VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #2: The Relational Model

Course Outline

= Weeks 1-4: Query/ = Week 9-10: Relational
Manipulation Languages Design
and Data Modeling — Functional Dependencies
— Relational Algebra — Normalization to avoid
— Data definition redundancy

— Programming with SQL
— Entity-Relationship (E/R) = Week 11-12: Concurrency

approach _ Control
— Specifying Constraints _ Transactions
— Good E/R design — Logging and Recovery
= Weeks 5-8: Indexes, = Week 13-14: Students’
Processing and choice
Optimization — Practice Problems
— Storing — XML
— Hashing/Sorting — Data mining and
— Query Optimization warehousing

— NoSQL and Hadoop

Prakash 2015 VT CS 4604 2

MVirginiaTech

Data Model

= A Data Model is a notation for describing data or information.
— Structure of data (e.g. arrays, structs)

* Conceptual model: In databases, structures are at a higher
level.

— Operations on data (Modifications and Queries)

e Limited Operations: Ease of programmers and efficiency of
database.

— Constraints on data (what the data can be)

= Examples of data models
— The Relational Model
— The Semistructured-Data Model
XML and related standards
— Object-Relational Model

Prakash 2015 VT CS 4604

VirginiaTech

The Relational Model

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Structure: Table (like an array of structs)

= Operations: Relational alebgra (selection,
projection, conditions, etc)

= Constraints: E.g., grades can be only {A, B, C, F}

Prakash 2015 VT CS 4604

MVirginiaTech
The Semi-structured model

<CoursesTaken>
<Student>Hermione Grainger</Student>
<Course>Potions</Course>
<Grade>A</Grade>
<Student>Draco Malfoy</Student>
<Course>Potions</Course>
<Grade>B</Grade>

</CouréééTaken>
= Structure: Trees or graphs, tags define role played by

different pieces of data.

= Operations: Follow paths in the implied tree from one
element to another.

= Constraints: E.g., can express limitations on data types

Prakash 2015 VT CS 4604

MVirginiaTech
Comparing the two models

= Flexibility: XML can represent graphs

= Ease of use: SQL enables programmer to
express wishes at high level.

Prakash 2015 VT CS 4604

MVirginiaTech
The Relational Model

= Simple: Built around a single concept for
modeling data: the relation or table.

— A relational database is a collection of relations.
— Each relation is a table with rows and columns.

= Supports high-level programming language (SQL).
— Limited but very useful set of operations

= Has an elegant mathematical design theory.

= Most current DBMS are relational (Oracle, IBM DB2,
MS SQL)

Prakash 2015 VT CS 4604

MVirginiaTech

Relations

= Arelation is a two-dimensional table:
— Relation == table.
— Attribute == column name.
— Tuple == row (not the header row).

= Database == collection of relations.
= Arelation has two parts:
— Schema defines column heads of the table (attributes).
— Instance contains the data rows (tuples, rows, or records) of the table.

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
| Harry Potter Potions A |
Prakash 2015 . WeaSIey W CSPZ'gOtI;'ronS - 8

WVirginiaTech

Schema
CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= The schema of a relation is the name of the relation followed
by a parenthesized list of attributes.

CoursesTaken (Student, Course, Grade)
= Adesignin a relational model consists of a set of schemas.
= Such a set of schemas is called a relational database schema.

Prakash 2015 VT CS 4604

MVirginiaTech
Relations: Equivalent Representations

CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

CoursesTaken (Student, Course, Grade)
= Relation is a set of tuples and not a list of tuples.
— Order in which we present the tuples does not matter.
— Very important!
= The attributes in a schema are also a set (not a list).
— Schema is the same irrespective of order of attributes.
CoursesTaken (Student, Grade, Course)
— We specify a “standard” order when we introduce a schema.

" How many equivalent representations are there for a relation with
m attributes and n tuples? il

Prakash 2015 VT CS 4604 10

MVirginiaTech

Degree and Cardinality

CoursesTaken :

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Degree/Arity is the number of fields/attributes in schema (=3

in the table above)

= Cardinality is the number of tuples in relation (=4 in the table

above)

Prakash 2015

VT CS 4604

MVirginiaTech

Keys of Relations

= Keys are one form of integrity constraints (IC)
— No pair of tuples should have identical keys

" What is the key for CoursesTaken?
— Student if only one course in the relation
— Pair (Student, Course) if multiple courses
— What if student takes same course many times?

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

Prakash 2015 VT CS 4604

12

W VirginiaTech

Keys of Relations

= Keys help associate tuples in different

relations
SID__ | D | Grade |
15-401 A
15-401 B
Student GPA
14-501 B
Hermione 3.9
Grainger

Draco Malfoy | 3.0
Harry Potter 3.7

Ron Weasley 3.1

Prakash 2015 VT CS 4604 13

|VirginiaTech

Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned to
a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have 2= 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most one
chairperson (or dept. head). A chairperson is not allowed to head
two or more departments.

MVirginiaTech

Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, |Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned
to a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have > 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most
one chairperson (or dept. head). A chairperson is not allowed to
head two or more departments.

Prakash 2015 VT CS 4604 15

MVirginiaTech
Relational Design for the Example

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2015 VT CS 4604 16

MVirginiaTech
Relational Desigh Example: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2015 VT CS 4604 17

MVirginiaTech
Relational Design: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2015 VT CS 4604 18

MVirginiaTech
Issues to Consider in the Design

" Can we merge Courses and Teach since each
professor teaches at most one course?

= Do we need a separate relation to store evaluations?

= How can we handle pre-requisites that are “or’’s,
e.g., you can take CS 4604 if you have taken either CS
3114 or CS 26067

" How do we generalize this schema to handle data
over more than one semester?

* What modifications does the schema need if more
than one professor can teach a course?

Prakash 2015 VT CS 4604 19

MVirginiaTech
Formal query languages

" How do we collect information?

» Eg., find ssn’ s of people in 415

" (recall: everything is a set!)

" One solution: Rel. algebra, ie., set operators
= Q1: Which ones??

" Q2: what is a minimal set of operators?

Prakash 2015 VT CS 4604

20

MVirginiaTech

Relational operators

. [
. [
" set union U

£«)

= set difference -

Prakash 2015 VT CS 4604 21

MVirginiaTech

= Q: find all students (part or full time)

Example:

= A: PT-STUDENT union FT-STUDENT

FT-STUDENT

Ssn Name
129 peters main str
239 lee 5th ave

PT-STUDENT

Ssn Name Address
123 smith main str
234 jones forbes ave

MVirginiaTech
Observations:

= two tables are ‘union compatible’ if they
have the same attributes (‘domains’)

= Q: how about intersection N

Prakash 2015 VT CS 4604

23

MVirginiaTech

Observations:

= A: redundant:
= STUDENT intersection STAFF =

STUDENT STAFF

Prakash 2015 VT CS 4604 24

MVirginiaTech
Observations:

= A: redundant:
= STUDENT intersection STAFF =

STUDENT STAFF

Prakash 2015 VT CS 4604

25

MVirginiaTech

Observations:

= A: redundant:
= STUDENT intersection STAFF =
STUDENT - (STUDENT - STAFF)

STUDENT STAFF

Prakash 2015 VT CS 4604

26

MVirginiaTech
Observations:

= A: redundant:
= STUDENT intersection STAFF =
STUDENT - (STUDENT - STAFF)

Double negation:

We' Il see it again, later...

Prakash 2015 VT CS 4604

27

WVirginiaTech

Relational operators

. [
. [
" set union

£«)

= set difference -

Prakash 2015 VT CS 4604 28

MVirginiaTech

= eg, find all students on ‘Main street’

Other operators?

= A: ‘selection’

Prakash 2015

address="main str' (STUDENT)
STUDENT
Ssn Name Address

123 smith main str

234 jones forbes ave

VT CS 4604

29

MVirginiaTech
Other operators?

= Notice: selection (and rest of operators)
expect tables, and produce tables (-> can be

cascaded!!)
" For selection, in general:

o (RELATION)

condition

Prakash 2015 VT CS 4604

30

MVirginiaTech
Selection - examples

* Find all ‘Smiths’ on ‘Main St.’

o (STUDENT)

name='Smith' A address='Main st.

‘condition’ can be any boolean combination of ‘=°, >", >=°, .

Prakash 2015 VT CS 4604

31

MVirginiaTech

Relational operators

= selection

" set union
» set difference

Prakash 2015

Ucondition (R)

VT CS 4604

32

MVirginiaTech
Relational operators

= selection picks rows - how about columns?
= A: ‘projection’ -eg.:

w_(STUDENT)
finds all the ‘ssn’ - removing duplicates
STUDENT
Ssn Name Address
123|smith main str
234|jones forbes ave

Prakash 2015 VT CS 4604 33

MVirginiaTech

Relational operators

Cascading: ‘find ssn of students on ‘main st.’

Prakash 2015

nssn (Oaddress='main st' (S TUD EN T))
STUDENT
Ssn Name Address
| 123 smith main str |

234|jones forbes ave

VT CS 4604 34

WVirginiaTech

Relational operators

= selection
= projection

" set union
» set difference

Prakash 2015

Ocondition (R)
Jratt—list (R)

VT CS 4604

35

MVirginiaTech

Relational operators

Are we done yet?
Q: Give a query we can not answer yet!

Prakash 2015 VT CS 4604 36

MVirginiaTech

Relational operators

A: any query across two or more tables,
eg., find names of students in 4604’

Q: what extra operator do we need??

STUDENT SSN c-id grade

Ssn Name Address 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave

Prakash 2015

VT CS 4604

37

MVirginiaTech
Relational operators

A: any query across two or more tables,
eg., find names of students in 4604’

Q: what extra operator do we need??
A: surprisingly, cartesian product is enough!

STUDENT SSN c-id grade

Ssn Name Address 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave

Prakash 2015 VT CS 4604 38

MVirginiaTech
Cartesian product

" eg., dog-breeding: MALE x FEMALE
= gjves all possible couples

MALE FEMALE

M.name F.name
name Name = |spike lassie
spike Z lassie spike shiba
spot shiba spot lassie

spot shiba

Prakash 2015 VT CS 4604

MVirginiaTech
so what?

" Eg., how do we find names of students taking
46047

Prakash 2015 VT CS 4604 40

MVirginiaTech

Cartesian product

. .
AL O ypr o o (STUDENT x TAKES)
Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones forbes ave 234 5614 B

Prakash 2015

VT CS 4604 41

MVirginiaTech
Cartesian product

O ia=a608 O srupenT ssneraxes ssn (O LT UDENT x TAKES))

Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones __forbes ave 234 5614 B

Prakash 2015 VT CS 4604 42

MVirginiaTech

ﬂname(

o cid=4604(OSTUDENT.ssn=TAKES .SSn (STUD EN T X TAKES))
)

Ssn | Name | Address ssn cid grade

123 smith | main str 123 4604 A
—234jones—forbesave +23—4604A

—ﬁﬂ—m&n—s&r 234—56144B—
_ i __forbes ave 234 5614 B

Prakash 2015 VT CS 4604 43

W VirginiaTech

FUNDAMENTAL
Relational operators
= selection O oniiion (L)
* projection 7 -t (R)
= cartesian product MALE x FEMALE
= set union RuS
" set difference R-S

Prakash 2015 VT CS 4604 44

MVirginiaTech
Relational ops

= Surprisingly, they are enough, to help us
answer almost any query we want!!

= derived/convenience operators:
— set intersection
— join (theta join, equi-join, natural join) 4
— ‘rename’ operator ,OR-(R)
—division R+ S

Prakash 2015 VT CS 4604

45

MVirginiaTech
Joins

= Equijoin:

R M R.a=S.b S = UR.a=S.b (R X S)

Prakash 2015 VT CS 4604 46

MVirginiaTech

Cartesian product

= Al o (STUDENT x TAKES)
Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
-234jones—forbesave 123—4604—A
—123-srith—mai-str 234—5644-B——
234 jones forbes ave 234 5614 B

Prakash 2015

VT CS 4604 47

MVirginiaTech
Joins
* Equijoin: RP<, ¢, 0 =0, (RxS)
" theta-joins: R >, AY

generalization of equi-join - any condition &

Prakash 2015 VT CS 4604

48

MVirginiaTech
Joins
= very popular: natural join: RPS
= |ike equi-join, but it drops duplicate columns:

STUDENT (ssn, name, address)
TAKES (ssn, cid, grade)

Prakash 2015 VT CS 4604

49

MVirginiaTech

Joins

= nat. join has 5 attributes STUDENT D]]TAKES

Ssn Name Address ssn cid grade
123 smith main str 123 4604 A
234 jones forbes ave 123 4604 A
123 smith main str 234 5614 B
234 jones forbes ave 234 5614 B

< >

equi-join: 6 STUDEM MSTUDENT.SSH=TAKES.SSI’Z TAKES

Prakash 2015 VT CS 4604 50

MVirginiaTech

Natural Joins - nit-picking

= if no attributes in common between R, S:
nat. join -> cartesian product

Prakash 2015 VT CS 4604 51

MVirginiaTech
Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604

52

MVirginiaTech

Rename op.

= Q: why? 0, (BEFORE)

" A:shorthand; self-j

" for example, find t

oins; ...
1 ’
ne grand-parents of Tom

given PC (parent-ic

Prakash 2015

, child-id)

VT CS 4604 53

MVirginiaTech
Rename op.

» PC (parent-id, child-id) PCD>JPC

PC PC

p-id c-id p-id c-id
Mary Tom Mary o
Peter Mary —~

Peter
John Tom John Cja

Prakash 2015 VT CS 4604

54

MVirginiaTech
Rename op.

" first, WRONG attempt:

repare Q)

" (why? how many columns?)
= Second WRONG attempt:

PCMPC.c-id=PC.p—id PC ®

Prakash 2015 VT CS 4604

55

MVirginiaTech
Rename op.

= we clearly need two different names for the
same table - hence, the ‘rename’ op.

Lrci (P C)MPCl.c—id=PC.p—id PC

Prakash 2015 VT CS 4604

56

MVirginiaTech
Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604

57

MVirginiaTech
Division

= Rarely used, but powerful.

= Example: find suspicious suppliers, ie.,
suppliers that supplied all the parts in
A BOMB

Prakash 2015 VT CS 4604

58

MVirginiaTech

Division
SHIPMENT
s# p# ABOMB
s2 p1 -+
p1
s1 p2 02
s3 p1

s p3

Prakash 2015

VT CS 4604

59

MVirginiaTech

Division

" Observations: ~reverse of cartesian product

= |t can be derived from the 5 fundamental
operators (!!)

= How?

Prakash 2015 VT CS 4604

60

MVirginiaTech
Division

= Answer:

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

= Observation: find ‘good’ suppliers, and
subtract! (double negation)

Prakash 2015 VT CS 4604

61

MVirginiaTech

[] [] []
Division
SHIPMENT
. s# p# ABOMB
= Answer: 1 3 .
s1 p2 z;
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

= Observation: find ‘good’ suppliers, and
subtract! (double negation)

Prakash 2015 VT CS 4604

BAD_S

s1

62

WVirginiaTech
Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:z_f = ‘———2?
s1 p2 p2
s3 p1
s5 p3

r+S =g g) =T o (Trs)(r)xs)=7]

P [

All suppliers

All bad parts

Prakash 2015 VT CS 4604 63

MVirginiaTech

Division

SHIPMENT
s# p#
" Answer: s b Asoms gan s
s2 p1 - g_f = 2?
s1 p2 p2
s3 p1
s5 p3

F+8=7r_s () _”(R-S)[(”(R-S) (r)xs)—r]

P [
«

all possible
suspicious shipments

Prakash 2015 VT CS 4604 64

MVirginiaTech
Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:z_f = ‘———2?
s1 p2 p2
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

P [P »

< »

P
<

all possible
suspicious shipments
that didn’ t happen

Prakash 2015 VT CS 4604 65

WVirginiaTech

Division

SHIPMENT
s# p#
| Answe ro =1 o1 ABOMB BAD_S
s2 p1 = ‘:g_f = ‘———zf
s1 p2 p2
s3 p1
s5 p3

I+ 8 =T p_sy (1) =T p_s) (T gy (1) X 8) = 7]

P [P »

< »

P

all suppliers who missed
at least one suspicious shipment,
i.e.: ‘good’ suppliers

Prakash 2015 VT CS 4604 66

MVirginiaTech
Overview - rel. algebra

* fundamental operators

= derived operators
— joins etc
— rename
— division

= examples

Prakash 2015 VT CS 4604

67

MVirginiaTech

Sample schema

find names of students that take 4604

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4513 s.e. 2
234 jones forbes ave 4512 o.s. 2
TAKES

SSN c-id grade
123 4513 A
234 4513 B

Prakash 2015 VT CS 4604 68

WVirginiaTech
Examples

= find names of students that take 4604

Prakash 2015 VT CS 4604

69

MVirginiaTech

Examples

= find names of students that take 4604

10 o (STUDENT >JTAKES)]

< >

name [

< >

< >

Prakash 2015 VT CS 4604 70

MVirginiaTech

Sample schema

find course names of ‘smith’

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4613 s.e. 2
234 jones forbes ave 4612 o.s. 2
TAKES

SSN c-id grade
123 4613 A
234 4613 B

Prakash 2015 VT CS 4604 71

MVirginiaTech
Examples

» find course names of ‘smith’

JC O

c—name [name='smith' (

STUDENT[><|TAKES[><|CLASS
)]

<

Prakash 2015 VT CS 4604

72

MVirginiaTech
Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604

Prakash 2015 VT CS 4604

73

MVirginiaTech
Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604: almost correct answer:

Oc—name=4612 (TAKES) m
Oc—name=4613 (TAKE S) ﬂ
Uc—name=4604 (TAKE S)

Prakash 2015 VT CS 4604

74

MVirginiaTech
Examples

» find ssn of ‘overworked’ students, ie., that
take 4612, 4613, 4604 - Correct answer:

:Oc—name=4612 (TAKES): ﬂ
ke w13(TAKES)]

Ssn - c—name=

Ke; won (TAKES)

Ssn - c—name=

Ssn

Prakash 2015 VT CS 4604

MVirginiaTech
Examples

= find ssn of students that work at least as hard
as ssn=123, ie., they take all the courses of
ssn=123, and maybe more

Prakash 2015 VT CS 4604

76

MVirginiaTech

Sample schema

STUDENT CLASS
Ssn Name Address c-id c-name units
123 smith main str 4613 s.e. 2
234 jones forbes ave 4612 o.s. 2
TAKES

SSN c-id grade
123 4613 A
234 4613 B

Prakash 2015 VT CS 4604 77

MVirginiaTech
Examples

" find ssn of students that work at least as hard
as ssn=123 (ie., they take all the courses of
ssn=123, and maybe more

[ﬂssn,c—id (TAKES)] - ﬂc—id [Ossn=123 (TAKES)]

Prakash 2015 VT CS 4604

78

MVirginiaTech
Conclusions

= Relational model: only tables (‘relations’)

* relational algebra: powerful, minimal: 5
operators can handle almost any query!

Prakash 2015 VT CS 4604

79

