Analysis of Algorithms

T. M. Murali

April 25, May 2, 2011

Problem Example

FIND MINIMUM **INSTANCE:** Nonempty list $x_1, x_2, ..., x_n$ of integers. **SOLUTION:** Pair (i, x_i) such that $x_i = \min\{x_j \mid 1 \le j \le n\}$.

Algorithm Example

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Running Time of Algorithm

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

Running Time of Algorithm

FIND-MINIMUM
$$(x_1, x_2, ..., x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

- 5 return (i, x_i)
 - At most 2n 1 assignments and n 1 comparisons.

FIND-MINIMUM (x_1, x_2, \dots, x_n) 1 $i \leftarrow 1$ 2 for $j \leftarrow 2$ to n3 do if $x_j < x_i$ 4 then $i \leftarrow j$ 5 return (i, x_i)

FIND-MINIMUM
$$(x_1, x_2, \dots, x_n)$$

1 $i \leftarrow 1$
2 for $j \leftarrow 2$ to n
3 do if $x_j < x_i$
4 then $i \leftarrow j$
5 return (i, x_i)

Proof by contradiction:

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

▶ Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists $1 \le l \le n$ such that $x_l < x_k$ and $x_l = \min\{x_j \mid 1 \le j \le n\}$.

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

▶ Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists $1 \le l \le n$ such that $x_l < x_k$ and $x_l = \min\{x_j \mid 1 \le j \le n\}$.

```
▶ Is k < l?
```

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- ▶ Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists $1 \le l \le n$ such that $x_l < x_k$ and $x_l = \min\{x_j \mid 1 \le j \le n\}$.
- ► Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.</p>

```
FIND-MINIMUM(x_1, x_2, \dots, x_n)

1 i \leftarrow 1

2 for j \leftarrow 2 to n

3 do if x_j < x_i

4 then i \leftarrow j

5 return (i, x_i)
```

- ▶ Proof by contradiction: Suppose algorithm returns (k, x_k) but there exists $1 \le l \le n$ such that $x_l < x_k$ and $x_l = \min\{x_j \mid 1 \le j \le n\}$.
- ► Is k < l? No. Since the algorithm returns (k, x_k), x_k ≤ x_j, for all k < j ≤ n. Therefore l < k.</p>
- What does the algorithm do when j = l? It must set i to l, since we have been told that x_l is the smallest element.
- ▶ What does the algorithm do when j = k (which happens after j = l)? Since x_l < x_k, the value of i does not change.
- Therefore, the algorithm does not return (k, x_k) yielding a contradiction.

What is Algorithm Analysis?

- Measure resource requirements: how do the amount of time and space that an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?

What is Algorithm Analysis?

- Measure resource requirements: how do the amount of time and space that an algorithm uses scale with increasing input size?
- How do we put this notion on a concrete footing?
- What does it mean for one function to grow faster or slower than another?
- Goal: Develop algorithms that provably run quickly and use low amounts of space.

- We will measure worst-case running time of an algorithm.
 - Avoid depending on test cases or sample runs.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.

- We will measure worst-case running time of an algorithm.
 - Avoid depending on test cases or sample runs.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?

- We will measure worst-case running time of an algorithm.
 - Avoid depending on test cases or sample runs.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input.

- We will measure worst-case running time of an algorithm.
 - Avoid depending on test cases or sample runs.
- Bound the largest possible running time the algorithm over all inputs of size n, as a function of n.
- ▶ Why worst-case? Why not average-case or on random inputs?
- Input size = number of elements in the input. Values in the input do not matter.
- Assume all elementary operations take unit time: assignment, arithmetic on a fixed-size number, comparisons, array lookup, following a pointer, etc.
 - Make analysis independent of hardware and software.

▶ Brute force algorithm: Check every possible solution.

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is nn!. Unacceptable in practice!

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is *nn*!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor k.

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is *nn*!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor k.
- ► An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

- Brute force algorithm: Check every possible solution.
- ▶ What is a brute force algorithm for sorting: given *n* numbers, permute them so that they appear in increasing order?
 - ► Try all possible *n*! permutations of the numbers.
 - For each permutation, check if it is sorted.
 - Running time is *nn*!. Unacceptable in practice!
- Desirable scaling property: when the input size doubles, the algorithm should only slow down by some constant factor k.
- ► An algorithm has a *polynomial* running time if there exist constants c > 0 and d > 0 such that on every input of size n, the running time of the algorithm is bounded by cn^d steps.

Definition

An algorithm is *efficient* if it has a polynomial running time.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition Asymptotic upper bound: A function f(n) is O(g(n)) if we have $f(n) \leq g(n)$.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition
Asymptotic upper bound: A function f(n) is O(g(n)) if there exists constant
c > 0 such that we have $f(n) \le cg(n)$.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition

Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Definition Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Definition Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Definition Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

▶ In these definitions, *c* is a constant independent of *n*.

- Express " $4n^2 + 100$ does not grow faster than n^2 ."
- Express " $n^2/4$ grows faster than n + 1,000,000."

Definition Asymptotic upper bound: A function f(n) is O(g(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \le cg(n)$.

Definition Asymptotic lower bound: A function f(n) is $\Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $f(n) \ge cg(n)$.

Definition Asymptotic tight bound: A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

- ▶ In these definitions, *c* is a constant independent of *n*.
- Abuse of notation: say g(n) = O(f(n)), $g(n) = \Omega(f(n))$, $g(n) = \Theta(f(n))$.

•
$$f(n) = pn^2 + qn + r$$
 is

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

• Is $f(n) = pn^2 + qn + r = O(n^3)$?

•
$$f(n) = \sum_{0 \le i \le d} a_i n^i =$$

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- $f(n) = \sum_{0 \le i \le d} a_i n^i = O(n^d)$, if d > 0 is an integer constant and $a_d > 0$.
 - $O(n^d)$ is the definition of polynomial time.

• $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.

• Is
$$f(n) = pn^2 + qn + r = O(n^3)$$
?

- f(n) = ∑_{0≤i≤d} a_inⁱ = O(n^d), if d > 0 is an integer constant and a_d > 0.
 O(n^d) is the definition of polynomial time.
- ▶ Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- f(n) = ∑_{0≤i≤d} a_inⁱ = O(n^d), if d > 0 is an integer constant and a_d > 0.
 O(n^d) is the definition of polynomial time.
- ▶ Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every x > 0, $\log n = O(n^x)$.

- $f(n) = pn^2 + qn + r$ is $\theta(n^2)$. Can ignore lower order terms.
- Is $f(n) = pn^2 + qn + r = O(n^3)$?
- f(n) = ∑_{0≤i≤d} a_inⁱ = O(n^d), if d > 0 is an integer constant and a_d > 0.
 O(n^d) is the definition of polynomial time.
- ▶ Is an algorithm with running time $O(n^{1.59})$ a polynomial-time algorithm?
- $O(\log_a n) = O(\log_b n)$ for any pair of constants a, b > 1.
- For every x > 0, $\log n = O(n^x)$.
- For every r > 1 and every d > 0, $n^d = O(r^n)$.

Transitivity

Transitivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.

Transitivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$,

Transitivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

Transitivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- ▶ If k is a constant and there are k functions $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

• If
$$f = O(g)$$
, then $f + g =$

Transitivity

- If f = O(h) and g = O(h), then f + g = O(h).
- Similar statements hold for lower and tight bounds.
- If k is a constant and there are k functions
 - $f_i = O(h), 1 \le i \le k$, then $f_1 + f_2 + \ldots + f_k = O(h)$.

• If
$$f = O(g)$$
, then $f + g = \Theta(g)$.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
 - Partition problem into two equal sub-problems of size n/2.
 - Solve each part recursively.
 - Combine the two solutions in O(n) time.
 - Resulting running time is $O(n \log n)$.

MergeSort

Mergesort

Sort

INSTANCE: Nonempty list $L = x_1, x_2, \ldots, x_n$ of integers.

SOLUTION: A permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that $y_i \leq y_{i+1}$, for all $1 \leq i < n$.

Mergesort is a divide-and-conquer algorithm for sorting.

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.
 - 1. Maintain a *current* pointer for each list.
 - 2. Initialise each pointer to the front of its list.
 - 3. While both lists are nonempty:
 - 3.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 3.2 Append the smaller of the two to the output list.
 - 3.3 Advance the current pointer in the list that the smaller element belonged to.
 - 4. Append the rest of the non-empty list to the output.

- Merge two sorted lists $A = a_1, a_2, \ldots, a_k$ and $B = b_1, b_2, \ldots, b_l$.
 - 1. Maintain a *current* pointer for each list.
 - 2. Initialise each pointer to the front of its list.
 - 3. While both lists are nonempty:
 - 3.1 Let a_i and b_j be the elements pointed to by the *current* pointers.
 - 3.2 Append the smaller of the two to the output list.
 - 3.3 Advance the current pointer in the list that the smaller element belonged to.
 - 4. Append the rest of the non-empty list to the output.
- Running time of this algorithm is O(k + l).

- 1. Partition L into two lists A and B of size |n/2| and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

Assume *n* is a power of 2.

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for n elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

Assume *n* is a power of 2.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

$$T(2) \leq c$$

- 1. Partition L into two lists A and B of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
- 2. Recursively sort A.
- 3. Recursively sort B.
- 4. Merge the sorted lists A and B into a single sorted list.

Worst-case running time for *n* elements $(T(n)) \leq$ Worst-case running time for $\lfloor n/2 \rfloor$ elements + Worst-case running time for $\lceil n/2 \rceil$ elements + Time to split the input into two lists + Time to merge two sorted lists.

Assume *n* is a power of 2.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

$$T(2) \leq c$$

- Three ways of solving this recurrence relation:
 - 1. "Unroll" the recurrence (somewhat informal method).
 - 2. Guess a solution and substitute into recurrence to check.
 - 3. Guess solution in O() form and substitute into recurrence to determine the constants.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \le 2T(n/2) + O(n)$.

- ▶ Recursion tree has log *n* levels.
- Total work done at each level is cn.
- Running time of the algorithm is cn log n.
- Use this method only to get an idea of the solution.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n.

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.

Т

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$

Τ

- Guess that the solution is $T(n) \leq cn \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive hypothesis: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log(n/2)$.
- Inductive step: Prove $T(n) \leq cn \log n$.

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(\frac{cn}{2}\log\left(\frac{n}{2}\right)\right) + cn, \text{ by the inductive hypothesis}$$

$$= cn\log\left(\frac{n}{2}\right) + cn$$

$$= cn\log n - cn + cn$$

$$= cn\log n.$$

- Why doesn't an attempt to prove $T(n) \leq kn$, for some k > 0 work?
- Why is $T(n) \le kn^2$ a "loose" bound?

Proof for All Values of *n*

- ▶ We assumed *n* is a power of 2.
- How do we generalise the proof?

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- ► Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m)$

MergeSort

- We assumed *n* is a power of 2.
- How do we generalise the proof?
- ► Basic axiom: T(n) ≤ T(n + 1), for all n: worst case running time increases as input size increases.
- Let m be the smallest power of 2 larger than n.
- $T(n) \leq T(m) = O(m \log m) = O(n \log n)$, because $m \leq 2n$.

MergeSort