VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #2: The Relational Model



Course Outline

= Weeks 1-4: Query/ = Week 9-10: Relational
Manipulation Languages Design
and Data Modeling — Functional Dependencies
— Relational Algebra — Normalization to avoid
— Data definition redundancy

— Programming with SQL
— Entity-Relationship (E/R) = Week 11-12: Concurrency

approach _ Control
— Specifying Constraints _ Transactions
— Good E/R design — Logging and Recovery
= Weeks 5-8: Indexes, = Week 13-14: Students’
Processing and choice
Optimization — Practice Problems
— Storing — XML
— Hashing/Sorting — Data mining and
— Query Optimization warehousing

— NoSQL and Hadoop
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Data Model

= A Data Model is a notation for describing data or information.
— Structure of data (e.g. arrays, structs)

* Conceptual model: In databases, structures are at a higher
level.

— Operations on data (Modifications and Queries)

e Limited Operations: Ease of programmers and efficiency of
database.

— Constraints on data (what the data can be)

= Examples of data models
— The Relational Model
— The Semistructured-Data Model
XML and related standards
— Object-Relational Model
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The Relational Model

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Structure: Table (like an array of structs)

= Operations: Relational alebgra (selection,
projection, conditions, etc)

= Constraints: E.g., grades can be only {A, B, C, F}
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The Semi-structured model

<CoursesTaken>
<Student>Hermione Grainger</Student>
<Course>Potions</Course>
<Grade>A</Grade>
<Student>Draco Malfoy</Student>
<Course>Potions</Course>
<Grade>B</Grade>

</CouréééTaken>
= Structure: Trees or graphs, tags define role played by

different pieces of data.

= Operations: Follow paths in the implied tree from one
element to another.

= Constraints: E.g., can express limitations on data types
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Comparing the two models

= Flexibility: XML can represent graphs

= Ease of use: SQL enables programmer to
express wishes at high level.
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The Relational Model

= Simple: Built around a single concept for
modeling data: the relation or table.

— A relational database is a collection of relations.
— Each relation is a table with rows and columns.

= Supports high-level programming language (SQL).
— Limited but very useful set of operations

= Has an elegant mathematical design theory.

= Most current DBMS are relational (Oracle, IBM DB2,
MS SQL)
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Relations

= Arelation is a two-dimensional table:
— Relation == table.
— Attribute == column name.
— Tuple == row (not the header row).

= Database == collection of relations.
= Arelation has two parts:
— Schema defines column heads of the table (attributes).
— Instance contains the data rows (tuples, rows, or records) of the table.

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
| Harry Potter Potions A |
Prakash 2015 . WeaSIey W CSPZ'gOtI;'ronS - 8
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Schema
CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= The schema of a relation is the name of the relation followed
by a parenthesized list of attributes.

CoursesTaken (Student, Course, Grade)
= Adesignin a relational model consists of a set of schemas.
= Such a set of schemas is called a relational database schema.
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MVirginiaTech
Relations: Equivalent Representations

CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

CoursesTaken (Student, Course, Grade)
= Relation is a set of tuples and not a list of tuples.
— Order in which we present the tuples does not matter.
— Very important!
= The attributes in a schema are also a set (not a list).
— Schema is the same irrespective of order of attributes.
CoursesTaken (Student, Grade, Course)
— We specify a “standard” order when we introduce a schema.

" How many equivalent representations are there for a relation with
m attributes and n tuples? il

Prakash 2015 VT CS 4604 10



MVirginiaTech

Degree and Cardinality

CoursesTaken :

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Degree/Arity is the number of fields/attributes in schema (=3

in the table above)

= Cardinality is the number of tuples in relation (=4 in the table

above)

Prakash 2015
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Keys of Relations

= Keys are one form of integrity constraints (IC)
— No pair of tuples should have identical keys

" What is the key for CoursesTaken?
— Student if only one course in the relation
— Pair (Student, Course) if multiple courses
— What if student takes same course many times?

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

Prakash 2015 VT CS 4604
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Keys of Relations

= Keys help associate tuples in different

relations
SID__ | D | Grade |
15-401 A
15-401 B
Student GPA
14-501 B
Hermione 3.9
Grainger

Draco Malfoy | 3.0
Harry Potter 3.7

Ron Weasley 3.1
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Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned to
a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have 2= 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most one
chairperson (or dept. head). A chairperson is not allowed to head
two or more departments.



MVirginiaTech

Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, |Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned
to a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have > 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most
one chairperson (or dept. head). A chairperson is not allowed to
head two or more departments.
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MVirginiaTech
Relational Design for the Example

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2015 VT CS 4604 16



MVirginiaTech
Relational Desigh Example: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)
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MVirginiaTech
Relational Design: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)
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Issues to Consider in the Design

" Can we merge Courses and Teach since each
professor teaches at most one course?

= Do we need a separate relation to store evaluations?

= How can we handle pre-requisites that are “or’’s,
e.g., you can take CS 4604 if you have taken either CS
3114 or CS 26067

" How do we generalize this schema to handle data
over more than one semester?

* What modifications does the schema need if more
than one professor can teach a course?
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Formal query languages

" How do we collect information?

» Eg., find ssn’ s of people in 415

" (recall: everything is a set!)

" One solution: Rel. algebra, ie., set operators
= Q1: Which ones??

" Q2: what is a minimal set of operators?

Prakash 2015 VT CS 4604
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Relational operators

. [
. [
" set union U

£« )

= set difference -

Prakash 2015 VT CS 4604 21
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= Q: find all students (part or full time)

Example:

= A: PT-STUDENT union FT-STUDENT

FT-STUDENT

Ssn Name
129 peters main str
239 lee 5th ave

PT-STUDENT

Ssn Name Address
123 smith main str
234 jones forbes ave




MVirginiaTech
Observations:

= two tables are ‘union compatible’ if they
have the same attributes ( ‘domains’)

= Q: how about intersection N

Prakash 2015 VT CS 4604
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Observations:

= A: redundant:
= STUDENT intersection STAFF =

STUDENT STAFF

Prakash 2015 VT CS 4604 24
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Observations:

= A: redundant:
= STUDENT intersection STAFF =

STUDENT STAFF

Prakash 2015 VT CS 4604
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Observations:

= A: redundant:
= STUDENT intersection STAFF =
STUDENT - (STUDENT - STAFF)

STUDENT STAFF

Prakash 2015 VT CS 4604
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Observations:

= A: redundant:
= STUDENT intersection STAFF =
STUDENT - (STUDENT - STAFF)

Double negation:

We' Il see it again, later...

Prakash 2015 VT CS 4604
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Relational operators

. [
. [
" set union

£« )

= set difference -
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= eg, find all students on ‘Main street’

Other operators?

= A: ‘selection’

Prakash 2015

address="main str' (STUDENT )
STUDENT
Ssn Name Address

123 smith main str

234 jones forbes ave

VT CS 4604
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Other operators?

= Notice: selection (and rest of operators)
expect tables, and produce tables (-> can be

cascaded!!)
" For selection, in general:

o (RELATION)

condition

Prakash 2015 VT CS 4604
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Selection - examples

* Find all ‘Smiths’ on ‘Main St.’

o (STUDENT)

name='Smith' A address='Main st.

‘condition’ can be any boolean combination of ‘=°, >", >=°, .

Prakash 2015 VT CS 4604
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Relational operators

= selection

" set union
» set difference

Prakash 2015

Ucondition (R)
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MVirginiaTech
Relational operators

= selection picks rows - how about columns?
= A: ‘projection’ -eg.:

w_(STUDENT)
finds all the ‘ssn’ - removing duplicates
STUDENT
Ssn Name Address
123|smith main str
234|jones forbes ave
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Relational operators

Cascading: ‘find ssn of students on ‘main st.’

Prakash 2015

nssn (Oaddress='main st' (S TUD EN T))
STUDENT
Ssn Name Address
| 123 smith main str |

234|jones forbes ave
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Relational operators

= selection
= projection

" set union
» set difference

Prakash 2015

Ocondition (R)
Jratt—list (R)

VT CS 4604
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Relational operators

Are we done yet?
Q: Give a query we can not answer yet!
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Relational operators

A: any query across two or more tables,
eg., find names of students in 4604’

Q: what extra operator do we need??

STUDENT SSN c-id grade

Ssn Name  Address 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave

Prakash 2015

VT CS 4604
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MVirginiaTech
Relational operators

A: any query across two or more tables,
eg., find names of students in 4604’

Q: what extra operator do we need??
A: surprisingly, cartesian product is enough!

STUDENT SSN c-id grade

Ssn Name Address 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave
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Cartesian product

" eg., dog-breeding: MALE x FEMALE
= gjves all possible couples

MALE FEMALE

M.name F.name
name Name = |spike lassie
spike Z lassie spike shiba
spot shiba spot lassie

spot shiba
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MVirginiaTech
so what?

" Eg., how do we find names of students taking
46047
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Cartesian product

. .
AL O ypr o o (STUDENT x TAKES)
Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones forbes ave 234 5614 B

Prakash 2015
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Cartesian product

O ia=a608 O srupenT ssneraxes ssn (O LT UDENT x TAKES))

Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones __forbes ave 234 5614 B
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ﬂname(

o cid=4604(OSTUDENT.ssn=TAKES .SSn (STUD EN T X TAKES ))
)

Ssn | Name | Address ssn cid grade

123 smith | main str 123 4604 A
—234jones—forbesave +23—4604A

—ﬁﬂ—m&n—s&r 234—56144B—
_ i __forbes ave 234 5614 B

Prakash 2015 VT CS 4604 43



W VirginiaTech

FUNDAMENTAL
Relational operators
= selection O oniiion (L)
* projection 7 -t (R)
= cartesian product MALE x FEMALE
= set union RuS
" set difference R-S
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MVirginiaTech
Relational ops

= Surprisingly, they are enough, to help us
answer almost any query we want!!

= derived/convenience operators:
— set intersection
— join (theta join, equi-join, natural join) 4
— ‘rename’ operator ,OR-(R)
—division R+ S

Prakash 2015 VT CS 4604
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Joins

= Equijoin:

R M R.a=S.b S = UR.a=S.b (R X S)

Prakash 2015 VT CS 4604 46
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Cartesian product

= Al o (STUDENT x TAKES)
Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones forbes ave 234 5614 B

Prakash 2015
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MVirginiaTech
Joins
* Equijoin: RP<, ¢, 0 =0, (RxS)
" theta-joins: R >, AY

generalization of equi-join - any condition &

Prakash 2015 VT CS 4604
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Joins
= very popular: natural join: RPS
= |ike equi-join, but it drops duplicate columns:

STUDENT (ssn, name, address)
TAKES (ssn, cid, grade)

Prakash 2015 VT CS 4604
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Joins

= nat. join has 5 attributes STUDENT D]]TAKES

Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
234 jones forbes ave 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave 234 5614 B

< >

equi-join: 6 STUDEM MSTUDENT.SSH=TAKES.SSI’Z TAKES
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Natural Joins - nit-picking

= if no attributes in common between R, S:
nat. join -> cartesian product
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Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604
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Rename op.

= Q: why? 0, (BEFORE)

" A:shorthand; self-j

" for example, find t

oins; ...
1 ’
ne grand-parents of Tom

given PC (parent-ic

Prakash 2015

, child-id)
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Rename op.

» PC (parent-id, child-id) PCD>JPC

PC PC

p-id c-id p-id c-id
Mary Tom Mary o
Peter Mary —~

Peter
John Tom John Cja

Prakash 2015 VT CS 4604
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Rename op.

" first, WRONG attempt:

repare Q)

" (why? how many columns?)
= Second WRONG attempt:

PCMPC.c-id=PC.p—id PC ®

Prakash 2015 VT CS 4604
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Rename op.

= we clearly need two different names for the
same table - hence, the ‘rename’ op.

Lrci (P C)MPCl.c—id=PC.p—id PC

Prakash 2015 VT CS 4604
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Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604
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Division

= Rarely used, but powerful.

= Example: find suspicious suppliers, ie.,
suppliers that supplied all the parts in
A BOMB

Prakash 2015 VT CS 4604
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Division
SHIPMENT
s# p# ABOMB
s2 p1 -+
p1
s1 p2 02
s3 p1

s p3

Prakash 2015

VT CS 4604
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Division

" Observations: ~reverse of cartesian product

= |t can be derived from the 5 fundamental
operators (!!)

= How?

Prakash 2015 VT CS 4604
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Division

= Answer:

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

= Observation: find ‘good’ suppliers, and
subtract! (double negation)

Prakash 2015 VT CS 4604
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[ ] [ ] [ ]
Division
SHIPMENT
. s# p# ABOMB
= Answer: 1 3 .
s1 p2 z;
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

= Observation: find ‘good’ suppliers, and
subtract! (double negation)

Prakash 2015 VT CS 4604

BAD_S

s1

62



WVirginiaTech
Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:z_f = ‘———2?
s1 p2 p2
s3 p1
s5 p3

r+S =g g ) =T o (Trs)(r)xs)=7]

P [

All suppliers

All bad parts
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Division

SHIPMENT
s# p#
" Answer: s b Asoms gan s
s2 p1 - g_f = 2?
s1 p2 p2
s3 p1
s5 p3

F+8=7r_s () _”(R-S)[(”(R-S) (r)xs)—r]

P [
«

all possible
suspicious shipments
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Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:z_f = ‘———2?
s1 p2 p2
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

P [ P »

< »

P
<

all possible
suspicious shipments
that didn’ t happen
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Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:g_f = ‘———zf
s1 p2 p2
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

P [ P »

< »

P

all suppliers who missed
at least one suspicious shipment,
i.e.: ‘good’ suppliers
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Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604
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Sample schema

find names of students that take 4604

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4513 s.e. 2
234 jones forbes ave 4512 o.s. 2
TAKES

SSN c-id grade
123 4513 A
234 4513 B
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Examples

= find names of students that take 4604

Prakash 2015 VT CS 4604
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Examples

= find names of students that take 4604

10 o (STUDENT >JTAKES)]

< >

name [

< >

< >
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Sample schema

find course names of ‘smith’

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4613 s.e. 2
234 jones forbes ave 4612 o.s. 2
TAKES

SSN c-id grade
123 4613 A
234 4613 B
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Examples

» find course names of ‘smith’

JC O

c—name [ name='smith' (

STUDENT[><|TAKES[><|CLASS
)]

<

Prakash 2015 VT CS 4604
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Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604

Prakash 2015 VT CS 4604
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Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604: almost correct answer:

Oc—name=4612 (TAKES ) m
Oc—name=4613 (TAKE S ) ﬂ
Uc—name=4604 (TAKE S )

Prakash 2015 VT CS 4604
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MVirginiaTech
Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604 - Correct answer:

:Oc—name=4612 (TAKES): ﬂ
ke w13(TAKES)]

Ssn - c—name=

Ke; won (TAKES)

Ssn - c—name=

Ssn
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Examples

= find ssn of students that work at least as hard
as ssn=123, ie., they take all the courses of
ssn=123, and maybe more

Prakash 2015 VT CS 4604
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Sample schema

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4613 s.e. 2
234 jones forbes ave 4612 o.s. 2
TAKES

SSN c-id grade
123 4613 A
234 4613 B
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Examples

" find ssn of students that work at least as hard
as ssn=123 (ie., they take all the courses of
ssn=123, and maybe more

[ﬂssn,c—id (TAKES )] - ﬂc—id [Ossn=123 (TAKES )]

Prakash 2015 VT CS 4604

78



MVirginiaTech
Conclusions

= Relational model: only tables ( ‘relations’ )

* relational algebra: powerful, minimal: 5
operators can handle almost any query!
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