all solutions for P (5,10).

M(5, 10)

M(4, 9)

M(3, 9)

M(2, 2)

M(1, 0)

M(2, 9)

M(1, 9)

The result is an n-level DAG.

[Alternative approach:

Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.

To avoid storing the large array, use hashing for storing (and

retrieving) subproblem solutions.]

65

Dynamic Programming

This approach of storing solutions to
subproblems in a table is called
dynamic programming.

It is useful when the number of distinct
subproblems is not too large, but subproblems
are executed repeatedly.

Implementation: Nested for loops with logic to
fill in a single entry.

Most useful for optimization problems.

66

Chained Matrix Multiplication

Problem: Compute the product of n matrices

M = M1 ×M2 × · · · ×Mn

as efficiently as possible.

If A is r × s and B is s× t, then

COST(A×B) = [rst]

SIZE(A×B) = [r × t]

If C is t× u then

COST((A×B)×C) = [(rst)+(r× t)(t×u) = rst+ rtu.]

COST((A× (B × C))) = [(r × s)(s× u) = rsu + stu.]

67

Order Matters

Example:

A = 2× 8;B = 8× 5;C = 5× 20

COST((A×B)× C) = [2 · 8 · 5 + 2 · 5 · 20 = 280.]

COST(A× (B × C)) = [8 · 5 · 20 + 2 · 8 · 20 = 1120.]

View as binary trees:

[We would like to find the optimal order for computation

before actually doing the matrix multiplications.]

68

Chained Matrix Induction

Induction Hypothesis: We can find the
optimal evaluation tree for the multiplication of
≤ n− 1 matrices.

Induction Step: Suppose that we start with
the tree for:

M1 ×M2 × · · · ×Mn−1

and try to add Mn.

Two obvious choices:

1. Multiply Mn−1 ×Mn and replace Mn−1 in
the tree with a subtree.

2. Multiply Mn by the result of P (n− 1): make
a new root.

[Problem: There is no reason to believe that either of these

yields the optimal ordering.]

Visually, adding Mn may radically order the
(optimal) tree.

69

Alternate Induction

Induction Step: Pick some multiplication as
the root, then recursively process each subtree.

Which one? Try them all!

Choose the cheapest one as the answer.

How many choices? [n− 1 for root.]

Observation: If we know the ith multiplication
is the root, then the left subtree is the optimal
tree for the first i− 1 multiplications and the
right subtree is the optimal tree for the last
n− i− 1 multiplications.

Notation: for 1 ≤ i ≤ j ≤ n,

c[i, j] = minimum cost to multiply
Mi ×Mi+1 × · · · ×Mj.

So,

c[1, n] = min
1≤i≤n−1

r0rirn + c[1, i] + c[i + 1, n].

70

Analysis

Base Cases: For 1 ≤ k ≤ n, c[k, k] = 0.

More generally:

c[i, j] = min
1≤k≤j−1

ri−1rkrj + c[i, k] + c[k + 1, j]

Solving c[i, j] requires 2(j − i) recursive calls. [2

calls for each root choice, with (j − i) choices for root. But,

these don’t all have equal cost.]

Analysis:

T (n) =
n−1
∑

k=1

(T (k) + T (n− k)) = 2
n−1
∑

k=1

T (k)

T (1) = 1

T (n + 1) = T (n) + 2T (n) = 3T (n)

T (n) = Θ(3n)

Ugh!

But, note that there are only Θ(n2) values
c[i, j] to be calculated! [Actually, since j > i, only about

half that.]

71

Dynamic Programming

Make an n× n table with entry (i, j) = c[i, j].

c[1,1] c[1,2] · · · c[1, n]

c[2,2] · · · c[2, n]

· · · · · ·
· · · · · ·

c[n, n]

Only upper triangle is used.

Fill in table diagonal by diagonal.

c[i, i] = 0.

For 1 ≤ i < j ≤ n,

c[i, j] = min
i≤k≤j−1

ri−1rkrj + c[i, k] + c[k + 1, j].

72

Dynamic Programming Analysis

The time to calculate c[i, j] is proportional to
j − i.

There are Θ(n2) entries to fill.

T (n) = O(n3).

Also, T (n) = Ω(n3).

[For middle diagonal of size n/2, each costs n/2.]

How do we actually find the best evaluation
order?

[For each c[i, j], remember the k (the root of the tree) that
minimizes the expression.

So, store in the table the next place to go.]

73

Summary

Dynamic programming can often be added to
an inductive proof to make the resulting
algorithm as efficient as possible.

Can be useful when divide and conquer fails to
be efficient.

Usually applies to optimization problems.

Requirements for dynamic programming:

1. Small number of subproblems, small
amount of information to store for each
subproblem.

2. Base case easy to solve.

3. Easy to solve one subproblem given
solutions to smaller subproblems.

74

Sorting

Each record contains a field called the key.

Linear order: comparison.

[a < b and b < c⇒ a < c.]

The Sorting Problem

Given a sequence of records R1, R2, ..., Rn with
key values k1, k2, ..., kn, respectively, arrange the
records into any order s such that records
Rs1, Rs2, ..., Rsn have keys obeying the property
ks1 ≤ ks2 ≤ ... ≤ ksn.

[Put keys in ascending order.]

Measures of cost:

• Comparisons

• Swaps

75

Insertion Sort

void inssort(Elem* array, int n) { // Insertion Sort
for (int i=1; i<n; i++) // Insert i’th record

for (int j=i; (j>0) &&
(key(array[j])<key(array[j-1])); j--)

swap(array, j, j-1);
}

(*)

+-, (. /) 0
/�1
1�2
(*3
(*.
1�4
(*/
1�.
(*)

1�2
/�1
(�3
(�.
1�4
(�/
1�.
(�)

1
(�3
1�2
/�1
(�.
1�4
(�/
1�.
(�)

(*.
(*3
1�2
/�1
1�4
(*/
1�.

(�.
(�3
1�2
1�4
/�1
(�/
1�.

(�.
(�/
(�3
1�2
1�4
/�1
1�.

(�.
(�/
(�3
1�2
1�.
1�4
/�1

(*.
(*/
(*)
(*3
1�2
1�.
1�4
/�1

3

(�) (�) (�)

Best Case:[0 swaps, n− 1 comparisons]

Worst Case:[n2/2 swaps and compares]

Average Case:[n2/4 swaps and compares]

[Good best case performance.]

76

Exchange Sorting

Theorem: Any sort restricted to swapping
adjacent records must be Ω(n2) in the worst
and average cases.

[n2/4 – average distance from a record to its position in the
sorted output.

Note that for any permutation P , and any pair of positions i
and j, the relative order of i and j must be wrong in either P
or the inverse of P .

Thus, the total number of swaps required by P and the inverse
of P MUST be

n−1
∑

i=1

i =
n(n− 1)

2
.

]

77

Quicksort

Divide and Conquer: divide list into values less
than pivot and values greater than pivot.

[Initial call: qsort(array, 0, n-1);]

void qsort(Elem* array, int i, int j) { // Quicksort
int pivotindex = findpivot(array, i, j);
swap(array, pivotindex, j); // Swap to end
// k will be the first position in the right subarray
int k = partition(array, i-1, j, key(array[j]));
swap(array, k, j); // Put pivot in place
if ((k-i) > 1) qsort(array, i, k-1); // Sort left
if ((j-k) > 1) qsort(array, k+1, j); // Sort right

}

int findpivot(Elem* array, int i, int j)
{ return (i+j)/2; }

78

Quicksort Partition

int partition(Elem* array, int l, int r, int pivot) {
do { // Move the bounds inward until they meet

while (key(array[++l]) < pivot); // Move right
while (r && (key(array[--r]) > pivot));// Move left
swap(array, l, r); // Swap out-of-place vals

} while (l < r); // Stop when they cross
swap(array, l, r); // Reverse wasted swap
return l; // Return first pos in right partition

}

5

687:9;9=<

>@? 7�AB<

687:9;9DC

>@? 7�AEC

687:9;9DF

G C H I G JKJ J I LKC J F G F L J H�M
5 N

G C H I G JKJ J I LKC J F G F L J H�M
N5

L J H I G JKJ J I LKC J F G F G C H�M
N5

L J H I G JKJ J I LKC J F G F G C H�M
N5

L J H I G LKC J I JKJ J F G F G C H�M
N5

L J H I G LKC J I JKJ J F G F G C H�M
5N

L J H I G J I L�C JKJ J F G F G C H�M

OQPKRTSURV7W5

>@? 7�AEF

XZY�[\Y]N^9'Y >�? 7�A L J H I G LKC
N 5

J I JKJ J F G F G C H�M
N

The cost for Partition is Θ(n).

79

Quicksort Example

_*`
a�bdcfehgji k a�bdcfehgji l8m

a�bdcWe8gji n8l
o�p q�r o _

q�r

s o�p o _ q�r s*t r*p r ` _�` _ q _�_
uvbxwzyv{$|ve*}-g�~����j}�}�y��

a�bdcWe8gji �v� a�bdcWe8g�i �hn

r�p s q�r _*_ s*t o�p _�` r ` o _ _ q
a�bQcfehg�i k8�

_ qr�pr `_�`_�_s*to*pq�rso _

s

�$��v�
a�bdcWe8gji �8�

o�p o _

_ q _*` _*_

_ q_�`

r�p r ` _ q _�_

80

Cost for Quicksort

Best Case: Always partition in half.

Worst Case: Bad partition.

Average Case:

f(n) = n− 1 +
1

n

n−1
∑

i=0

(f(i) + f(n− i− 1))

Optimizations for Quicksort:

• Better pivot.

• Use better algorithm for small sublists.

• Eliminate recursion.

81

Quicksort Average Cost

f(n) =

{

0 n ≤ 1

n− 1 + 1
n

∑n−1
i=0(f(i) + f(n− i− 1)) n > 1

Since the two halves of the summation are
identical,

f(n) =

{

0 n ≤ 1

n− 1 + 2
n

∑n−1
i=0 f(i) n > 1

Multiplying both sides by n yields

nf(n) = n(n− 1) + 2
n−1
∑

i=0

f(i).

82

Average Cost (cont.)

Get rid of the full history by subtracting nf(n)
from (n + 1)f(n + 1)

nf(n) = n(n− 1) + 2

n−1
∑

i=1

f(i)

(n + 1)f(n + 1) = (n + 1)n + 2

n
∑

i=1

f(i)

(n + 1)f(n + 1)− nf(n) = 2n + 2f(n)

(n + 1)f(n + 1) = 2n + (n + 2)f(n)

f(n + 1) =
2n

n + 1
+

n + 2

n + 1
f(n).

83

Average Cost (cont.)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the

recurrence, we get

f(n + 1) ≤ 2 +
n + 2

n + 1
f(n)

= 2 +
n + 2

n + 1

(

2 +
n + 1

n
f(n− 1)

)

= 2 +
n + 2

n + 1

(

2 +
n + 1

n

(

2 +
n

n− 1
f(n− 2)

))

= 2 +
n + 2

n + 1

(

2 + · · ·+ 4

3
(2 +

3

2
f(1))

)

= 2

(

1 +
n + 2

n + 1
+

n + 2

n + 1

n + 1

n
+ · · ·

+
n + 2

n + 1

n + 1

n
· · · 3

2

)

= 2

(

1 + (n + 2)

(

1

n + 1
+

1

n
+ · · ·+ 1

2

))

= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n logn).

84

Mergesort

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List l1 = half of the items from inlist;
List l2 = other half of the items from inlist;
return merge(mergesort(l1), mergesort(l2));

}

���

��� ��� ��� ��� ��� ��� ��� �*�

����������������������*�

��� ��� ��� ��� ��� ��� ��� ���

�*� ��� ��� ��� ��� ��� ���

85

Mergesort Implementation

Mergesort is tricky to implement.

void mergesort(Elem* array, Elem* temp,
int left, int right) {

int mid = (left+right)/2;
if (left == right) return; // List of one ELEM
mergesort(array, temp, left, mid); // Sort 1st half
mergesort(array, temp, mid+1, right);// Sort 2nd half
for (int i=left; i<=right; i++) // Copy to temp

temp[i] = array[i];
// Do the merge operation back to array
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1) // Left sublist exhausted
array[curr] = temp[i2++];

else if (i2 > right) // Right sublist exhausted
array[curr] = temp[i1++];

else if (key(temp[i1]) < key(temp[i2]))
array[curr] = temp[i1++];

else array[curr] = temp[i2++];
}}

[Note: This requires a second array.]

Mergesort cost:[Θ(n logn)]

Mergesort is good for sorting linked lists.

[Send records to alternating linked lists, mergesort each, then

merge.]

86

Heaps

Heap: Complete binary tree with the
Heap Property:

• Min-heap: all values less than child values.

• Max-heap: all values greater than child
values.

The values in a heap are partially ordered.

Heap representation: normally the array based
complete binary tree representation.

87

Building the Heap
[Max Heap]

�

���:�

� �

� �

�����

� �

� � �

�

� � � � �� � �

�� ��

� � �

�

�

(a) requires exchanges (4-2), (4-1), (2-1),
(5-2), (5-4), (6-3), (6-5), (7-5), (7-6).

(b) requires exchanges (5-2), (7-3), (7-1),
(6-1).

[How to get a good number of exchanges? By induction.

Heapify the root’s subtrees, then push the root to the correct

level.]

88

Siftdown

For fast heap construction:

• Work from high end of array to low end.

• Call siftdown for each item.

• Don’t need to call siftdown on leaf nodes.

void heap::buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

void heap::siftdown(int pos) { // Put ELEM in place
assert((pos >= 0) && (pos < n));
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) && (key(Heap[j]) < key(Heap[j+1])))
j++; // j now index of child with greater value

if (key(Heap[pos]) >= key(Heap[j])) return; // Done
swap(Heap, pos, j);
pos = j; // Move down

}
}

Cost for heap construction:

logn
∑

i=1

(i− 1)
n

2i
≈ n.

[(i− 1) is number of steps down, n/2i is number of nodes at

that level.]

89

Heapsort

Heapsort uses a max-heap.

void heapsort(Elem* array, int n) { // Heapsort
heap H(array, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort

H.removemax(); // Value placed at end of heap
}

Cost of Heapsort:[Θ(n logn)]

Cost of finding k largest elements: [Θ(k logn + n).

Time to build heap: Θ(n).

Time to remove least element: Θ(logn).]

[Compare to sorting with BST: this is expensive in space

(overhead), potential bad balance, BST does not take

advantage of having all records available in advance.]

[Heap is space efficient, balanced, and building initial heap is

efficient.]

90

Heapsort Example

 �¡

¢¤£¦¥¨§:¥d©«ª�¬:Z®�¯±°³²³£µ´

¶ ®³¥d¬¸·j¹º²#ª�»

¼ ²³¯¾½À¿³²¤ÁÀÁ

¼ ²³¯¾½À¿³²¤ÁÀÂ

¼ ²³¯¾½À¿³²¤ÁÀÃ

Ä ¡

 : Å�Æ
Ç

 �

Å�ÆÇ

 �È

Ä:É
Å Ç

Å�Æ Ç�É È Ä

 �¡

Ä:É Å�Æ
Å

Ç�É Ç

Ä ¡

Å Å�Æ Ç�É Ç

 � :È �¡ Ä�É Ä ¡ Ç�É È Ä Å Ç Å:Æ

Ä ¡ Å È Ä � Å:Æ Ç�É �¡ Ä:É Ç :È

 �È Ä ¡ �¡ Ä�É Å�Æ Ç�É È Ä Å Ç �

 :¡ Ä ¡ È Ä Ä:É Å�Æ Ç�É Ç Å �È �

Ä ¡ Ä�É È Ä Å Å�Æ Ç�É Ç �¡ �È �

Å È Ä

 :È

 �ÈÄ:É
Ç�É :¡

Ä:É Ä ¡ Ç:É È Ä
Å

Ä:É È Ä

Ä ¡ :¡

Ä ¡ È Ä

91

Binsort

A simple, efficient sort:

for (i=0; i<n; i++)
B[key(A[i])] = A[i];

[Only works for a permutation of 0 to n− 1.]

Ways to generalize:

• Make each bin the head of a list.[Support

duplicates]

• Allow more keys than records.[I.e., larger key

space]

void binsort(ELEM *A, int n) {
list B[MaxKeyValue];
for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
for (i=0; i<MaxKeyValue; i++)

for (B[i].first(); B[i].isInList(); B[i].next())
output(B[i].currValue());

}

Cost:[Θ(n).]

[Oops! Actually, Θ(n ∗Maxkeyvalue)]

[Maxkeyvalue could be O(n2) or worse.]

92

Radix Sort

Ê�Ë

Ì
Í
Ê
Î
Ï
Ë
Ð
Ñ
Ò
Ó

Ì
Í
Ê
Î
Ï
Ë
Ð
Ñ
Ò
Ó ÓWÍ Ó Ñ

Ñ Ê
Ò Ï

Í Ë
Í Ñ
Ê�Î Ê�Ë

Ð Ñ

Ê Ñ Ê:Ò
Ê:Î
Ò Ï
Ë Ê:Ë

Ê Ñ
Ê:Ò

ÓWÍ Í
Ñ Ê

Ó Ñ Í Ñ Ð Ñ

Ô8ÕUÖ«×\ØÚÙÜÛ�Ý*Þ8ß¦ÖàÙâáÀã�ÖàÖ³ä ÓWÍ Í Ñ Ê Ê�Î Ò Ï Ë Ê�Ë Ê Ñ Ó Ñ Í Ñ Ð Ñ Ê:Ò
Ô8ÕUÖ«×\ØÚÙÜÛ�Ý*Ö;Õ³å³ÛKæ�çèáÀã�ÖàÖ³ä Í Í ÑË Ê�Î Ê:Ë Ê Ñ Ê�Ò Ð Ñ Ñ Ê Ò Ï ÓfÍ Ó Ñ

éKêµß¦ÖàÙâáÀã�ÖàÖë ÛKæjßxê¨ìWí�ÙÜç�ê¨ì�ê¨Ù�î ï Õ³å³Û�æ�çðáÀã�ÖàÖë Û�æjØ¨Õ#ÝxÙÜç�ê¨ì�ê¨Ù�î
ñdæ:ê¨Ù;êTã\Øºò�ê¸ÖàÙ«ä Ê Ñ ÓWÍ Í Ó Ñ Í Ñ Ê�Î Ò Ï Ê:Ò Ñ Ê Ë Ð Ñ

93

Cost of Radix Sort

void radix(Elem* A, Elem* B, int n, int k, int r,
int* count) {

// Count[i] stores number of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtok*=r) {// k digits
for (int j=0; j<r; j++) count[j] = 0; // Init

// Count number of records for each bin this pass
for (j=0; j<n; j++) count[(key(A[j])/rtok)%r]++;

// Index B: count[j] is index for last slot of j.
for (j=1; j<r; j++) count[j] = count[j-1]+count[j];

// Put recs into bins working from bottom of bin.
// Since bins fill from bottom, j counts downwards
for (j=n-1; j>=0; j--)
B[--count[(key(A[j])/rtok)%r]] = A[j];

for (j=0; j<n; j++) A[j] = B[j]; // Copy B to A
}

}

Cost: Θ(nk + rk).

How do n, k and r relate?

[r can be viewed as a constant. k ≥ logn if there are n distinct

keys.]

94

Radix Sort Example

ó

ô\õQöø÷�ùûúÀüý÷�÷ÿþ�ü������'÷��	��ö�
������ù��

�����³ù�ü:ö-ö¦ü������������� ú��:÷Uõ ù�õ����÷��	�Kö��ÿö-ö ü �"!#�

$%���&�'�)(züý÷�÷+*,�-�ÿöxö ü��.�/�

0�1�2'354 *��

6 ��7����� ú�ü�÷�÷ÿþ�ü8�����U÷��	��ö9
������ù:�
0�1�2'354 *�;<�

�����³ù�ü:ö-ö¦ü������������� ú��:÷Uõ ù�õ����÷��	�Kö��ÿö-ö ü �"!#�

$%���&�'�)(züý÷�÷/=<�-�ÿöxö ü��.�/�

> ? ó @ A B C D E F

> ? ó @ A B C D E F

? ó @ A B C D E F>

> ? ó @ A B C D E F
?�ó?'>FED DDD@ó

? B ?'D ó�@ ó�B óGD óGE CGD DKó E�A F�? FGD

����õ ù�õVü8�<�H��ú���ù:�I�ÿö-ö¦ü��.�

> ó ? ? ? ó > A ? >

> ó @ A B D D ?G? ?�ó ?�ó

óGD F�? ? F�D ?'D óG@ EGA óGE DKó B C�D óGB

F�? ? DKó ó�@ E�A B óGB óGD F�D ?'D C�D óGE

ó???>>>A?

95

Sorting Lower Bound

Want to prove a lower bound for all possible

sorting algorithms.

Sorting is O(n logn).

Sorting I/O takes Ω(n) time.

Will now prove Ω(n logn) lower bound.

Form of proof:

• Comparison based sorting can be modeled
by a binary tree.

• The tree must have Ω(n!) leaves.

• The tree must be Ω(n logn) levels deep.

96

Decision Trees

JLK+M

JON<P QOR

JON<P QOR JON<P Q&R

JON<P Q&R JONP QOR

SUTWV�X�YZSUT\[�X]

S^T_-X�YZS^TWV`X] SUT_�X�YZSUTWV�X]

SUTWV�X�YZSUT\[�X]SUTWV�X�YZSUT\[�X]

a JbYcMU]ed

a KOYcM^]fd a KOY^Jc]fd

a K&YcMU]eda KOY^Jc]fd

MgJcK
MhJLK
M^KiJ
JjMUK

JLK+M
K+MgJ
KkJlM

JlM^K
JlM^K
JLK+M
KiJjM

MhJLK
MhJLK
M^KiJ
K+MgJ

JlM^K M^KiJ
M^KiJ
K+MgJ

MgJcK

KmMhJ MUKkJ

JLK+M
JLK+M
KiJjM

KkJlM

There are n! permutations, and at least 1 node
for each permutation.

A tree with n nodes has at least logn levels.

Where is the worst case in the decision tree?

97

Lower Bound Analysis

logn! ≤ lognn = n logn.

logn! ≥ log

(

n

2

)
n
2 ≥ 1

2
(n logn− n).

So, logn! = Θ(n logn).

Using the decision tree model, what is the
average depth of a node?

[logn− (1 or 2).]

This is also Θ(logn!).

98

External Sorting

Problem: Sorting data sets too large to fit in
main memory.

• Assume data stored on disk drive.

To sort, portions of the data must be brought
into main memory, processed, and returned to
disk.

An external sort should minimize disk accesses.

99

Model of External Computation

Secondary memory is divided into equal-sized
blocks (512, 2048, 4096 or 8192 bytes are
typical sizes).

The basic I/O operation transfers the contents
of one disk block to/from main memory.

Under certain circumstances, reading blocks of
a file in sequential order is more efficient.
(When?) [1) Adjacent logical blocks of file are physically

adjacent on disk. 2) No competition for I/O head.]

Typically, the time to perform a single block
I/O operation is sufficient to Quicksort the
contents of the block.

Thus, our primary goal is to minimize the
number fo block I/O operations.

Most workstations today must do all sorting on
a single disk drive.

[So, the algorithm presented here is general for these

conditions.]

100

Key Sorting

Often records are large while keys are small.

• Ex: Payroll entries keyed on ID number.

Approach 1: Read in entire records, sort them,
then write them out again.

Approach 2: Read only the key values, store
with each key the location on disk of its
associated record.

If necessary, after the keys are sorted the
records can be read and re-written in sorted
order.

[But, this is not usually done. (1) It is expensive (random

access to all records). (2) If there are multiple keys, there is

no “correct” order.]

101

External Sort: Simple Mergesort

Quicksort requires random access to the entire
set of records.

Better: Modified Mergesort algorithm

• Process n elements in Θ(logn) passes.

1. Split the file into two files.

2. Read in a block from each file.

3. Take first record from each block, output
them in sorted order.

4. Take next record from each block, output
them to a second file in sorted order.

5. Repeat until finished, alternating between
output files. Read new input blocks as
needed.

6. Repeat steps 2-5, except this time the
input files have groups of two sorted
records that are merged together.

7. Each pass through the files provides larger
and larger groups of sorted records.

A group of sorted records is called a run.

102

Problems with Simple Mergesort

nGoqp�rfsut�vxwyp�z:{}|k~ n�o�p�r�s�t�vxwyp�z:{�|I�n�o�p�rfs�t�vxwyp�z:{�|��
�:�

~W� �:� �:�

~W� �:�

� �

~W� ~W�

� � ~��

~��

� �

~��

� ��~����:�

� ��~�� ~�� ~��

~���:�

�:�

Is each pass through input and output files
sequential? [yes]

What happens if all work is done on a single
disk drive? [Competition for I/O head eliminates

advantage of sequential processing.]

How can we reduce the number of Mergesort
passes? [Read in a block (or several blocks) and do an

in-memory sort to generate large initial runs.]

In general, external sorting consists of two
phases:

1. Break the file into initial runs.

2. Merge the runs together into a single sorted
run.

103

Breaking a file into runs

General approach:

• Read as much of the file into memory as
possible.

• Perform and in-memory sort.

• Output this group of records as a single run.

104

Replacement Selection

1. Break available memory into an array for
the heap, an input buffer and an output
buffer.

2. Fill the array from disk.

3. Make a min-heap.

4. Send the smallest value (root) to the
output buffer.

5. If the next key in the file is greater than the
last value output, then

Replace the root with this key.

else

Replace the root with the last key in the
array.

Add the next record in the file to a new
heap (actually, stick it at the end of the
array).

�G�\�������,���	� �}� ���������\���� ���������� � ��� ���\�G���	�:�}� �:�8 � � �f�W��� �

105

Example of Replacement Selection

¡q¢

£¥¤§¦©¨yª «i¬ ¯®©°²± ³�¨yªW¦©¨yª

´uµ ´u¶

¶q· ´uµ

¶q·

´ ¡
´u·

¶�´
¶q¸

¹�´ ´u·

¡q¢
¶q·

¶�´
¶q¸ ¶q· ¸qµ

¹�´
´ ¡

¹q¸
¶�´

¶q¸ ¹�´ ¶�´
¡q¢ ¶q· ¸qµ ´ ¡

¸qµ ¡q¢

´u¶

¶�´ ¸qµ ¡q¢
´u· ¹�´

´uµ

¶q¸ ¶�´
´u·

¸qµ
¹�´

¡q¢

¶q¸

¹�´´u·
¶q¸ ¸qµ¶�´

106

Benefit from Replacement Selection

Use double buffering to overlap input,
processing and output.

How many disk drives for greatest advantage?

Snowplow argument:

• A snowplow moves around a circular track
onto which snow falls at a steady rate.

• At any instant, there is a certain amount of
snow S on the track. Some falling snow
comes in front of the plow, some behind.

• During the next revolution of the snowplow,
all of this is removed, plus 1/2 of what falls
during that revolution.

• Thus, the plow removes 2S amount of
snow.

Is this always true?

º'»\¼ ½²»¾»}¿ÁÀ¯ÂÄÃ

ÅqÆ ¿�Ç\»}¿¥ÈyÉmÇWÈ:Ê�Ë Ì�Í
»
Í
½�Â�ÇWÈ:Ê�Ë

Ì
¼�ÎÏÎ�¿¥È�É+ºGÈ:Ê�Ë

ºGÈ:ÊuË�ÐqÎxÊ�ËcÑiÊ Ò:Â ÀIÂ Èy»

107

Simple Mergesort may not be Best

Simple Mergesort: Place the runs into two files.

• Merge the first two runs to output file, then
next two runs, etc.

This process is repeated until only one run
remains.

• How many passes for r initial runs?[log r]

Is there benefit from sequential reading?

[Not if all on one disk drive.]

Is working memory well used?

[No – only 2 blocks are used.]

Need a way to reduce the number of passes.

[And use memory better.]

108

Multiway Merge

With replacement selection, each initial run is
several blocks long.

Assume that each run is placed in a separate
disk file.

We could then read the first block from each
file into memory and perform an r-way merge.

When a buffer becomes empty, read a block
from the appropriate run file.

Each record is read only once from disk during
the merge process.

In practice, use only one file and seek to
appropriate block.

ÓÕÔ�Ö�×GÔ�ÖÙØIÔ'Ú#Û8Ü

Ý�Þ ×GÔ�ÖàßÄÔ Þ�á

â§ã ã�ä åæåçåâ'è

ã�éê ë åæåçå

â'ìì â'ä åçåæå

ì ê ë â'ä â'ã åçåæå

109

Limits to Single Pass Multiway

Merge

Assume working memory is b blocks in size.

How many runs can be processed at one time?

The runs are 2b blocks long (on average).

[Because of replacement selection.]

How big a file can be merged in one pass?

[2b2]

Larger files will need more passes – but the run
size grows quickly!

[In K merge passes, process 2b(k+1) blocks.]

This approach trades Θ(log b) (possibly)
sequential passes for a single or a very few
random (block) access passes.

[Example: 128K → 32 4K blocks.

With replacement selection, get 256K-length runs.

One merge pass: 8MB. Two merge passes: 256MB.

Three merge passes: 8GB.]

110

General Principals of External

Sorting

In summary, a good external sorting algorithm
will seek to do the following:

• Make the initial runs as long as possible.

• At all stages, overlap input, processing and
output as much as possible.

• Use as much working memory as possible.
Applying more memory usually speeds
processing.

• If possible, use additional disk drives for
more overlapping of processing with I/O,
and allow for more sequential file
processing.

111

String Matching

Let A = a1a2 · · · an and B = b1b2 · · · bm, m ≤ n,
be two strings of characters.

Problem: Given two strings A and B, find the
first occurrence (if any) of B in A.

• Find the smallest k such that, for all
i,1 ≤ i ≤ m, ak+i = bi.

Example: Search for a certain word or pattern
in a text file.

Brute force approach:

A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.

112

String Matching Worst Case

Brute force isn’t too bad for small patterns and
large alphabets.

[Our example was a little pessimistic... but it wasn’t worst

case!]

However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

[Can quickly reject a position - no backtracking.]

113

Finding a Better Algorithm

Find B = xyxyyxyxyxx in

xyxxyxyxyyxyxyxyyxyxyxx

xyxy -- no chance for prefix til last x

xyxyy -- xyx could be prefix

xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!

[Actually don’t need even to repeat the prefix check – just

start in the middle of B!]

114

Knuth-Morris-Pratt Algorithm

Key to success:

• Preprocess B to create a table of
information on how far to slide B when a
mismatch is encountered.

Notation: B(i) is the first i characters of B.

For each character:

• We need the maximum suffix of B(i) that
is equal to a prefix of B.

next(i) = the maximum j (0 < j < i− 1) such
that bi−jbi−j+1 · · · bi−1 = B(j), and 0 if no such
j exists.

We define next(1) = −1 to distinguish it. [All

other cases compare current A value to appropriate B value.

The test told us there was no match at that position. If B[1]

does not match a character of A, that character is completely

rejected. We must slide B over it.]

next(2) = 0. Why?

[No value j such that 0 < j < i− 1. Conceptually, compare

beginning of B to current character.]

115

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11

x y x y y x y x y x x

[-1 0 0 1 2 0 1 2 3 4 3]

116

How to Compute Table?

By induction.

Base cases: next(1) and next(2) already
determined.

Induction Hypothesis: Values have been
computed up to next(i− 1).

Induction Step: For next(i): at most
next(i− 1) + 1. [Can only improve by 1.]

• When? bi−1 = bnext(i−1)+1.

• I.e., largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.

But, this is just a mismatch, so use next table
to compute where to check.

117

Complexity of KMP Algorithm

A character of A may be compared against
many characters of B.

• For every mismatch, we have to look at
another position in the table.

How many backtracks are possible?

If mismatch at bk, then only k mismatches are
possible.

But, for each mismatch, we had to go forward
a character to get to bk.

Since there are always n forward moves, the
total cost is O(n).

118

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare B(3) to this
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that
character.

119

Boyer-Moore String Match

Algorithm

Similar to KMP algorithm

Start scanning B from end of B.

When we get a mismatch, we can shift the
pattern to the right until that character is seen
again.

Ex: If “Z” is not in B, can move m steps to
right when encountering “Z”.

If “Z” in B at position i, move m− i steps to
the right.

This algorithm might make less than n
comparisons.

Example: Find abc in

xbycabc

abc

abc

abc

[Better for larger alphabets.]

120

Order Statistics

Definition: Given a sequence S = x1, x2, · · · , xn

of elements, xi has rank k in S if xi is the kth
smallest element in S.

Easy to find for a sorted list.

What if list is not sorted?

Problem: Find the maximum element.

Solution: [Compare element n to the maximum of the

previous n− 1 elements. Cost: n− 1 comparisons. This is

optimal since you must look at every element to be sure that

it is not the maximum.]

Problem: Find the minimum AND the
maximum elements.

Solution: Do independently.

• Requires 2n− 3 comparisons. [We can drop the

max when looking for the min.]

• Is this best? [Might be more efficient to do both at

once.]

121

Min and Max

Problem: Find the minimum AND the
maximum values.

Solution: By induction.

Base cases:

• 1 element: It is both min and max.

• 2 elements: One comparison decides.

Induction Hypothesis:

• Assume that we can solve for n− 2
elements.

Try to add 2 elements to the list. [Items n and

n− 1.]

[Conceptually: ? compares for n− 2 elements, plus one

compare for last two items, plus cost to join the partial

solutions.]

122

Min and Max

Induction Hypothesis:

• Assume that we can solve for n− 2
elements.

Try to add 2 elements to the list.

• Find min and max of elements n− 1 and n
(1 compare).

• Combine these two with n− 2 elements (2
compares).

• Total incremental work was 3 compares for
2 elements.

Total Work: [about 3n/2 comparisons]

What happens if we extend this to its logical
conclusion?

[It doesn’t get any better if we split the sequence into two

halves.]

123

Kth Smallest Element

Problem: Find the kth smallest element from
sequence S.

Also called order statistics or selection.

Solution: Find min value and discard (k times).

• If k is large, find n− k max values.

Cost: O(min(k, n− k)n) – only better than
sorting if k is O(logn) or O(n− logn).

124

Better Kth Smallest Algorithm

Use quicksort, but take only one branch each
time.

Average case analysis:

f(n) = n− 1 +
1

n

n
∑

i=1

(f(i− 1))

Average case cost: O(n) time.

125

Two Largest Elements in a Set

Problem: Given a set S of n numbers, find the
two largest.

Want to minimize comparisons.

Assume n is a power of 2.

Solution: Divide and Conquer

Induction Hypothesis: We can find the two
largest elements of n/2 elements (lists P and
Q).

Using two more comparisons, we can find the
two largest of q1, q2, p1, p2.

T (2n) = 2T (n) + 2;T (2) = 1.

T (n) = 3n/2− 2.

Much like finding the max and min of a set. Is
this best?

126

A Closer Examination

Again consider comparisons.

If p1 > q1 then

compare p2 and q1 [ignore q2]

Else

compare p1 and q2 [ignore p2]

We need only ONE of p2, q2.

Which one? It depends on p1 and q1.

Approach: Delay computation of the second
largest element.

Induction Hypothesis: Given a set of size < n,
we know how to find the maximum element
and a “small” set of candidates for the second
maximum element.

127

Algorithm

Given set S of size n, divide into P and Q of
size n/2.

By induction hypothesis, we know p1 and q1,
plus a set of candidates for each second
element, CP and CQ.

If p1 > q1 then

new1 = p1;Cnew = CP ∪ q1.

Else

new1 = q1;Cnew = CQ ∪ p1.

At end, look through set of candidates that
remains.

What is size of C? [logn]

Total cost: [n− 1 + logn− 1]

128

Probabilistic Algorithms

All algorithms discussed so far are
deterministic.

Probabilistic algorithms include steps that are
affected by random events.

Example: Pick one number in the upper half of
the values in a set.

1. Pick maximum: n− 1 comparisons.

2. Pick maximum from just over 1/2 of the
elements: n/2 comparisons.

Can we do better? Not if we want a
guarantee.

129

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability
3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with
probability 1− 2−k.

Monte Carlo Algorithm: Good running time,
result not guaranteed.

[Pick k big enough and the chance for failure becomes less
than the chance that the machine will crash (i.e., probability
of getting an answer of a deterministic algorithm).

Rather have no answer than a wrong answer? If k is big

enough, the probability of a wrong answer is less than any

calamity with finite probability – with this probability

independent of n.]

Las Vegas Algorithm: Result guaranteed, but
not the running time.

130

Probabilistic Quicksort

Quicksort runs into trouble on highly structured
input.

Solution: Randomize input order.

• Chance of worst case is then 2/n!.

131

Coloring Problem

Let S be a set with n elements, let
S1, S2, · · · , Sk be a collection of distinct subsets
of S, each containing exactly r elements,
k ≤ 2r−2. [k, r picked to make calculation easy. Note the

sets are distinct, not disjoint.]

Problem: Color each element of S with one of
two colors, red or blue, such that each subset Si
contains at least one red and at least one blue.

Probabilistic solution:

• Take every element of S and color it either
red or blue at random.

This may not lead to a valid coloring, with
probability

k

2r−1
≤ 1

2
.

[Probability 1/2r that a subset is all red, 1/2r that a subset is

all blue, so probability 1/2r−1 that the subset is all one color.]

If it doesn’t work, try again!

132

Transforming to Deterministic Alg

First, generalize the problem:

Let S1, S2, · · · , Sk be distinct subsets of S. Let
si = |Si|.
Assume ∀i, si ≥ 2, |S| = n. Color each element
of S red or blue such that every Si contains a
red and blue element.

The probability of failure is at most:

F (n) =
k

∑

i=1

2/2Si

If F (n) < 1, then there exists a coloring that
solves the problem.

Strategy: Color one element of S at a time,
always choosing the color that gives the lower
probability of failure.

133

Deterministic Algorithm

Let S = {x1, x2, · · · , xn}.

Suppose we have colored xj+1, xj+2, · · · , xn and
we want to color xj. Further, suppose F (j) is
an upper bound on the probability of failure.

How could coloring xj red affect the probability
of failing to color a particular set Si?

Let PR(i, j) be this probability of failure.

Let P (i, j) be the probability of failure if the
remaining colors are randomly assigned.

PR(i, j) depends on these factors:

1. whether xj is a member of Si.

2. whether Si contains a blue element.

3. whether Si contains a red element.

4. the number of elements in Si yet to be
colored.

134

Deterministic Algorithm (cont)

Result:

1. If xj is not a member of Si, probability is
unchanged.

PR(i, j) = P (i, j).

2. If Si contains a blue element, then
PR(i, j) = 0.

3. If Si contains no blue element and some red
elements, then

PR(i, j) = 2P (i, j).

4. If Si contains no colored elements, then
probability of failure is unchanged.

PR(i, j) = P (i, j)

135

Deterministic Algorithm (cont)

Similarly analyze PB(i, j), the probability of
failure for set Si if xj is colored blue.

Sum the failure probabilities as follows:

FR(j) =
k

∑

i=1

PR(i, j)

FB(j) =
k

∑

i=1

PB(i, j)

Claim: FR(n− 1) + FB(n− 1) ≤ 2F (n).

PR(i, j) + PB(i, j) ≤ 2P (i, j).

[This means that if you pick the correct color, then the

probability of failure will not increase (and hopefully decrease)

since it must be less than F (n).]

Suffices to show that ∀i,
PR(i, j) + PB(i, j) ≤ 2P (i, j).

This is clear except in case (3) when
PR(i, j) = 2P (i, j).

But, then case (2) applies on the blue side, so
PB(i, j) = 0.

136

Final Algorithm

For j = n downto 1 do
calculate FR(j) and FB(j);
If FR(j) < FB(j) then

color xj red

Else
color xj blue.

By the claim, 1 ≥ F (n) ≥ F (n− 1) ≥ · · · ≥ F (1).

This implies that the sets are successfully
colored, i.e., F (1) = 0.

Key to transformation: We can calculate FR(j)
and FB(j) efficiently, combined with the claim.

137

Random Number Generators

Reference: CACM, October 1998.

Most computers systems use a deterministic
algorithm to select pseudorandom numbers.

Linear congruential method:

• Pick a seed r(1). Then,

r(i) = (r(i− 1)× b) mod t.

Must pick good values for b and t.

[Lots of “commercial” random number generators have poor

performance because the don’t get the numbers right.]

Resulting numbers must be in the range: [0 to

t− 1.]

What happens if r(i) = r(j)? [They generate the

same number, which leads to a cycle of length |j − i|.]

t should be prime.

138

Random Number Generators (cont)

Some examples:

r(i) = 6r(i− 1) mod 13 =

· · ·1,6,10,8,9,2,12,7,3,5,4,11,1 · · ·
r(i) = 7r(i− 1) mod 13 =

· · ·1,7,10,5,9,11,12,6,3,8,4,2,1 · · ·
r(i) = 5r(i− 1) mod 13 =

· · ·1,5,12,8,1 · · ·
· · ·2,10,11,3,2 · · ·
· · ·4,7,9,6,4 · · ·
· · ·0,0 · · ·

The last one depends on the start value of the
seed.

Suggested generator:

r(i) = 16807r(i− 1) mod 231 − 1

139

Mode of a Multiset

Multiset: not (necessarily) distinct elements.

A mode of a multiset is an element that occurs
most frequently (there may be more than one).

The number of times that a mode occurs is its
multiplicity

Problem: Find the mode of a given multiset S.

Solution: Sort, and then scan in sequential
order counting multiplicities.

O(n logn + n). Is this best?

140

Mode Induction

Induction Hypothesis: We know the mode of
a multiset of n− 1 elements.

Problem: The nth element may break a tie,
creating a new mode.

Stronger IH: Assume that we know ALL
modes of a multiset with n− 1 elements.

Problem: We may create a new mode with the
nth element.

What if the nth element is chosen to be
special?

• Example: nth element is the maximum
element

• Better: Remove ALL occurrences of the
maximal element.

Still too slow – particularly if elements are
distinct.

141

New Approach

Use divide and conquer:

• Divide the multiset into two approximately
equal, disjoint parts.

Note that we can find the median (position
n/2) in O(n) time.

This makes 3 multilists: less than, equal to,
and greater than the median.

Solve for each part.

T (n) ≤ 2T (n/2) + O(n), T (2) = 1.

Result: O(n logn). No improvement.

Observation: Don’t look at lists smaller than
size M where M is the multiplicity of the mode.

142

Implementation

Look at each submultilist.

If all contain more than one element, subdivide
them all.

T (n) ≤ 2T (n/2) + O(n), T (M) = O(M).

T (n) = O(n log(n/M)).

This may be superior to sorting, but only if M
is “large” and comparisons are expensive.

143

Graph Algorithms

Graphs are useful for representing a variety of
concepts:

• Data Structures

• Relationships

• Families

• Communication Networks

• Road Maps

144

Graph Terminology

A graph G = (V,E) consists of a set of
vertices V, and a set of edges E, such that
each edge in E is a connection between a pair
of vertices in V.

Directed vs. Undirected

Labeled graph, weighted graph

[labels for edges vs. weights for edges]

Multiple edges, loops

Cycle, Circuit, path, simple path, tours

Bipartite, acyclic, connected

Rooted tree, unrooted tree, free tree

145

A Tree Proof

Definition: A free tree is a connected,
undirected graph that has no cycles.

Theorem: If T is a free tree having n vertices,
then T has exactly n− 1 edges. [This is close to a

satisfactory definition for free tree. There are several

equivalent definitions for free trees, with similar proofs to

relate them.]

Proof: By induction on n.

Base Case: n = 1. T consists of 1 vertex and
0 edges.

Inductive Hypothesis: The theorem is true for
a tree having n− 1 vertices.

Inductive Step:

• If T has n vertices, then T contains a vertex
of degree 1.

• Remove that vertex and its incident edge to
obtain T ′, a free tree with n− 1 vertices.

• By IH, T ′ has n− 2 edges.

• Thus, T has n− 1 edges.

146

Graph Traversals

Various problems require a way to traverse a
graph – that is, visit each vertex and edge in a
systematic way.

Three common traversals:

1. Eulerian tours

Traverse each edge exactly once [a vertex may

be visited multiple times]

2. Depth-first search

Keeps vertices on a stack

3. Breadth-first search

Keeps vertices on a queue

147

Eulerian Tours

A circuit that contains every edge exactly once.

Example:

e
ca

b

f

d

Tour: b a f c d e.

Example:

g

ca
b

f

e

d

No Eulerian tour. How can you tell for sure?
[Because some vertices have odd degree.]

[All even nodes are necessary. Is this sufficient?]

148

Eulerian Tour Proof

Theorem: A connected, undirected graph with
m edges that has no vertices of odd degree has
an Eulerian tour.

Proof: By induction on m.

Base Case: [0 edges and 1 vertex fits the theorem.]

Inductive Hypothesis: [The theorem is true for < m

edges.]

Inductive Step:

• Start with an arbitrary vertex and follow a
path until you return to the vertex. [Always

possible, since each vertex has even degree.]

• Remove this circuit. What remains are
connected components G1, G2, ..., Gk each
with nodes of even degree and < m edges.

• By IH, each connected component has an
Eulerian tour.

• Combine the tours to get a tour of the
entire graph.

149

Depth First Search

void DFS(Graph& G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = G.first(v); G.isEdge(w); w = G.next(w))

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the
DFS.

Cost: Θ(|V|+ |E|).

í
î}ï�ð îWñ'ð

ò ó

ô
õ

ò ó

ö

ô
õ

í

ö

[The directions are imposed by the traversal. This is the

Depth First Search Tree.]

150

DFS Tree

If we number the vertices in the order that they
are marked, we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the
DFS tree T , or connects two vertices of G, one
of which is an ancestor of the other in T .

Proof: Consider the first time an edge (v, w) is
examined, with v the current vertex.

• If w is unmarked, then (v, w) is in T .

• If w is marked, then w has a smaller DFS
number than v AND (v, w) is an
unexamined edge of w.

• Thus, w is still on the stack. That is, w is
on a path from v.

[Results: No “cross edges.” That is, no edges connecting

vertices sideways in the tree.]

151

DFS for Directed Graphs

Main problem: A connected graph may not give
a single DFS tree.

3

2

1

5

4

6

9

7

8

Forward edges: (1, 3)

Back edges: (5, 1)

Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4,
2)

Solution: Maintain a list of unmarked vertices.

• Whenever one DFS tree is complete,
choose an arbitrary unmarked vertex as the
root for a new tree.

152

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has
a directed cycle iff every DFS of G produces a
back edge.

Proof:

1. Suppose a DFS produces a back edge
(v, w).

• v and w are in the same DFS tree, w an
ancestor of v. [See earlier lemma.]

• (v, w) and the path in the tree from w to
v form a directed cycle.

2. Suppose G has a directed cycle C.

• Do a DFS on G.

• Let w be the vertex of C with smallest
DFS number.

• Let (v, w) be the edge of C coming into
w.

• v is a descendant of w in a DFS tree.

• Therefore, (v, w) is a back edge.

153

Breadth First Search

Like DFS, but replace stack with a queue.

Visit the vertex’s neighbors before continuing
deeper in the tree.

void BFS(Graph& G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = G.first(v); G.isEdge(w); w=G.next(w))
if (G.getMark(G.v2(w)) == UNVISITED) {

G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}

÷
ø¥ù\ú ø²ûüú

ý
þ

ÿ

�

þ
ý

÷
�

ÿ

�

�

Non-tree edges connect vertices at levels
differing by 0 or 1.

154

Topological Sort

Problem: Given a set of jobs, courses, etc.
with prerequisite constraints, output the jobs in
an order that does not violate any of the
prerequisites.

���
��� ���

��� ��	

��
 ���

void topsort(Graph& G) { // Topological sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark array

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process all vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper function

}

void tophelp(Graph& G, int v) { // Helper function
G.setMark(v, VISITED);
// No PreVisit operation
for (Edge w = G.first(v); G.isEdge(w); w = G.next(w))

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}

[Prints in reverse order.]

155

Queue-based Topological Sort

void topsort(Graph& G) { // Topological sort: Queue
Queue Q(G.n());
int Count[G.n()];

for (int v=0; v<G.n(); v++) Count[v] = 0; // Init
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w=G.first(v); G.isEdge(w); w=G.next(w))
Count[G.v2(w)]++; // Add to v2’s prereq count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) // Vertex has no prereqs
Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for Vertex V
for (Edge w=G.first(v); G.isEdge(w); w=G.next(w)) {
Count[G.v2(w)]--; // One less prerequisite
if (Count[G.v2(w)] == 0) // Vertex is now free

Q.enqueue(G.v2(w));
}

}
}

156

Shortest Paths Problems

Input: A graph with weights or costs
associated with each edge.

Output: The list of edges forming the shortest
path.

Sample problems:

• Find the shortest path between two
specified vertices.

• Find the shortest path from vertex S to all
other vertices.

• Find the shortest path between all pairs of
vertices.

Our algorithms will actually calculate only
distances.

157

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A
to B.

w(A, B) is the weight of the edge connecting
A to B.

• If there is no such edge, then w(A, B) =∞.

�

���

�

� � ���

�

� �

�

�
�

[w(A, D) = 20; d(A, D) = 10 (through ACBD).]

158

Single Source Shortest Paths

Given start vertex s, find the shortest path
from s to all other vertices.

Try 1: Visit all vertices in some order, compute
shortest paths for all vertices seen so far, then
add the shortest path to next vertex x.

Problem: Shortest path to a vertex already
processed might go through x.

Solution: Process vertices in order of distance
from s.

159

Dijkstra’s Algorithm Example

A B C D E

Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

�

�
���

�

� � ���

�

� �

� �

!

160

Dijkstra’s Algorithm: Array

void Dijkstra(Graph& G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = G.first(v); G.isEdge(w); w=G.next(w))
if (D[G.v2(w)] > (D[v] + G.weight(w)))

D[G.v2(w)] = D[v] + G.weight(w);
}

}

int minVertex(Graph& G, int* D) { // Get mincost vertex
int v; // Initialize v to any unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED) { v = i; break; }
for (i++; i<G.n(); i++) // Now find smallest D value

if ((G.getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;

return v;
}

Approach 1: Scan the table on each pass for
closest vertex.

Total cost: Θ(|V|2 + |E|) = Θ(|V|2).
161

Dijkstra’s Algorithm: Priority Queue

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph& G, int s) { // W/ priority queue
int v; // The current vertex
int D[G.n()]; // Distance array
Elem temp;
Elem E[G.e()]; // Heap array
temp.dist = 0; temp.vertex = s;
E[0] = temp; // Initialize heap
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Now, get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Rest unreachable
for (Edge w = G.first(v); G.isEdge(w); w=G.next(w))
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w); // Update D
temp.dist = D[G.v2(w)]; temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance in heap

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered
by D value. Must update priority queue for
each edge.

Total cost: Θ((|V|+ |E|) log |V|).
162

All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v).

Could run Dijkstra’s Algorithm —V— times.

[Cost: |V ||E| log |V | = |V |3 log |V | for dense graph.]

Better is Floyd’s Algorithm.

[The issue is how to efficiently check all the paths without

computing any path more than once.]

Define a k-path from u to v to be any path
whose intermediate vertices all have indices less
than k.

""

$
%

&
' (

(#)#**
#+*
"

"

[0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a

2 or 1 path. Everything is a 4 path.]

163

Floyd’s Algorithm

void Floyd(Graph& G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute all k paths
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}

164

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:

• Input: An undirected, connected graph G.

• Output: The subgraph of G that

1. has minimum total cost as measured by
summing the values for all of the edges
in the subset, and

2. keeps the vertices connected.

,

-

.

/ 0
1

2

3 4 5

6 4
7

3

165

Key Theorem for MST

Let V1, V2 be an arbitrary, non-trivial partition
of V . Let (v1, v2), v1 ∈ V1, v2 ∈ V2, be the
cheapest edge between V1 and V2. Then
(v1, v2) is in some MST of G.

Proof:

• Let T be an arbitrary MST of G.

• If (v1, v2) is in T , then we are done.

• Otherwise, adding (v1, v2) to T creates a
cycle C.

• At least one edge (u1, u2) of C other than
(v1, v2) must be between V1 and V2.

• c(u1, u2) ≥ c(v1, v2).

• Let T ′ = T ∪ {(v1, v2)} − {(u1, u2)}.
• Then, T ′ is a spanning tree of G and

c(T ′) ≤ c(T).

• But c(T) is minimum cost.

Therefore, c(T ′) = c(T) and T ′ is a MST
containing (v1, v2).

166

Key Theorem Figure

8:9<;>=@?BA CED�FG9H;>=I?JAKL?<;NMPORQS?UTWVYX[Z\O^]`_Ka?H;bMPORQI?cTdVYXeZfOhgi_
jkQSlm;>;e?JQ@Monp?BA�q�?

?Jr

?ts
uv;wOxF:yzT{?JA�q�?

VB|

VPsV�}

V�~

167

Prim’s MST Algorithm

void Prim(Graph& G, int s) { // Prim’s MST alg
int D[G.n()]; // Distance vertex
int V[G.n()]; // Who’s closest
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v); // Add to MST
if (D[v] == INFINITY) return; // Rest unreachable
for (Edge w = G.first(v); G.isEdge(w); w=G.next(w))
if (D[G.v2(w)] > G.weight(w)) {

D[G.v2(w)] = G.weight(w); // Update distance,
V[G.v2(w)] = v; // who came from

}}}

int minVertex(Graph& G, int* D) { // Min cost vertex
int v; // Initialize v to any unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED) { v = i; break; }
for (i=0; i<G.n(); i++) // Now find smallest value

if ((G.getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;

return v;
}

This is an example of a greedy algorithm.

168

Alternative Prim’s Implementation

Like Dijkstra’s algorithm, we can implement
Prim’s algorithm with a priority queue.

void Prim(Graph& G, int s) { // W/ priority queue
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY; // Init
D[s] = 0;
for (i=0; i<G.n(); i++) { // Now build MST

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v); // Add to MST
if (D[v] == INFINITY) return; // Rest unreachable
for (Edge w = G.first(v); G.isEdge(w); w=G.next(w))
if (D[G.v2(w)] > G.weight(w)) { // Update D

D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert distance in heap

}
}}

169

Kruskal’s MST Algorithm

Kruskel(Graph& G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges on array

for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) {

E[edgecnt].weight = G.weight(w);
E[edgecnt++].edge = w;

}
heap H(E, edgecnt, edgecnt); // Heapify the edges
int numMST = G.n(); // Init w/ n equiv classes
for (i=0; numMST>1; i++) { // Combine equiv classes

Elem temp = H.removemin(); // Get next cheap edge
Edge w = temp.edge;
int v = G.v1(w); int u = G.v2(w);
if (A.differ(v, u)) { // If different equiv classes
A.UNION(v, u); // Combine equiv classes
AddEdgetoMST(G.v1(w), G.v2(w)); // Add to MST
numMST--; // One less MST

}
}

}

How do we compute function MSTof(v)?

Solution: UNION-FIND algorithm (Section
4.3).

170

Kruskal’s Algorithm Example

Time dominated by cost for initial edge sort.

[Alternative: Use a min heap, quit when only one set left.

“Kth-smallest” implementation.]

Total cost: Θ(|V|+ |E| log |E|).

�

������������� � � � � � �

� �t����� � �
�

�

�

� �

� �t�����

���+�^�J�I�t�W�J���m� �@�¢¡£�^¤

� �
�

�

�

� �
�

� �t����¥

���+�^�J�I�t�W�J���m� �o�¦¡£�^¤

�
� �

�

�

� �
�

���+�^�J�I�t�W�J���m� �o�¦§£�¨¤

171

Matching

Suppose there are n workers that we want to
work in teams of two. Only certain pairs of
workers are willing to work together.

Problem: Form as many compatible
non-overlapping teams as possible.

Model using G, an undirected graph.

• Join vertices if the workers will work
together.

A matching is a set of edges in G with no
vertex in more than one edge (the edges are
independent).

• A maximal matching has no free pairs of
vertices that can extend the matching.

• A maximum matching has the greatest
possible number of edges.

• A perfect matching is a matching that
includes every vertex.

2

43

1

5

172

Very Dense Graphs

Theorem: Let G = (V, E) be an undirected
graph with |V |= 2n and every vertex having
degree ≥ n. Then G contains a perfect
matching.

Proof: Suppose that G does not contain a
perfect matching.

• Let M ⊆ E be a max matching. |M | < n.

• There must be two unmatched vertices
v1, v2 that are not adjacent. [Otherwise it would

be perfect.]

• Every vertex adjacent to v1 or to v2 is
matched. [Otherwise it would not be maximal.]

• Let M ′ ⊆M be the set of edges involved in
matching the neighbors of v1 and v2.

• There are ≥ 2n edges from v1 and v2 to M ′,
but |M ′| < n. [If edge not in M ′, add to matching.]

• Thus, some element of M ′ is adjacent to 3
edges from v1 and v2. [Pigeonhole Principle]

• Let (u1, u2) be such an element.

• Replacing (u1, u2) with (v1, u2) and (v2, u1)
results in a larger matching.

• Theorem proven by contradiction.

173

Generalizing the Insight

u2u3 u2 u1

v1 v2v1 v2

v1, u2, u1, v2 is a path from an unmatched
vertex to an unmatched vertex such that
alternate edges are unmatched and matched.

In one basic step, the unmatched and matched
edges are switched.

We have motivated the following definitions:

Let G = (V, E) be an undirected graph and
M ⊆ E a matching.

A path P that consists of alternately matched
and unmatched edges is called an
alternating path. An alternating path from
one unmatched vertex to another is called an
augmenting path.

174

Matching Example

10

1 2 3

5

4

76

9

811

1, 2, 3, 5 is an alternating path but NOT an
augmenting path.

7, 6, 11, 10, 9, 8 is an augmenting path with
respect to the given matching.

Observation: If a matching has an augmenting
path, then the size of the matching can be
increased by one by switching matched and
unmatched edges along the augmenting path.

175

The Augmenting Path Theorem

Theorem: A matching is maximum iff it has
no augmenting paths.

Proof:

• If a matching has augmenting paths, then it
is not maximum.

• Suppose M is a non-maximum matching.

• Let M ′ be any maximum matching. Then,
|M ′| > |M |.
• Let M⊕M ′ be the symmetric difference of

M and M ′.

M⊕M ′ = M ∪M ′ − (M ∩M ′).

• G′ = (V, M⊕M ′) is a subgraph of G having
maximum degree ≤ 2. [A vertex matches one

different vertex in M and M ′.]

• Therefore, the connected components of G′
are either even-length cycles or alternating
paths.

• Since |M ′| > |M |, there must be a
component of G′ that is an alternating path
having more M ′ edges than M edges.

• This is an augmenting path for M .

176

Bipartite Matching

A bipartite graph G = (U, V, E) consists of two
disjoint sets of vertices U and V together with
edges E such that every edge has an endpoint
in U and an endpoint in V .

Bipartite matching naturally models a number
of assignment problems, such as assignment of
workers to jobs.

Augmenting paths will work to find a maximum
bipartite matching. An augmenting path always
has one end in U and the other in V .

If we direct unmatched edges from U to V and
matched edges from V to U , then a directed
path from an unmatched vertex in U to an
unmatched vertex in V is an augmenting path.

177

Bipartite Matching Example

3

4

5 10

9

8

72

1 6

2, 8, 5, 10 is an augmenting path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint
augmenting paths that we can augment
independently.

[Naive algorithm: Find a maximal matching (greedy
algorithm).

For each vertex:

Do a DFS or other search until an augmenting path is
found.

Use the augmenting path to improve the match.

|V |(|V |+ |E|)]

178

Algorithm for Maximum Bipartite

Matching

Construct BFS subgraph from the set of
unmatched vertices in U until a level with
unmatched vertices in V is found.

Greedily select a maximal set of disjoint
augmenting paths. [Order doesn’t matter. Find a path,

remove its vertices, then repeat.]

Augment along each path independently. [Since

they are disjoint.]

Repeat until no augmenting paths remain.

Time complexity O((|V |+ |E|)
√

|V |).

179

Network Flows

Models distribution of utilities in networks such
as oil pipelines, waters systems, etc. Also,
highway traffic flow.

Simplest version:

A network is a directed graph G = (V, E)
having a distinguished source vertex s and a
distinguished sink vertex t. Every edge (u, v) of
G has a capacity c(u, v) ≥ 0. If (u, v) /∈ E, then
c(u, v) = 0.

0

3 4

s t

1 2

20

10

5

3

10

10

2
3

20

0

180

Network Flow Definitions

A flow in a network is a function

f : V × V → R

with the following properties.

(i) Skew Symmetry:

∀v, w ∈ V, f(v, w) = −f(w, v).

(ii) Capacity Constraint:

∀v, w,∈ V, f(v, w) ≤ c(v, w).

If f(v, w) = c(v, w) then (v, w) is saturated.

(iii) Flow Conservation:

∀v ∈ V − {s, t},
∑

f(v, w) = 0.

Equivalently,

∀v ∈ V − {s, t},
∑

u
f(u, v) =

∑

w
f(v, w).

In other words, flow into v equals flow out
of v.

181

Flow Example

+infinity, 13

3 4

s t

1 2 10, 5

10, 8

2, 2

20, 10

3, -3

5, 3

3, 0

20, 10

10, 3

0, -10

[3, -3 is an illustration of “negative flow” returning. Every

node can be thought of as having negative flow. We will make

use of this later – augmenting paths.]

Edges are labeled “capacity, flow”.

Can omit edges w/o capacity and non-negative
flow.

The value of a flow is

|f | =
∑

w∈V

f(s, w) =
∑

w∈V

f(w, t).

182

Max Flow Problem

Problem: Find a flow of maximum value.

Cut (X, X ′) is a partition of V such that
s ∈ X, t ∈ X ′.

The capacity of a cut is

c(X, X ′) =
∑

v∈X,w∈X ′
c(v, w).

A min cut is a cut of minimum capacity.

183

Cut Flows

For any flow f , the flow across a cut is:

f(X, X ′) =
∑

v∈X,w∈X ′
f(v, w).

Lemma: For all flows f and all cuts (X, X ′),

f(X, X ′) = |f |.

Proof:

f(X, X ′) =
∑

v∈X,w∈X ′
f(v, w)

=
∑

v∈X,w∈V

f(v, w)−
∑

v∈X,w∈X

f(v, w)

=
∑

w∈V

f(s, w)− 0

= |f |.

Corollary: The value of any flow is less than or
equal to the capacity of a min cut.

184

Residual Graph

Given any flow f , the residual capacity of the
edge is

res(v, w) = c(v, w)− f(v, w) ≥ 0.

Residual graph is a network R = (V, ER) where
ER contains edges of non-zero residual capacity.

3 4

s t

1 2
6

2
5

5

2
2

8

10

10

10

10

3

7

3

[R is the network after f has been subtracted.

Saturated edges do not appear.

Some edges have larger capacity than in G.]

185

Observations

1. Any flow in R can be added to F to obtain
a larger flow in G.

2. In fact, a max flow f ′ in R plus the flow f
(written f + f ′) is a max flow in G.

3. Any path from s to t in R can carry a flow
equal to the smallest capacity of any edge
on it.

• Such a path is called an
augmenting path.

• For example, the path

s,1,2, t

can carry a flow of 2 units = c(1,2).

186

Max-flow Min-cut Theorem

The following are equivalent:

(i) f is a max flow.

(ii) f has no augmenting path in R.

(iii) |f | = c(X, X ′) for some min cut (X, X ′).

Proof:

(i) ⇒ (ii):

• If f has an augmenting path, then f is not
a max flow.

(ii) ⇒ (iii):

• Suppose f has no augmenting path in R.

• Let X be the subset of V reachable from s
and X ′ = V −X.

• Then s ∈ X, t ∈ X ′, so (X, X ′) is a cut.

• ∀v ∈ X, w ∈ X ′,
res(v, w) = c(v, w)− f(v, w) = 0.

• f(X, X ′) =
∑

v∈X,w∈X ′ f(v, w) =
∑

v∈X,w∈X ′ c(v, w) = c(X, X ′).

• By Lemma, |f | = c(X, X ′) and (X, X ′) is a
min cut.

187

Proof (cont)

(iii) ⇒ (i)

• Let f be a flow such that |f | = c(X, X ′) for
some (min) cut (X, X ′).
• By Lemma, all flows f ′ satisfy
|f ′| ≤ c(X, X ′) = |f |.

Thus, f is a max flow.

Corollary: The value of a max flow equals the
capacity of a min cut.

This suggests a strategy for finding a max flow.

R = G; f = 0;

repeat

find a path from s to t in R;

augment along path to get a larger flow f;

update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always
terminates with f equal to max flow.

188

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R of minimum
length.

Performance: O(|V |3) where c is an upper
bound on capacities.

There are numerous other approaches to
finding augmenting paths, giving a variety of
different algorithms.

Network flow remains an active research area.

189

Geometric Algorithms

Potentially large set of objects to manipulate.

• Possibly millions of points, lines, squares,
circles.

• Efficiency is crucial.

Computational Geometry

• Will concentrate on discrete algorithms –
2D

[Same principles often apply to 3D, but it may be more
complicated.

We will avoid continuous problems such as polygon

intersection.]

Practical considerations

• Special cases [Geometric programming is much like

other programming in this sense]

• Numeric stability [Floating point causes problems!]

190

Definitions

A point is represented by a pair of coordinates
(x, y).

A line is represented by distinct points p and q.

• Manber’s notation: −p− q−.

A line segment is also represented by a pair of
distinct points: the endpoints.

• Notation: p− q.

A path P is a sequence of points p1, p2, · · · , pn

and the line segments
p1 − p2, p2 − p3, · · · , pn−1 − pn connecting them.

A closed path has p1 = pn. This is also called
a polygon.

• Points ≡ vertices.

• A polygon is a sequence of points, not a
set. [Order matters. A left-handed and right-handed

triangle are not the same even if they occupy the same

space.]

191

Definitions (cont)

Simple Polygon: The corresponding path does
not intersect itself.

• A simple polygon encloses a region of the
plane INSIDE the polygon.

Basic operations, assumed to be computed in
constant time:

• Determine intersection point of two line
segments.

• Determine which side of a line that a point
lies on.

• Determine the distance between two points.

192

Point in Polygon

Problem: Given a simple polygon P and a
point q, determine whether q is inside or outside
P .

Basic approach:

• Cast a ray from q to outside P . Call this L.

• Count the number of intersections between
L and the edges of P .

• If count is even, then q is outside. Else, q is
inside.

Problems:

• How to find intersections?

• Accuracy of calculations.

• Special cases. [

– Line intersects polygon at a vertex, goes in to out.

– Line intersects polygon at an inflection point (stays
in).

– Line intersects polygon through a line.

Simplify calculations by making line horizontal.]

193

Point in Polygon Analysis

Time complexity:

• Compare the ray to each edge.

• Each intersection takes constant time.

• Running time is O(n).

Improving efficiency:

• O(n) is best possible for problem as stated.

• Many lines are “obviously” not intersected.

Two general principles for geometrical and
graphical algorithms:

1. Operational (constant time) improvements:

• Only do full calc. for ‘good’ candidates

• Perform ‘fast checks’ to eliminate edges.

• Ex: If p1.y > q.y and p2.y > q.y then don’t
bother to do full intersection calculation.

2. For many point-in-polygon operations,
preprocessing may be worthwhile.

• Ex: Sort edges by min and max y values.

Only check for edges covering y value of
point q.

[spatial data structures]

194

Constructing Simple Polygons

Problem: Given a set of points, connect them
with a simple closed path.

Approaches:

1) Randomly select points.

[Could easily yield an intersection.]

2) Use a scan line:

• Sort points by y value.

• Connect in sorted order.

[The problem is connecting point pn back to p1. This could

yield an intersection.]

195

Simple Polygons (cont)

3) Sort points, but instead of by y value, sort
by angle with respect to the vertical line
passing through some point.

• Simplifying assumption: The scan line hits
one point at a time.

• Do a rotating scan through points,
connecting as you go.

196

Validation

Theorem: Connecting points in the order in
which they are encountered by the rotating
scan line creates a simple polygon.

Proof:

• Denote the points p1, · · · , pn by the order in
which they are encountered by the scan line.

• For all i, 1 ≤ i < n, edge pi − pi+1 is in a
distinct slice of the circle formed by a
rotation of the scan line.

• Thus, edge pi − pi+1 does not intersect any
other edge.

• Exception: If the angle between points pi
and pi+1 is greater than 180◦.

197

Implementation

How do we find the next point?

[Pick as z the point with greatest x value (and least y value if
there is a tie)

The next point is the next largest angle between z − pi and the

vertical line through z.]

Actually, we don’t care about angle – slope will
do.

Select z;
for (i = 2 to n)

compute the slope of line z − pi.
Sort points pi by slope;
label points in sorted order;

Time complexity: Dominated by sort.

198

Convex Hull

A convex hull is a polygon such that any line
segment connecting two points inside the
polygon is itself entirely inside the polygon.

A convex path is a path of points p1, p2, · · · , pn

such that connecting p1 and pn results in a
convex polygon.

The convex hull is a set of points is the smallest
convex polygon enclosing all the points.

• imagine placing a tight rubberband around
the points.

The point belongs to the hull if it is a vertex
of the hull.

Problem: Compute the convex hull of n points.

199

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex
hull for < n points, and try to add the nth
point.

1. nth point is inside the hull.

• No change.

2. nth point is outside the convex hull

• “Stretch” hull to include the point
(dropping other points).

200

Subproblems

Potential problems as we process points:

1. Determine if point is inside convex hull.

2. Stretch a hull.

The straightforward induction approach is
inefficient. (Why?)

• Standard alt: Select a special point for the
nth point – some sort of min or max point.

If we always pick the point with max x, what
problem is eliminated?

[Subproblem 1 – max is always outside.]

Stretch:

1. Find vertices to eliminate

2. Add new vertex between existing vertices.

Supporting line of a convex polygon is a line
intersecting the polygon at exactly one vertex.

Only two supporting lines between convex hull
and max point q.

These supporting lines intersect at “min” and
“max” points on the (current) convex hull.

201

Sorted-Order Algorithm

set convex hull to be p1, p2, p3;
for q = 4 to n {

order points on hull with respect to pq;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

}

Time complexity:

Sort by x value: O(n logn).

For qth point:

• Compute angles: O(q)

• Find max and min: O(q)

• Delete and insert points: O(q).

T (n) = T (n− 1) + O(n) = O(n2)

202

Gift Wrapping Concept

Straightforward algorithm has inefficiencies.

[Spend time to build convex hull with points interior to final

convex hull.]

Alternative: Consider the whole set and build
hull directly.

Approach:

• Find an extreme point as start point.

• Find a supporting line.

• Use the vertex on the supporting line as the
next start point and continue around the
polygon.

Corresponding Induction Hypothesis:

• Given a set of n points, we can find a
convex path of length k < n that is part of
the convex hull.

The induction step extends the PATH, not the
hull.

203

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P ;

P = ∅;
Point p = the point in S with largest x coordinate;
P = P ∪ p;
Line L = the vertical line containing p;
while (P is not complete) do {

Point q = the point in S such that angle between line
−p− q− and L is minimal along all points;

P = P ∪ q;
p = q;

}
}

Complexity:

• To add kth point, find the min angle among
n− k lines.

[O(n2). Actually, O(hn) where h is the number of edges to hull.]

Often good in average case.

204

Graham’s Scan

Approach:

• Start with the points ordered with respect
to some maximal point.

• Process these points in order, adding them
to the set of processed points and its
convex hull.

• Like straightforward algorithm, but pick
better order.

Use the Simple Polygon algorithm to order the
points by angle with respect to the point with
max x value.

Process points in this order, maintaining the
convex hull of points seen so far.

Induction Hypothesis:

• Given a set of n points ordered according to
algorithm Simple Polygon, we can find a
convex path among the first n− 1 points
corresponding to the convex hull of the
n− 1 points.

205

Graham’s Scan (cont)

Induction Step:

• Add the kth point to the set.

• Check the angle formed by pk, pk−1, pk−2.

• If angle < 180◦ with respect to inside of the
polygon, then delete pk−1 and repeat.

206

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p1 = the point in P with largest x coordinate;
P = SimplePolygon(P, p1); // Order points in P
Point q1 = p1;
Point q2 = p2;
Point q3 = p3;
int m = 3;
for (k = 4 to n) {

while (angle(−qm−1 − qm−, −qm − pk−) ≤ 180◦) do
m = m− 1;

m = m + 1;
qm = pk;

}
}

Time complexity:

• Other than Simple Polygon, all steps take
O(n) time.

• Thus, total cost is O(n logn).

207

Lower Bound for Computing

Convex Hull

Theorem: Sorting is transformable to the
convex hull problem in linear time.

Proof:

• Given a number xi, convert it to point
(xi, x

2
i) in 2D.

• All such points lie on the parabla y = x2.

• The convex hull of this set of points will
consist of a list of the points sorted by x.

Corollary: A convex hull algorithm faster than
O(n logn) would provide a sorting algorithm
faster than O(n logn).

208

Closest Pair

Problem: Given a set of n points, find the pair
whose separation is the least.

Example of a proximity problem

• Make sure no two components in a
computer chip are too close.

Related problem:

• Find the nearest neighbor (or k nearest
neighbors) for every point.

Straightforward solution: Check distances for
all pairs.

Induction Hypothesis: Can solve for n− 1
points.

Adding the nth point still requires comparing to
all other points, requiring O(n2) time.

[Next try: Ordering the points by x value still doesn’t help.]

209

Divide and Conquer Algorithm

[Assume n = 2k points.]

Approach: Split into two equal size sets, solve
for each, and rejoin.

How to split?

• Want as much valid information as possible
to result.

Try splitting into two disjoint parts separated
by a dividing plane.

Then, need only worry about points close to
the dividing plane when rejoining.

To divide: Sort by x value and split in the
middle.

[Note: We will actually compute smallest distance, not pair of

points with smallest distance.]

210

Closest Pair Algorithm

Induction Hypothesis:

• We can solve closest pair for two sets of
size n/2 named P1 and P2.

Let minimal distance in P1 be d1, and for P2 be
d2.

• Assume d1 ≤ d2.

Only points in the strip need be considered.

Worst case: All points are in the strip.

211

Closest Pair Algorithm (cont)

Observation:

• A single point can be close to only a limited
number of points from the other set.

Reason: Points in the other set are at least d1
distance apart.

Sorting by y value limits the search required.

212

Closest Pair Algorithm Cost

O(n logn) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(n logn).

Scan points in strip, comparing against the
other strip: O(n).

T (n) = 2T (n/2) + O(n logn).

T (n) = O(n log2 n).

213

A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set,
this would be avoided.

Strengthen the induction hypothesis:

• Given a set of < n points, we know how to
find the closest distance and how to output
the set ordered by the points’ y coordinates.

All we need do is merge the two sorted sets –
an O(n) step.

T (n) = 2T (n/2) + O(n).

T (n) = O(n logn).

214

Horizontal and Vertical Segments

Intersection Problems:

• Detect if any intersections ...

• Report any intersections ...

... of a set of <line segments>.

We can simplify the problem by restricting to
vertical and horizontal line segments.

Example applications:

• Determine if wires or components of a VLSI
design cross.

• Determine if they are too close.

– Solution: Expand by 1/2 the tolerance
distance and check for intersection.

• Hidden line/hidden surface elimination for
Computer Graphics.

215

Sweep Line Algorithms

Problem: Given a set of n horizontal and m
vertical line segments, find all intersections
between them.

• Assume no intersections between 2 vertical
or 2 horizontal lines.

Straightforward algorithm: Make all n×m
comparisons.

If there are n×m intersections, this cannot be
avoided.

However, we would like to do better when there
are fewer intersections.

Solution: Special order of induction will be
imposed by a sweep line.

Plane sweep or sweep line algorithms pass an
imaginary line through the set of objects.

As objects are encountered, they are stored in a
data structure.

When the sweep passes, they are removed.

216

Sweep Line Algorithms (cont)

Preprocessing Step:

• Sort all line segments by x coordinate.

Inductive approach:

• We have already processed the first k − 1
end points when we encounter endpoint k.

• Furthermore, we store necessary
information about the previous line
segments to efficiently calculate
intersections with the line for point k.

Possible approaches:

1. Store vertical lines, calculate intersection
for horizontal lines.

2. Store horizontal lines, calculate intersection
for vertical lines.

[Since we processed by x coordinate (i.e., sweeping

horizontally) do (2).]

217

Organizing Sweep Info

What do we need when encountering line L?

• NOT horizontal lines whose right endpoint
is to the left of L.

• Maintain active line segments.

What do we check for intersection?

[y coordinates of the active horizontal lines.]

Induction Hypothesis:

• Given a list of k sorted coordinates, we
know how to report all intersections among
the corresponding lines that occur to the
left of k.x, and to eliminate horizontal lines
to the left of k.

218

Sweep Line Tasks

Things to do:

1. (k + 1)th endpoint is right endpoint of
horizontal line.

• Delete horizontal line. [O(logn).]

2. (k + 1)th endpoint is left endpoint of
horizontal line.

• Insert horizontal line. [O(logn).]

3. (k + 1)th endpoint is vertical line.

• Find intersections with stored horizontal
lines. [O(logn + r) for r intersections.]

219

Data Structure Requirements

To have an efficient algorithm, we need efficient

• Intersection

• Deletion

• 1 dimensional range query

Example solution: Balanced search tree

• Insert, delete, locate in logn time.

• Each additional intersection calculation is of
constant cost beyond first (traversal of
tree).

Time complexity:

• Sort by x: O((m + n) log(m + n)).

• Each insert/delete: O(logn).

• Total cost is O(n logn) for horizontal lines.

Processing vertical lines includes
one-dimensional range query:

• O(logn + r) where r is the number of
intersections for this line.

Thus, total time is O((m + n) log(m + n) + R),
where R is the total number of intersections.

220

Voronoi Diagrams

[Also known as Dirichlet regions, Thiessen Polygons)]

For some point P in S, P ’s Voronoi polygon is
the locus of points closer to P than to any
other point in S.

• Alt: The Voronoi polygon is the intersection
of the half-planes formed by the bisectors of
lines connecting P and Pi in {S} for Pi 6= P .

Given: A set S of points in the plane.

All of the points in S together partition the
plane into a set of disjoint regions called the
Voronoi Diagram for S.

Problem: Determine Voronoi Diagram of S.

221

Voronoi Diagram Properties

Assumption: No four points of the original set
S are cocircular. [For convenience of understanding and

analysis only.]

Theorem: Every vertex of the Voronoi
diagram is the common intersection of exactly
three edges.

Proof:

• A vertex is equidistant from all points in S
bisected by an edge touching that vertex.

• By the assumption, there can be at most 3
such points.

• If there were only two edges, both would be
bisectors for the same pair of points.

222

Voronoi Diagram Size

Theorem: The straight-line dual of the
Voronoi diagram is a trianglulation of S.

[Presented without proof. This is the Dulaney triangulation.]

Theorem: A Voronoi diagram on N points has
at most 3N − 6 edges.

Proof:

• Each edge in the straight-line dual
corresponds to a unique Voronoi edge.

• The dual is a planar graph on N vertices.

• By Euler’s formula, it has at most 3N − 6
edges.

Corollary: The Voronoi diagram can be stored
in Θ(N) space.

223

Voronoi Diagram Construction

Induction Hypothesis: We can construct the
Voronoi diagram for a set of points with size
< n.

Approach: Divide and conquer.

• Partition set S into 2 equal-sized subsets S1
and S2 by means of a vertical median cut.

• Construct Voronoi diagrams VOR(S1) and
VOR(S2).

• Construct a polygonal chain σ separating
S1 and S2.

• Discard all edges of VOR(S1) to the right of
σ and all edges of VOR(S2) to the left of σ.

224

Constructing the Dividing Chain

Assume (by induction) that we have the convex
hull for S1 and S2.

The two ends of the dividing chain will be
semi-infinite rays.

These rays are the bisectors for supporting
segments for the two convex hulls.

• These segments can be found in O(n) time.

225

Constructing the Dividing Chain

(cont)

Procedure:

• Move inwards along one of the rays until an
edge of either VOR(S1) or VOR(S2) is
encountered.

• At this point, the chain enters a region
where it must form the bisector for a
different pair of points, requiring it to
change direction.

• Continue modifying the direction of the
chain until the second ray is reached.

With proper organization of the Voronoi
diagrams, we can crate the chain in O(N) time.

226

Cost of Voronoi Construction

Intial Sort: [O(n logn)]

Time to partition the set: [O(n)]

Time to solve the two subproblems: [2T (n/2)]

Time to create the chain: [O(n)]

Time to eliminate extra edges: [O(n)]

Total cost: [T (n) = 2T (n/2) + O(n)]

[T (n) = O(n logn)]

227

Lower Bound for Voronoi Diagram

Construction

Theorem: Given the Voronoi diagram on N
points, their convex hull can be found in linear
time.

Proof:

1. We constructed the convex hull as part of
the Voronoi diagram construction
algorithm.

2. Look at each point, checking its edges until
a ray is found.

• This point is a hull vertex.

• Find its counter-clockwise neighbor
which is also a hull point.

• Follow the hull points around the entire
set.

• No edge needs to be looked at more
than 3 times.

[As a result, it must take O(n logn) time to construct the

Voronoi diagram because Convex Hull required O(n logn) time

as shown earlier.]

228

All Nearest Neighbors

Problem: All Nearest Neighbors (ANN): Find
the nearest neighbor for each point in a set S
of points.

Theorem: Given the Voronoi diagram for S,
the ANN problem can be solved in linear time.

Proof:

• Every nearest neighbor of a point pi defines
an edge of the Voronoi diagram.

• Since every edge belongs to two Voronoi
polygons, no edge will be examined more
than twice.

Corollary: ANN can be solved in O(n logn)
time.

229

Reductions

A reduction is a transformation of one problem
to another.

Purpose: To compare the relative difficulty of
two problems.

Examples: [Two we have already seen]

1. Sorting reals reduces in linear time to the
problem of finding a convex hull in two
dimensions.

We argued that there is a lower bound of
Ω(n logn) on finding the convex hull since
there is a lower bound of Ω(n logn) on
sorting.

[NOT reduce CH to sorting – that just means that we

can make CH hard!]

2. Finding a convex hull in two dimensions
reduces in linear time to the problem of
finding a Voronoi diagram in two
dimensions.

Again, there is an Ω(n logn) lower bound
on finding the Voronoi diagram.

230

Reduction Notation

We denote names of problems with all capital
letters.

• Ex: SORTING, CONVEX HULL,
VORONOI

What is a problem?

• A relation consisting of ordered pairs (I, S).

• I is the set of instances (allowed inputs).

• S is a relation that gives the correct
solutions.

Example: SORTING = (I, S).

I = set of finite subsets of R.

• Prototypical instance: {x1, x2, ..., xn}.

S is a function that takes a finite set of real
numbers and returns the numbers in sorted
order.

S({x1, x2, ..., xn}) = xi[1], xi[2], ..., xi[n] such that

xi[k] ∈ {x1, x2, ..., xn} and xi[1] < xi[2] < ... < xi[n].

231

Black Box Reduction

The job of an algorithm is to take an instance
of X ∈ I and return any solution in S(X) or to
report that there is no solution, S(X) = ∅.

A reduction from problem (I, S) to problem
(I′, S′) consists of two transformations
(functions) T, T’.

T: I ⇒ I′

• Maps instances of the first problem to
instances of the second.

T’: S′ ⇒ S

• Maps solutions of the second problem to
solutions of the first.

Black box idea:

1. Start with an instance X ∈ I.

2. Transform an instance X’ = T(X) ∈ I′.
3. Use a “black box” algorithm as a

subroutine to find a solution Y’ ∈ S′(X’).

4. Transform to a solution Y = T’(Y’) ∈
S(X).

232

More Notation

If (I, S) reduces to (I′, S′), write:

(I, S) ≤ (I′, S′).

This notation suggests that (I, S) is no harder
than (I′, S′).

Examples:

• SORTING ≤ CONVEX HULL

• CONVEX HULL ≤ VORONOI

The time complexity of T and T’ is important
to the time complexity of the black box
algorithm for (I, S).

If combined time complexity is O(g(n)), write:

(I, S) ≤O(g(n)) (I′, S′).

233

Reduction Example

SORTING = (I, S)

CONVEX HULL = (I′, S′).

1. S = {x1, x2, ..., xn} ∈ I.

2. T(X) = X’
= {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)} ∈ I′.
3. Solve CONVEX HULL for X’ to give

solution Y’
= (xi[1], x

2
i[1]

), (xi[2], x
2
i[2]

), ..., (xi[n], x
2
i[n]

).

4. T’ finds a solution to X from Y’ as follows:

(a) Find (xi[k], x
2
i[k]

) such that xi[k] is

minimum.

(b) Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful in the context of
algorithms, T and T’ must be functions that
can be computed by algorithms.

An algorithm for the second problem gives an
algorithm for the first problem by steps 2 – 4
above.

234

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it
is NOT antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.

235

Bounds Theorems

Lower Bound Theorem: If P1 ≤O(g(n)) P2,

there is a lower bound of Ω(h(n)) on the time
complexity of P1, and g(n) = o(h(n)), then
there is a lower bound of Ω(h(n)) on P2. [Notice

o, not O.]

Example:

• SORTING ≤O(n) CONVEX HULL.

• g(n) = n. h(n) = n logn.
g(n) = o(h(n)).

• Theorem gives Ω(n logn) lower bound on
CONVEX HULL.

Upper Bound Theorem: If P2 has time
complexity O(h(n)) and P1 ≤O(g(n)) P2, then P1

has time complexity O(g(n) + h(n)).

[So, given good transformations, both problems take at least

Ω(P1) and at most O(P2).]

236

System of Distinct Representatives

(SDR)

Instance: Sets S1, S2, · · · , Sk.

Solution: Set R = {r1, r2, · · · , rk} such that
ri ∈ Si.

Example:

Instance: {1}, {1,2,4}, {2,3}, {1,3,4}.
Solution: R = {1,2,3,4}.

Reduction:

• Let n be the size of an instance of SDR.

• SDR ≤O(n) BIPARTITE MATCHING.

• Given an instance of S1, S2, · · · , Sk of SDR,
transform it to an instance G = (U, V, E) of
BIPARTITE MATCHING.

• Let S = ∪k
i=1Si. U = {S1, S2, · · · , Sk}.

• V = S. E = {(Si, xj)|xj ∈ Si}.

[U is the sets. V is the elements. E matches elements to sets.]

237

SDR Example

{1} 1

{1,2,4} 2

{2,3} 3

{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k.

238

Simple Polygon Lower Bound

SIMPLE POLYGON: Given a set of n points in
the plane, find a simple polygon with those
points as vertices.

SORTING ≤O(n) SIMPLE POLYGON.

Instance of SORTING: {x1, x2, · · · , xn}.
• In linear time, find M = max |xi|.
• Let C be a circle centered at the origin, of

radius M .

Instance of SIMPLE POLYGON:

{(x1,
√

M2 − x2
i), · · · , (xn,

√

M2 − x2
n)}.

All these points fall on C in their sorted order.

The only simple polygon having the points on
C as vertices is the convex one.

As with CONVEX HULL, the sorted order is
easily obtained from the solution to SIMPLE
POLYGON.

By the Lower Bound Theorem, SIMPLE
POLYGON is Ω(n logn).

239

Matrix Multiplication

Matrix multiplication can be reduced to a
number of other problems.

In fact, certain special cases of MATRIX
MULTIPLY are equivalent to MATRIX
MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):

• Instance: a symmetric n× n matrix.

[Clearly SYM is not harder than MM. Is it easier? No...]

MATRIX MULTIPLY ≤O(n2) SYM.

[

0 A

AT 0

] [

0 BT

B 0

]

=

[

AB 0

0 ATBT

]

[So, having a good SYM would give a good MM. The other

way of looking at it is that SYM is just as hard as MM.]

240

Matrix Squaring

Problem: Compute A2 where A is an n× n
matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[

0 A
B 0

]2

=

[

AB 0
0 BA

]

241

Linear Programming (LP)

Maximize or minimize a linear function subject
to linear constraints.

[Example of a “super problem” that many problems can

reduce to.]

Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c ·X =
∑

cixi.

[This is what we want to minimize.]

Inequality Constraints: Ai ·X ≤ bi 1 ≤ i ≤ k.

[Ai is a vector – k vectors give the k b’s.]

Equality Constraints: Ei ·X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.

[Not all of the constraint types are used for every problem.]

242

Use of LP

Reasons for considering LP:

• Practical algorithms exist to solve LP.

• Many real-world optimization problems are
naturally stated as LP.

• Many optimization problems are reducible
to LP.

Example: NETWORK FLOW

Let x1, x2, · · · , xn be the flows through edges.

Objective function: For S = edges out of the
source, maximize

∑

i∈S

xi.

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.

Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v.

Z(v) = set of xi for edges entering v.
∑

Z(V)

xi −
∑

Y (V)

xi = 0.

243

Network Flow Reduction (cont)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.

Maximize: x1 + x4 subject to:

x1 ≤ 4

x2 ≤ 3

x3 ≤ 2

x4 ≤ 5

x5 ≤ 7

x1 + x3 − x2 = 0

x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 0

244

Matching

Start with graph G = (V, E).

Let x1, x2, · · · , xn represent the edges in E.

• xi = 1 means edge i is matched.

Objective function: Maximize

n
∑

i=1

xi.

subject to:

• Let N(v) be the variable for edges incident
on v.

∑

N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.

Integer constraints makes this INTEGER
LINEAR PROGRAMMING (ILP).

245

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

246

Summary of Reduction

Importance:

1. Compare difficulty of problems.

2. Prove new lower bounds.

3. Black box algorithms for “new” problems in
terms of (already solved) “old” problems.

4. Provide insights.

Warning:

• A reduction does not provide an algorithm
to solve a problem – only a transformation.

• Therefore, when you look for a reduction,
you are not trying to solve either problem.

247

Another Warning

The notation P1 ≤ P2 is meant to be
suggestive.

Think of P1 as the easier, P2 as the harder
problem.

Always transform from instance of P1 to
instance of P2.

Common mistake: Doing the reduction
backwards (from P2 to P1).

DON’T DO THAT!

248

Common Problems used in

Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS

249

Tractable Problems

We would like some convention for
distinguishing tractable from intractable
problems.

A problem is said to be tractable if an
algorithm exists to solve it with polynomial
time complexity: O(p(n)).

• It is said to be intractable if the best
known algorithm requires exponential time.

Examples:

• Sorting: O(n2) [Log-polynomial is O(n logn)]

• Convex Hull: O(n2)

• Single source shortest path: O(n2)

• All pairs shortest path: O(n3)

• Matrix multiplication: O(n3)

The technique we will use to classify one group
of algorithms is based on two concepts:

1. A special kind of reduction.

2. Nondeterminism.

250

Decision Problems

(I, SOL) such that SOL(X) is always either
“yes” or “no.”

• Usually formulated as a question.

Example:

• Instance: A weighted graph G = (V, E), two
vertices s and t, and an integer K.

• Question: Is there a path from s to t of
length ≤ K? In this example, the answer is
“yes.”

Can also be formulated as a language
recognition problem:

• Let L be the subset of I consisting of
instances whose answer is “yes.” Can we
recognize L?

The class of tractable problems P is the class
of languages or decision problems recognizable
in polynomial time.

251

Polynomial Reducibility

Reduction of one language to another
language. [Or one decision problem to another.]

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a
transformation f : I1 → I2, computable in
polynomial time, such that f(x) ∈ L2 if and
only if x ∈ L1.

[Specialized case of reduction from Chapter 10.]

We write: L1 ≤p L2 or L1 ≤ L2.

Example:

• CLIQUE ≤p INDEPENDENT SET.

• An instance I of CLIQUE is a graph
G = (V, E) and an integer K.

• The instance I ′ = f(I) of INDEPENDENT
SET is the graph G′ = (V, E′) and the
integer K, were an edge (u, v) ∈ E′ iff
(u, v) /∈ E.

• f is computable in polynomial time.

252

Transformation Example

G has a clique of size ≥ K iff G′ has an
independent set of size ≥ K.

[If nodes in G′ are independent, then no connections. Thus, in

G they all connect.]

Therefore, CLIQUE ≤p INDEPENDENT SET.

IMPORTANT WARNING:

• The reduction does not solve either
INDEPENDENT SET or CLIQUE, it
merely transforms one into the other.

253

Nondeterminism

Nondeterminism allows an algorithm to make
an arbitrary choice among a finite number of
possibilities.

Implemented by the “nd-choice” primitive:

nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ...
arbitrarily.

Nondeterministic algorithms can be thought of
as “correctly guessing” (choosing
nondeterministically) a solution.

254

Nondeterministic CLIQUE

Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY;
int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}

[What makes this different than random guessing is that all

choices happen “in parallel.”]

255

Nondeterministic Acceptance

(G, K) is in the “language” CLIQUE iff there
exists a sequence of nd-choice guesses that
causes nd-CLIQUE to accept.

Definition of acceptance by a nondeterministic
algorithm:

• An instance is accepted iff there exists a
sequence of nondeterministic choices that
causes the algorithm to accept.

An unrealistic model of computation.

• There are an exponential number of
possible choices, but only one must accept
for the instance to be accepted.

Nondeterminism is a useful concept

• It provides insight into the nature of certain
hard problems.

256

Class NP

The class of languages accepted by a
nondeterministic algorithm in polynomial time
is called NP.

While there are an exponential number of
different executions of nd-CLIQUE on a single
instance, any one execution requires only
polynomial time in the size of that instance.

The time complexity of a nondeterministic
algorithm is the greatest amount of time
required by any one of its executions.

Alternative Interpretation:

• NP is the class of algorithms that, never
mind how we got the answer, can check if
the answer is correct in polynomial time.

• If you cannot verify an answer in polynomial
time, you cannot hope to find the right
answer in polynomial time!

257

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:

• Prove or disprove: P = NP.

This is important because there are many
natural decision problems in NP for which no P
(tractable) algorithm is known.

258

NP-completeness

A theory based on identifying problems that are
as hard as any problems in NP.

The next best thing to knowing whether P=
NP or not.

A decision problem A is NP-hard if every
problem in NP is polynomially reducible to A,
that is, for all

B ∈ NP, B ≤p A.

A decision problem A is NP-complete if
A ∈ NP and A is NP-hard.

[A is not permitted to be harder than NP. For example,

Tower of Hanoi is not in NP. It requires exponential time to

verify a set of moves.]

259

Satisfiability

Let E be a Boolean expression over variables
x1, x2, · · · , xn in conjunctive normal form (CNF),
that is, an AND of ORs.

E = (x5+x7+ x̄8+x10) ·(x̄2+x3) ·(x1+ x̄3+x6).

A variable or its negation is called a literal.

Each sum is called a clause.

SATISFIABILITY (SAT):

• Instance: A Boolean expression E over
variables x1, x2, · · · , xn in CNF.

• Question: Is E satisfiable? [Is there a truth

assignment for the variables that makes E true?]

Cook’s Theorem: SAT is NP-complete.

[Cook won a Turing award for this work.]

260

Proof Sketch

SAT ∈ NP:

• A non-deterministic algorithm guesses a
truth assignment for x1, x2, · · · , xn and
checks whether E is true in polynomial
time.

• It accepts iff there is a satisfying
assignment for E.

SAT is NP-hard:

• Start with an arbitrary problem B ∈ NP.

• We know there is a polynomial-time,
nondeterministic algorithm to accept B.

• Cook showed how to transform an instance
X of B into a Boolean expression E that is
satisfiable if the algorithm for B accepts X.

[The proof of this last step is usually several pages long. One

approach is to develop a nondeterministic Turing Machine

program to solve an arbitrary problem B in NP.]

261

Implications

(1) Since SAT is NP-complete, we have not
defined an empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then
B ≤p A implies A is NP-complete.

Proof:

• Let C ∈ NP.

• Then C ≤p B since B is NP-complete.

• Since B ≤p A and ≤p is transitive, C ≤p A.

• Therefore, A is NP-hard and, finally,
NP-complete.

(5) This gives a simple two-part strategy for
showing a decision problem A is NP-complete.

(a) Show A ∈ NP. [Usually easy.]

(b) Pick an NP-complete problem B and show
B ≤p A. [Don’t get it backwards!]

262

NP-completeness Proof Paradigm

To show that decision problem B is
NP-complete:

1. B ∈ NP [Usually the easy part.]

• Give a polynomial time,
non-deterministic algorithm that accepts
B.

(a) Given an instance X of B, guess
evidence Y .

(b) Check whether Y is evidence that
X ∈ B. If so, accept X.

2. B is NP-hard.

• Choose a known NP-complete problem,
A.

• Describe a polynomial-time
transformation T of an arbitrary
instance of A to an instance of B.

• Show that X ∈ A if and only if T (X) ∈ B.

[The first two steps are usually the hardest.]

263

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such
that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for
E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

[What about 2SAT? This is in P.]

264

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic
algorithm that accepts 3SAT.

265

Proving 3SAT NP-hard

1. Choose A = SAT to be the known
NP-complete problem. [The only choice we have

so far!]

• We need to show that SAT ≤p 3SAT.

2. Let E = C1 · C2 · · ·Ck be any instance of
SAT.

Strategy: Replace any clause Ci that does not
have exactly 3 literals with two or more clauses
having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are
literals.

(a) j = 1

• Replace (y1) with

(y1+v+w)·(y1+v̄+w)·(y1+v+w̄)·(y1+v̄+w̄)

where v and w are new variables.

266

Proving 3SAT NP-hard (cont)

(b) j = 2

• Replace (y1 + y2) with

(y1 + y2 + z) · (y1 + y2 + z̄)

where z is a new variable.

(c) j > 3

• Relace (y1 + y2 + · · ·+ yj) with

(y1+y2+z1) · (y3+ z̄1+z2) · (y4+ z̄2+z3) · · ·

(yj−2 + ¯zj−4 + zj−3) · (yj−1 + yj + ¯zj−3)

where z1, z2, · · · , zj−3 are new variables.

After appropriate replacements have been made
for each Ci, a Boolean expression E′ results
that is an instance of 3SAT.

The replacement clearly can be done by a
polynomial-time deterministic algorithm.

267

Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E′ is satisfiable.

• Assume E has a satisfying truth assignment.

• Then that extends to a satisfying truth
assignment for cases (a) and (b).

• In case (c), assume ym is assigned “true”.

• Then assign zt, t ≤ m− 2, true and
zk, t ≥ m− 1, false.

• Then all the clauses in case (c) are satisfied.

• Assume E′ has a satisfying assignment.

• By restriction, we have truth assignment for
E.

(a) y1 is necessarily true.

(b) y1 + y2 is necessarily true.

(c) Proof by contradiction:

– If y1, y2, · · · , yj are all false, then
z1, z2, · · · , zj−3 are all true.

– But then (yj−1 + yj−2 + ¯zj−3) is false,
a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is
NP-complete.

268

Tree of Reductions

[Refer to handout of NP-complete problems]

Reductions go down the tree.

Proofs that each problem ∈ NP are
straightforward.

269

Perspective

The reduction tree gives us a collection of 12
diverse NP-complete problems. [Hundreds of

problems, from many fields, have been shown to be

NP-complete.]

The complexity of all these problems depends
on the complexity of any one:

• If any NP-complete problem is tractable,
then they all are.

This collection is a good place to start when
attempting to show a decision problem is
NP-complete.

Observation: If we find a problem is
NP-complete, then we should do something
other than try to find a P-time algorithm.

270

SAT ≤p CLIQUE

(1) Easy to show CLIQUE in NP.

(2) An instance of SAT is a Boolean expression

B = C1 · C2 · · ·Cm,

where

Ci = y[i,1] + y[i,2] + · · ·+ y[i, ki].

Transform this to an instance of CLIQUE
G = (V, E) and K.

V = {v[i, j]|1 ≤ i ≤ m,1 ≤ j ≤ ki}
[One vertex for each literal in B.]

Two vertices v[i1, j1] and v[i2, j2] are adjacent
in G if i1 6= i2 AND EITHER

y[i1, j1] and y[i2, j2] are the same literal [No

join if one is the negation of the other]

OR

y[i1, j1] and y[i2, j2] have different underlying
variables.

K = m.

271

SAT ≤p CLIQUE (cont)

Example:

B = (x1 + x2) · (x̄1 + x2 + x3).

K = 2.

(3) B is satisfiable iff G has clique of size ≥ K.

• B is satisfiable implies there is a truth
assignment such that y[i, ji] is true for each
i.

• But then v[i, ji] must be in a clique of size
K = m. [It must connect to the other m− 1 literals

that are also true.]

• If G has a clique of size ≥ K, then the
clique must have size exactly K and there is
one vertex v[i, ji] in the clique for each i.

• There is a truth assignment making each
y[i, ji] true. That truth assignment satisfies
B.

We conclude that CLIQUE is NP-hard,
therefore NP-complete.

272

PARTITION ≤p KNAPSACK

PARTITION is a special case of KNAPSACK in
which

K =
1

2

∑

a∈A

s(a)

assuming
∑

s(a) is even.

Assuming PARTITION is NP-complete,
KNAPSACK is NP-complete. [True, though we do

not prove it.]

273

“Practical” Exponential Problems

What about O(MN) dynamic prog algorithm?

Input size for KNAPSACK is O(N logM)

• Thus O(MN) is exponential in logM .

The dynamic prog algorithm counts through
numbers 1, · · · , M . Takes exponential time when
measured by number of bits to represent M .

If M is “small” (M = O(p(N))), then algorithm
has complexity polynomial in N and is truly
polynomial in input size.

An algorithm that is polynomial-time if the
numbers IN the input are “small” (as opposed
to number OF inputs) is called a
pseudo-polynomial time algorithm.

Lesson: While KNAPSACK is NP-complete, it
is often not that hard.

Many NP-complete problems have no pseudo-
polynomial time algorithm unless P= NP.

[The issue is what size input is practical. The problems we

want to solve for Traveling Salesman are not practical.]

274

Coping with NP-completeness

(1) Find subproblems of the original problem
that have polynomial-time algorithms. [Significant

special cases.]

(2) Approximation algorithms. [For optimization

problems.]

(3) Randomized Algorithms. [Typically work well for

problems with a lot of solutions.]

(4) Backtracking; Branch and Bound. [A way to

implement nd-choice.]

(5) Heuristics.

• Greedy.

• Simulated Annealing.

• Genetic Algorithms.

275

Subproblems

Restrict attention to special classes of inputs.

[Assuming the subclass covers the inputs you are interested

in!]

Examples:

• VERTEX COVER, INDEPENDENT SET,
and CLIQUE, when restricted to bipartite
graphs, all have polynomial-time algorithms
(for VERTEX COVER, by reduction to
NETWORK FLOW).

• 2-SATISFIABILITY, 2-DIMENSIONAL
MATCHING and EXACT COVER BY
2-SETS all have polynomial time
algorithms.

• PARTITION and KNAPSACK have
polynomial time algorithms if the numbers
in an instance are all O(p(n)).

• However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain NP-complete
even for a planar graph.

276

Backtracking

We may view a nondeterministic algorithm
executing on a particular instance as a tree:

1. Each edge represents a particular
nondeterministic choice.

2. The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking
that S is a clique of size ≥ K can be done in
polynomial time.

277

Backtracking (cont)

Backtracking can be viewed as an in-order
traversal of this tree with two criteria for
stopping.

1. A leaf that accepts is found.

2. A partial solution that could not possibly
lead to acceptance is reached.

Example:

There cannot possibly be a set S of cardinality
≥ 2 under this node, so backtrack.

Since (1, 2) /∈ E, no S under this node can be a
clique, so backtrack.

278

Branch and Bound

For optimization problems. [When the corresponding

decision problem is NP-complete.]

More sophisticated kind of backtracking.

Use the best solution found so far as a bound
that controls backtracking.

Example Problem: Given a graph G, find a
minimum vertex cover of G.

Computation tree for nondeterministic
algorithm is similar to CLIQUE.

• Every leaf represents a different subset S of
the vertices.

Whenever a leaf is reached and it contains a
vertex cover of size B, B is an upper bound on
the size of the minimum vertex cover.

• Use B to prune any future tree nodes
having size ≥ B.

Whenever a smaller vertex cover is found,
update B.

279

Branch and Bound (cont)

Improvement:

• Use a fast, greedy algorithm to get a
minimal (not minimum) vertex cover.

• Use this as the initial bound B.

While Branch and Bound is better than a
brute-force exhaustive search, it is usually
exponential time, hence impractical for all but
the smallest instances.

• ... if we insist on an optimal solution.

Branch and Bound often practical as an
approximation algorithm where the search
terminates when a “good enough” solution is
obtained.

280

Approximation Algorithms

Seek algorithms for optimization problems with
a guaranteed bound on the quality of the
solution.

VERTEX COVER: Given a graph G = (V, E),
find a vertex cover of minimum size.

Let M be a maximal (not necessarily maximum)
matching in G and let V ′ be the set of matched
vertices.

[Then every edge will be have at least one matched vertex

(i.e., vertex in the set). Thus the matching qualifies as a

vertex cover.]

If OPT is the size of a minimum vertex cover,
then

|V ′| ≤ 2OPT

because at least one endpoint of every matched
edge must be in any vertex cover.

[In fact, we always know how far we are from a perfect cover

(though we don’t always know the size of OPT).]

281

Bin Packing

We have numbers x1, x2, · · · , xn between 0 and 1
as well as an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as
possible so that the sum of the numbers in any
one bin does not exceed 1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3,
1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2,
1/4], [2/3].

[Optimal in that the sum is 3 1/8, and we packed into 4 bins.

There is another optimal solution with the first 3 bins packed,

but this is more than we need to solve the problem.]

282

First Fit Algorithm

Place x1 into the first bin.

For each i,2 ≤ i ≤ n, place xi in the first bin
that will contain it.

No more than 1 bin can be left less than half
full.

[Otherwise, the items in the second half-full bin would be put

into the first!]

The number of bins used is no more than twice
the sum of the numbers.

The sum of the numbers is a lower bound on
the number of bins in the optimal solution.

Therefore, first fit is no more than twice the
optimal number of bins.

283

First Fit Does Poorly

Let ε be very small, e.g., ε = .00001.

Numbers (in this order):

• 6 of (1/7 + ε).

• 6 of (1/3 + ε).

• 6 of (1/2 + ε).

First fit returns:

• 1 bin of [6 of 1/7 + ε]

• 3 bins of [2 of 1/3 + ε]

• 6 bins of [1/2 + ε]

Optimal solution is 6 bins of
[1/7 + ε,1/3 + ε,1/2 + ε].

First fit is 5/3 larger than optimal.

284

Decreasing First Fit

It can be proved that the worst-case
performance of first-fit is 17/10 times optimal.

Use the following heuristic:

• Sort the numbers in decreasing order.

• Apply first fit.

• This is called decreasing first fit.

The worst case performance of decreasing first
fit is close to 11/9 times optimal.

285

Summary

The theory of NP-completeness gives us a
technique for separating tractable from
(probably) intractable problems.

When faced with a new problem requiring
algorithmic solution, our thought process might
resemble this scheme:

Alternately think about each question. Lack of
progress on either question might give insights
into the answer to the other question.

Once an affirmative answer is obtained to one
of these questions, one of two strategies is
followed.

286

Strategies

(1) The problem is in P.

• This means there are polynomial-time
algorithms for the problem, and presumably
we know at least one. [That is the only way we

could have proved it is in P.]

• So, apply the techniques learned in this
course to analyze the algorithms and
improve them to find the lowest time
complexity we can.

(2) The problem is NP-complete.

• Apply the strategies for coping with
NP-completeness.

• Especially, find subproblems that are in P,
or find approximation algorithms.

287

Algebraic and Numeric Algorithms

Measuring cost of arithmetic and numerical
operations:

• Measure size of input in terms of bits.

Algebraic operations:

• Measure size of input in terms of numbers.

In both cases, measure complexity in terms of
basic arithmetic operations: +,−, ∗, /.
• Sometimes, measure complexity in terms of

bit operations to account for large numbers.

Size of numbers may be related to problem size:

• Pointers, counters to objects.

• Resolution in geometry/graphics (to
distinguish between object positions).

288

Exponentiation

Given positive integers n and k, compute nk.

Algorithm:

p = 1;
for (i=1 to k)
p = p * n;

Analysis:

• Input size: Θ(logn + log k).

• Time complexity: Θ(k) multiplications.

• This is exponential in input size.

289

Faster Exponentiation

Write k as:

k = bt2
t + bt−12

t−1 + · · ·+ b12 + b0, b ∈ {0,1}.

Rewrite as:

k = ((· · · (bt2 + bt−1)2 + · · ·+ b2)2 + b1)2 + b0.

New algorithm:

p = n;
for (i = t-1 downto 0)
p = p * p * exp(n, b[i])

Analysis:

• Time complexity: Θ(t) = Θ(log k)
multiplications.

• This is exponentially better than before.

290

Multiplying Polynomials

P =
n−1
∑

i=0

pix
i Q =

n−1
∑

i=0

qix
i.

Our normal algorithm for computing PQ
requires Θ(n2) multiplications and additions.

Divide and Conquer:

P1 =

n/2−1
∑

i=0

pix
i P2 =

n−1
∑

i=n/2

pix
i−n/2

Q1 =

n/2−1
∑

i=0

qix
i Q2 =

n−1
∑

i=n/2

qix
i−n/2

PQ = (P1 + xn/2P2)(Q1 + xn/2Q2)

= P1Q1 + xn/2(Q1P2 + P1Q2) + xnP2Q2.

[Do this to make the subproblems look the same.]

Recurrence:

T (n) = 4T (n/2) + O(n).

T (n) = Θ(n2).

291

Multiplying Polynomials (cont)

Observation:

(P1 + P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q2

(Q1P2 + P1Q2) = (P1 + P2)(Q1 + Q2)− P1Q1 − P2Q2

[In the second equation, the sums in the first term are half

the original problem size, and the second two terms were

needed for the first equation.]

Therefore, PQ can be calculated with only 3
recursive calls to a polynomial multiplication
procedure.

Recurrence:

T (n) = 3T (n/2) + O(n)

= aT (n/b) + cn1.

logb a = log23 ≈ 1.59.

T (n) = Θ(n1.59).

[A significant improvement came from algebraic manipulation

to express the product in terms of 3, rather than 4, smaller

products.]

292

Matrix Multiplication

Given: n× n matrices A and B.

Compute: C = A×B.

cij =
n

∑

k=1

aikbkj.

Straightforward algorithm:

• Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication
algorithm: Ω(n2).

293

Another Approach

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.

294

Strassen’s Algorithm

(1) Trade more additions/subtractions for
fewer multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2
case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.

295

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A×B in terms of n
2 ×

n
2 matrices.

By Strassen’s algorithm, this can be computed
with 7 multiplications and 18
additions/subtractions of n/2× n/2 matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

[But, this has a high constant due to the additions.]

Current “fastest” algorithm is Θ(n2.376) [... but

is impractical due to overhead.]

Open question: Can matrix multiplication be
done in O(n2) time?

296

Boolean Matrix Multiplication

A and B are n× n matrices with entries 0 or 1.

Substitute OR for addition and AND for
multiplication.

Four Russians’ Algorithm:

• Assume log2 n divides n. Let k = n/ log2 n.

• Partition into strip submatrices, each strip
log2 n wide.

C = A×B =
k

∑

i=1

Ai ×Bi.

297

Four Russians’ Algorithm

Concentrate on Ai ×Bi.

• Each row of Ai has logn entries.

• There are at most 2logn = n distinct row
combinations.

• Any row of Ai×Bi is the sum of a subset of
the rows of Bi, depending on the 1s in a
row of Ai.

• We can precompute all n possible sums of
rows Bi in time O(n2) using dynamic
programming.

Base case: An empty set of rows.

sum(∅) = 0.

General case: S′ = S ∪ {t} [t is a new row.]

sum(S′) = sum(S) + row(t).

[Think of the bit pattern for i. We can add in i to what

has been done in time length(i).]

298

Four Russians’ Algorithm (cont)

After precomputation of sums, compute each
row of Ai ×Bi by table lookup in time O(n2).

Analysis:

• Precomputation: (n/ logn)Θ(n2).

• Table lookup: (n/ logn)Θ(n2).

• Algorithm: Θ(n3/ logn).

299

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely
concatenating two lengths.

Observation:

lognm = logn + logm.

Therefore,

nm = antilog(logn + logm).

What if taking logs and antilogs were easy?

The sliderule does exactly this!

• It is essentially two rulers in log scale.

• Slide the scales to add the lengths of the
two numbers (in log form).

• The third scale shows the value for the
total length.

[This is an example of a transform. We do transforms to

convert a hard problem into a (relatively) easy problem.]

300

Representing Polynomials

A vector a of n values can uniquely represent a
polynomial of degree n− 1

Pa(x) =
n−1
∑

i=0

aix
i.

[That is, a polynomial can be represented by it coefficients.]

Alternatively, a degree n− 1 polynomial can be
uniquely represented by a list of its values at n
distinct points.

• Finding the value for a polynomial at a
given point is called evaluation.

• Finding the coefficients for the polynomial
given the values at n points is called
interpolation.

301

Multiplication of Polynomials

To multiply two n− 1-degree polynomials A
and B normally takes Θ(n2) coefficient
multiplications.

However, if we evaluate both polynomials, we
can simply multiply the corresponding pairs of
values to get the values of polynomial AB.

Process:

• Evaluate polynomials A and B at enough
points.

• Pairwise multiplications of resulting values.

• Interpolation of resulting values.

This can be faster than Θ(n2) IF a fast way
can be found to do evaluation/interpolation of
2n− 1 points (normally this takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy,
and that if we evaluate at 1 and -1, we can
share a lot of the work between the two
evaluations. Can we find enough such points to
make the process cheap?

302

An Example

Polynomial A: x2 + 1.

Polynomial B: 2x2 − x + 1.

POlynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial
AB. And, we also need to interpolate the 5
values to get the coefficients back.

303

Nth Root of Unity

The key to fast polynomial multiplication is
finding the right points to use for
evaluation/interpolation to make the process
efficient.

Complex number ω is a
primitive nth root of unity if

1. ωn = 1 and

2. ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:

• For n = 4, ω = i or ω = −i.

304

Discrete Fourier Transform

Define an n× n matrix V (ω) with row i and
column j as

V (ω) = (ωij).

Example: n = 4, ω = i:

V (ω) =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]
T be a vector.

The Discrete Fourier Transform (DFT) of a
is:

Fω = V (ω)a = v.

This is equivalent to evaluating the polynomial
at the nth roots of unity.

305

Inverse Fourier Transform

The inverse Fourier Transform to recover a
from v is:

F−1
ω = a = [V (ω)]−1 · v.

[V (ω)]−1 =
1

n
V (

1

ω
).

This is equivalent to interpolating the
polynomial at the nth roots of unity.

An efficient divide and conquer algorithm can
perform both the DFT and its inverse in
Θ(n lgn) time.

Example: For n = 8, ω =
√

i, V (ω) =

1 1 1 1 1 1 1 1

1
√

i i i
√

i −1 −
√

i −i −i
√

i
1 i −1 −i 1 i −1 −i

1 i
√

i −i
√

i −1 −i
√

i i −
√

i
1 −1 1 −1 1 −1 1 −1

1 −
√

i i −i
√

i −1
√

i −i i
√

i
1 −i −1 i 1 −i −1 i

1 −i
√

i −i −
√

i −1 i
√

i i
√

i

306

Fast Polynomial Multiplication

Polynomial multiplication of A and B:

• Represent an n− 1-degree polynomial as
2n− 1 coefficients:

[a0, a1, ..., an−1,0, ...,0]

• Perform DFT on representations for A and
B. [Θ(n logn)]

• Pairwise multiply results to get 2n− 1
values. [Θ(n)]

• Perform inverse DFT on result to get
2n− 1 degree polynomial AB. [Θ(n logn)]

[Total time: Θ(n logn).]

307

Parallel Algorithms

Running time: T (n, p) where n is the problem
size, p is number of processors.

Speedup: S(p) = T (n,1)/T (n, p).

• A comparison of the time for a (good)
sequential algorithm vs. the parallel
algorithm in question.

Problem: Best sequential algorithm may not be
the same as the best algorithm for p processors,
which may not be the best for ∞ processors.

Efficiency:
E(n, p) = S(p)/p = T (n,1)/(pT (n, p)).

Ratio of the time taken for 1 processor vs. the
total time required for p processors.

• Measure of how much the p processors are
used (not wasted).

• Optimal efficiency = 1 = speedup by factor
of p.

[If E > 1 then the sequential form of the parallel algorithm

would be faster than the sequential algorithm being compared

against – very suspicious!]

308

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.

• Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p =∞,
then convert to run on p processors.

Hopefully, if T (n, p) = X, then T (n, p/k) ≈ kX
for k > 1.

Using one processor to emulate k processors is
called the parallelism folding principle.

Some algorithms are only good for a large
number of processors. [Good in terms of speedup.]

T (n,1) = n

T (n, n) = logn

S(n) = n/ logn

E(n, n) = 1/ logn

For p = 256, n = 1024.
T (1024, 256) = 4 log1024 = 40.

For p = 16, running time = 640, speedup < 2,
efficiency < 1/2.

309

Amdahl’s Law

Think of an algorithm as having a
parallelizable section and a serial section.

Example: 100 operations.

• 80 can be done in parallel, 20 must be done
in sequence.

Then, the best speedup possible leaves the 20
in sequence, or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,

for S = serial fraction, P = parallel fraction,
S + P = 1.

310

Amdahl’s Law Revisited

However, this version of Amdahl’s law applies
to a fixed problem size.

What happens as the problem size grows?

Hopefully, S = f(n) with S shrinking as n
grows.

Instead of fixing problem size, fix execution
time for increasing number N processors.

Scaled Speedup = (S + P ×N)/(S + P)

= S + P ×N

= S + (1− S)×N

= N + (1−N)× S.

[The point is that this equation drops off much less slowly in

N: a line with slope 1−N.]

311

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)

• All processors operate the same instruction
in step.

• Example: Vector processor. [IBM 3090, Cray]

Pipelined Processing:

• Stream of data items, each pushed through
the same sequence of several steps. [Ex:

Graphics coprocessor boards]

Multiple Instruction Multiple Data (MIMD)

• Processors are independent. [Paragon,

Connection Machine]

312

MIMD Communications

Interconnection network:

• Each processor is connected to a limited
number of neighbors.

• Can be modeled as (undirected) graph.

• Examples: Array, mesh, N-cube.

• It is possible for the cost of
communications to dominate the algorithm
(and in fact to limit parallelism).

• Diameter: Maximum over all pairwise
distances between processors.

• Tradeoff between diameter and number of
connections.

Shared memory:

• Random access to global memory such that
any processor can access any variable with
unit cost.

• In practice, this limits number of processors.

• Exclusive Read/Exclusive Write (EREW).

• Concurrent Read/Exclusive Write (CREW).

• Concurrent Read/Concurrent Write
(CRCW).

313

Addition

Problem: Find the sum of two n-bit binary
numbers.

Sequential Algorithm:

• Start at the low end, add two bits.

• If necessary, carry bit is brought forward.

• Can’t do ith step until i− 1 is complete due
to uncertainty of carry bit (?).

Induction: (Going from n− 1 to n implies a
sequential algorithm)

314

Parallel Addition

Divide and conquer to the rescue:

• Do the sum for top and bottom halves.

• What about the carry bit?

[Two possibilities: carry or not carry.]

Strengthen induction hypothesis:

• Find the sum of the two numbers with or
without the carry bit.

After solving for n/2, we have L, Lc, R, and Rc.

Can combine pieces in constant time.

The n/2-size problems are independent.

Given enough processors,

T (n, n) = T (n/2, n/2) + O(1) = O(log n).

[Not 2T (n/2, n/2) because done in parallel!]

We need only the EREW memory model.

315

Maximum-finding Algorithm:

EREW

“Tournament” algorithm:

• Compare pairs of numbers, the “winner”
advances to the next level.

• Initially, have n/2 pairs, so need n/2
processors.

• Running time is O(logn).

That is faster than the sequential algorithm,
but what about efficiency?

E(n, n/2) ≈ 1/ logn.

Why is the efficiency so low?

[Lots of idle processors after the first round.]

316

More Efficient EREW Algorithm

Divide the input into n/ logn groups each with
logn items.

Assign a group to each of n/ logn processors.

Each processor finds the maximum
(sequentially) in logn steps.

Now we have n/ logn “winners”.

Finish tournament algorithm. [In logn time.]

T (n, n/ logn) = O(logn).

E(n, n/ logn) = O(1).

But what could we do with more processors?
[Cannot improve time past O(logn).]

A parallel algorithm is static if the assignment
of processors to actions is predefined.

• We know in advance, for each step i of the
algorithm and for each processor pj, the
operation and operands pj uses at step i.

This maximum-finding algorithm is static.

• All comparisons are pre-arranged.

317

Brent’s Lemma

Lemma 12.1: If there exists an EREW static
algorithm with T (n, p) ∈ O(t), such that the
total number of steps (over all processors) is s,
then there exists an EREW static algorithm
with T (n, s/t) = O(t).

Proof:

• Let ai,1 ≤ i ≤ t, be the total number of
steps performed by all processors in step i
of the algorithm.

• ∑t
i=1 ai = s.

• If ai ≤ s/t, then there are enough processors
to perform this step without change.

• Otherwise, replace step i with dai/(s/t)e
steps, where the s/t processors emulate the
steps taken by the original p processors.

• The total number of steps is now
t

∑

i=1

dai/(s/t)e ≤
t

∑

i=1

(ait/s + 1)

= t + (t/s)
t

∑

i=1

ai = 2t.

Thus, the running time is still O(t).

318

Brent’s Lemma (cont)

Intuition: You have to split the s work steps
across the t time steps somehow; things can’t
always be bad!

[If s is sequential complexity (i.e., E = 1), then the modified

algorithm has O(1) efficiency.]

319

Maximum-finding: CRCW

• Allow concurrent writes to a variable only
when each processor writes the same thing.

• Associate each element xi with a variable
vi, initially “1”.

• For each of n(n− 1)/2 processors, processor
pij compares elements i and j.

• First step: Each processor writes “0” to
the v variable of the smaller element.

– Now, only one v is “1”.

• Second step: Look at all vi,1 ≤ i ≤ n.

– The processor assigned to the max
element writes that value to MAX.

Efficiency of this algorithm is very poor!

• “Divide and crush.”

More efficient (but slower) algorithm:

• Given: n processors.

• Find maximum for each of n/2 pairs in
constant time.

• Find max for n/8 groups of 4 elements
(using 8 proc/group) each in constant time.

• Square the group size each time.

• Total time: O(log logn).

320

Parallel Prefix

Let · be any associative binary operation.

• Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all
k,1 ≤ k ≤ n.

Define PR(i, j) = xi · xi+1 · . . . · xj.

We want to compute PR(1, k) for 1 ≤ k ≤ n.

Sequential alg: Compute each prefix in order.

• O(n) time required.

Approach: Divide and Conquer

• IH: We know how to solve for n/2 elements.

1. PR(1, k) and PR(n/2 + 1,n/2 + k) for
1 ≤ k ≤ n/2.

2. PR(1,m) for n/2 < m ≤ n comes from
PR(1,n/2) ·PR(n/2 + 1,m) – from IH.

Complexity: (2) requires n/2 processors and
CREW for parallelism (all read middle position).

T (n, n) = O(logn); E(n, n) = O(1/ logn).

Brent’s lemma no help: O(n logn) total steps.

321

Better Parallel Prefix

E is the set of all xis with i even.

If we know PR(1,2i) for 1 ≤ i ≤ n/2 then
PR(1,2i + 1) = PR(1,2i) · x2i+1.

Algorithm:

• Compute in parallel x2i = x2i−1 · x2i for
1 ≤ i ≤ n/2.

• Solve for E (by induction).

• Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:

T (n, n) = O(log n). S(n) = S(n/2) + n− 1,
so S(n) = O(n).

for S(n) the total number of steps required to
process n elements.

So, by Brent’s Lemma, we can use O(n/ logn)
processors for O(1) efficiency.

322

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a
message to processor Pσ(i) such that no
processor is the destination for more than one
message.

Problem:

• In an n-cube, each processor is connected
to n other processors.

• At the same time, each processor can send
(or receive) only one message per time step
on a given connection.

• So, two messages cannot use the same
edge at the same time – one must wait.

323

Randomizing Switching Algorithm

It can be shown that any deterministic
algorithm is Ω(2na

) for some a > 0, where 2n is
the number of messages.

A node i (and its corresponding message) has
binary representation i1i2 · · · in.

Randomization approach:

(a) Route each message from i to j to a
random processor r (by a randomly selected
route).

(b) Continue the message from r to j by the
shortest route.

Phase (a):
for (each message at i)
cobegin
for (k = 1 to n)

T[i, k] = RANDOM(0, 1);
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;

324

Randomized Switching (cont)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)

T[i, k] = Current[i, k] EXCLUSIVE_OR Dest[i, k];
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;

With high probability, each phase completes in
O(n) time.

• It is possible to get a really bad random
routing, but this is unlikely.

• However, it is very possible for a
permutation of messages to be correlated,
causing bottlenecks.

325

Sorting on an array

Given: n processors labeled P1, P2, · · · , Pn with
processor Pi initially holding input xi.

Pi is connected to Pi−1 and Pi+1 (except for P1
and Pn).

• Comparisons/exchanges possible only for
adjacent elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?

326

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort
terminates, the numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:

• Consider the maximum element, say xm.

• Assume m odd (if even, it just won’t
exchange on first step).

• This element will move one step to the
right each step until it reaches the
rightmost position.

• The position of xm follows a diagonal in the
array of element positions at each step.

• Remove this diagonal, moving comparisons
in the upper triangle one step closer. [Map

the execution of n to an execution of n− 1 elements.]

• The first row is the nth step; the right
column holds the greatest value; the rest is
an n− 1 element sort (by induction).

327

Sorting Networks

When designing parallel algorithms, need to
make the steps independent.

Ex: Mergesort split step can be done in
parallel, but the join step is nearly serial.

• To parallelize mergesort, we must parallelize
the merge.

Batcher’s Algorithm:

For n a power of 2, assume a1, a2, · · · , an and
b1, b2, · · · , bn are sorted sequences.

Let x1, x2, · · · , xn be the final merged order.

Need to merge disjoint parts of these sequences
in parallel.

• Split a, b into odd- and even- index
elements.

• Merge aodd with bodd, aeven with beven,
yielding o1, o2, · · · , on and e1, e2, · · · , en

respectively.

328

Batcher’s Algorithm (cont)

Theorem 12.3: For all i such that
1 ≤ i ≤ n− 1, we have x2i = min(oi+1, ei) and
x2i+1 = max(oi+1, ei).

Proof:

• Since ei is the ith element in the sorted
even sequence, it is ≥ at least i even
elements.

• For each even element, ei is also ≥ an odd
element.

• So, ei ≥ 2i elements, or ei ≥ x2i.

• In the same way, oi+1 ≥ i + 1 odd elements,
≥ at least 2i elements all together.

• So, oi+1 ≥ x2i.

• By the pigeonhole principle, ei and oi+1
must be x2i and x2i+1 (in either order).

329

Batcher Sort Complexity

Number of comparisons for merge:

TM(2n) = 2TM(n) + n− 1; TM(1) = 1.

Total number of comparisons is O(n logn), but
the depth of recursion (parallel steps) is
O(logn).

Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n logn), TS(2) = 1.

So, TS(n) = O(n log2 n).

The circuit requires n processors in each
column, with depth O(log2 n), for a total of
O(n log2 n) processors and O(log2 n) time.

The processors only need to do comparisons
with two inputs and two outputs.

330

Matrix-Vector Multiplication

Problem: Find the product x = Ab of an m by
n matrix A with a column vector b of size n.

Systolic solution:

• Use n processor elements arranged in an
array, with processor Pi initially containing
element bi.

• Each processor takes a partial computation
from its left neighbor and a new element of
A from above, generating a partial
computation for its right neighbor.

331

