VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #9: Storing and Indexes

MVirginiaTech
Announcement

= No class on Tuesday.

= BUT
— Project Assignment 1 is still due (in class)
— We will return HW1

— Pranav and Qianzhou will be present in classroom
during the lecture time (as extra office hours)

Prakash 2014 VT CS 4604

[T

VirginiaTech

TODAY -

Prakash 2014

DBMS Layers:

\ Queries /

Query Optimization
and Execution

Relational Operators

Buffer Management

Disk Space Management

oo |

VT CS 4604

WVirginiaTech
Leverage OS for disk/file management?

= |Layers of abstraction are good ... but:

Prakash 2014 VT CS 4604 4

MVirginiaTech
Leverage OS for disk/file management?

= |Layers of abstraction are good ... but:

— Unfortunately, OS often gets in the way of
DBMS

Prakash 2014 VT CS 4604 5

WVirginiaTech
Leverage OS for disk/file management?

= DBMS wants/needs to do things “its own
way
— Specialized prefetching
— Control over buffer replacement policy
e LRU not always best (sometimes worst!!)

— Control over thread/process scheduling

« “Convoy problem”

— Arises when OS scheduling conflicts with DBMS
locking

— Control over flushing data to disk
WAL protocol requires flushing log entries to disk

Prakash 2014 VT CS 4604 6

MVirginiaTech

Disks and Files

= DBMS stores information
on disks.
— but: disks are (relatively) VERY
slow!
" Major implications for DBMS
design!

Prakash 2014 VT CS 4604 7

MVirginiaTech
Disks and Files

= Major implications for DBMS design:
— READ: disk -> main memory (RAM).
— WRITE: reverse

— Both are high-cost operations, relative to in-memory
operations, so must be planned carefully!

Prakash 2014 VT CS 4604 8

MVirginiaTech
Why Not Store It All in Main Memory?

Prakash 2014 VT CS 4604 9

MVirginiaTech
Why Not Store It All in Main Memory?

= Costs too much.
— disk: ~¥S1/Gb; memory: ~$100/Gb

— High-end Databases today in the 10-100 TB
range.

— Approx 60% of the cost of a production system is
in the disks.

" Main memory is volatile.

= Note: some specialized systems do store
entire database in main memory.

Prakash 2014 VT CS 4604 10

MVirginiaTech

The Storage Hierarchy

Smaller, Faster

)

Bigger, Slower

Prakash 2014 VT CS 4604 11

MVirginiaTech

The Storage Hierarchy

Smaller, Faster

—Main memory (RAM) for
currently used data.

—Disk for the main
database (secondary
storage).

—Tapes for archiving older
versions of the data
(tertiary storage).

Registers

)

L1 Cache

Main Memory

)

Magnetic Disk

)

)

Magnetic Tape

Prakash 2014 VT CS 4604

Bigger, Slower

12

MVirginiaTech
Jim Gray s Storage Latency Analogy:
How Far Away is the Data?

Andromeda
102 Tape 2,000 Years
106 Disk 2 Years
100 Memory 1.ohr
10 On Board Cache This Building 10 min

2 On Chip Cache
1 Registers

%My Head 1 min

Prakash 2014 VT CS 4604

13

MVirginiaTech
Disks

= Secondary storage device of choice.

" Main advantage over tapes: random access
VS. sequential.

= Data is stored and retrieved in units called
disk blocks or pages.

= Unlike RAM, time to retrieve a disk page
varies depending upon location on disk.

— relative placement of pages on disk is important!

Prakash 2014 VT CS 4604 14

Anatomy of a Disk

O/‘Spindle
Disk head (\/ Tracks
7 SN
e Sector) Sector
* Cylinder
° Platter ¢ : Platters

. . Arm movement
* Block size = multiple

of sector size (which 1s
ﬁXCd) Arm assembly

Prakash 2014 VT CS 4604 #15

MVirginiaTech

Accessing a Disk Page

* Time to access (read/write) a disk block:

Prakash 2014 VT CS 4604

16

WVirginiaTech
Accessing a Disk Page

* Time to access (read/write) a disk block:

— seek time: moving arms to position disk head
on track

— rotational delay: waiting for block to rotate
under head

— transfer time: actually moving data to/from
disk surface

Prakash 2014 VT CS 4604

17

W VirginiaTech

Accessing a Disk Page

= Relative times?
— seek time:
— rotational delay:

— transfer time:

Prakash 2014 VT CS 4604

18

W VirginiaTech

Accessing a Disk Page

= Relative times?
— seek time: about 1 to 20msec

Seek

— rotational delay: 0 to 10msec

Rotate

— transfer time: < 1msec per 4KB page

transfer

Prakash 2014 VT CS 4604 19

WVirginiaTech
Seek time & rotational delay dominate

= Key to lower I/O cost: S
reduce seek/rotation delays!

= Also note: For shared disks, much time
spent waiting in queue for access to
arm/controller

Rotate

transfer

Prakash 2014 VT CS 4604 20

MVirginiaTech
Arranging Pages on Disk

= “Next” block concept:
— blocks on same track, followed by
— blocks on same cylinder, followed by

— blocks on adjacent cylinder
= Accesing ‘next’ block is cheap

= A useful optimization: pre-fetching
— See textbook page 323

Prakash 2014 VT CS 4604

21

MVirginiaTech

Rules of thumb...

1. Memory access much faster than disk 1/0
(~ 1000x)

= “Sequential” 1/O faster than “random” I/O
(~ 10x)

Prakash 2014 VT CS 4604

22

WVirginiaTech
Disk Arrays: RAID just Fyi

S B o o
Logical Physical

= Benefits:
— Higher throughput (via data “striping”)
— Longer MTTF (via redundancy)

Prakash 2014 VT CS 4604 23

MVirginiaTech

Recall: DBMS Layers

TODAY -

Prakash 2014

\ Queries /

Query Optimization
and Execution

Relational Operators

Buffer Management

Disk Space Management

=]

VT CS 4604

24

WVirginiaTech
Buffer Management in a DBMS

Page Requests from Higher Levels

‘ Just FYI
(copy of a) . \
disk page
> buffer
N pool
free frame J
T MAIN MEMORY ‘
l DISK E DB j choice of frame dictated
by replacement policy

Prakash 2014 VT CS 4604 25

IVirginiaTech

Files

" FILE: A collection of pages, each containing a
collection of records.

= Must support:
— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on
the records to be retrieved)

MVirginiaTech
Alternative File Organizations

Several alternatives (w/ trade-offs):

—Heap files: Suitable when typical access is a
file scan retrieving all records.

—Sorted Files:
} later
—Index File Organizations:

Prakash 2014 VT CS 4604 27

MVirginiaTech

Files of records

= Heap of pages
— as linked list or
— directory of pages

Prakash 2014 VT CS 4604

28

W VirginiaTech

Heap File Using Lists

N N N 7Y

Full Pages
Header J N N
N\ —
Free Free Free] ,
Pages with
- Page Page Page
Free Space

A A

= The header page id and Heap file name must be stored someplace.
= Each page contains 2 ‘pointers’ plus data.

Prakash 2014 VT CS 4604

29

W VirginiaTech

Heap File Using a Page Directory

Header
Page

-

DIRECTORY

Prakash 2014 VT CS 4604

MVirginiaTech

Heap File Using a Page Directory

" The entry for a page can include the
number of free bytes on the page.

" The directory is a collection of pages; linked
list implementation is just one alternative.

— Much smaller than linked list of all HF pages!

Prakash 2014 VT CS 4604 31

MVirginiaTech
Page Formats

» fixed length records
= variable length records

Prakash 2014 VT CS 4604

32

MVirginiaTech
Page Formats

Important concept: rid == record id
QO0: why do we need it?

Q1: How to mark the location of a record?

Q2: Why not its byte offset in the file?

Prakash 2014 VT CS 4604

33

MVirginiaTech

Page Formats

Important concept: rid == record id
QO0: why do we need it?
AO: eg., for indexing
Q1: How to mark the location of a record?
Al: rid = record id = page-id & slot-id
Q2: Why not its byte offset in the file?
A2: too much re-organization on ins/del.

Prakash 2014 VT CS 4604

34

MVirginiaTech

Fixed length records

= Q: How would you store them on a page/file?

Prakash 2014 VT CS 4604 35

MVirginiaTech
Fixed length records

= Q: How would you store them on a page/file?
= Al: How about:

slot #1
slot #2

‘Packed’

slot #N

free space

N

number of full slots

Prakash 2014 VT CS 4604 36

[MVirginiaTech
Fixed length records

= Al: How about: BUT: On insertion/deletion,
we have too much to reorganize/update

slot #1
slot #2

‘Packed’

slot #N

free space

N

number of full slots

Prakash 2014 VT CS 4604 37

WVirginiaTech

Fixed length records

= What would you do?

Prakash 2014 VT CS 4604 38

MVirginiaTech

Fixed length records

= Q: How would you store them on a page/file?

= A2: Bitmaps

.

free slots

Prakash 2014

VT CS 4604

slot #1
slot #2

slot #N

page header

39

W VirginiaTech

Variable length records

= Q: How would you store them on a page/file?

occupied records I

page header

Prakash 2014 VT CS 4604 40

WVirginiaTech

Variable length records

= Q: How would you store them on a page/file?

epack them
occupied records /= e keep ptrs to them
1
=i page header

slot directory <«—

other info (# slots etc)

Prakash 2014 VT CS 4604 41

WVirginiaTech

Variable length records

= Q: How would you store them on a page/file?

epack them
occupied records = e keep ptrs to them
—— e mark start of free
.- space
1 page header

slot directory <«—

other info (# slots etc)

Prakash 2014 VT CS 4604 42

MVirginiaTech

Variable length records

= SLOTTED PAGE organization - popular.

occupied records

——

=8 page header

Prakash 2014 VT CS 4604 43

MVirginiaTech
Conclusions---Storing

= Memory hierarchy

= Disks: (>1000x slower) - thus
— pack info in blocks
— try to fetch nearby blocks (sequentially)

= Record organization: Slotted page

Prakash 2014 VT CS 4604

44

TREE INDEXES

Prakash 2014

VT CS 4604

MVirginiaTech
Declaring Indexes

= No standard!
» Typical syntax:

CREATE INDEX StudentsInd ON
Students (ID) ;

CREATE INDEX CoursesInd ON
Courses (Number, DeptName) ;

Prakash 2014 VT CS 4604

46

MVirginiaTech

Types of Indexes

" Primary: index on a key
— Used to enforce constraints

" Secondary: index on non-key attribute

" Clustering: order of the rows in the data pages
correspond to the order of the rows in the index
— Only one clustered index can exist in a given table
— Useful for range predicates

" Non-clustering: physical order not the same as
index order

Prakash 2014 VT CS 4604 47

[MVirginiaTech
Using Indexes (1): Equality Searches

= Given a value v, the index takes us to only
those tuples that have v in the attribute(s) of
the index.

" E.g. (use Courselnd index)

SELECT Enrollment FROM Courses
WHERE Number = “40604” and
DeptName = “CS”

Prakash 2014 VT CS 4604 48

MVirginiaTech
Using Indexes (1): Equality Searches

= Given a value v, the index takes us to only
those tuples that have v in the attribute(s) of
the index.

= Can use Hashes, but see next

Prakash 2014 VT CS 4604

49

MVirginiaTech
Using Indexes (2): Range Searches

= “Find all students with gpa >3.0""’
" may be slow, even on sorted file

= Hashes not a good idea!

" What to do?

Page 1 Page 2 Page 3 Page N Data File

Prakash 2014 VT CS 4604 50

MVirginiaTech

» “Find all students with gpa > 3.0"’

Range Searches

" may be slow, even on sorted file

= Solution: Create an ‘index’ file.

k1 k2
\

kN

/

V \

Page 1

Page 2

Page 3

Page N

Prakash 2014

VT CS 4604

Index File

Data File

51

MVirginiaTech

Range Searches

= More details:

" if index file is small, do binary search there
= Otherwise??

kN

/

Page 1

Page 3

Page N

Prakash 2014

VT CS 4604

Index File

Data File

52

IVirginiaTech
B-trees

" the most successful family of index schemes
(B-trees, B+-trees, B*-trees)

= Can be used for primary/secondary,
clustering/non-clustering index.

* balanced “n-way” search trees

" Original Paper: Rudolf Bayer and McCreight, E.
M. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica 1, 173-189,
1972.

MVirginiaTech

B-trees

" Eg., B-tree of order d=1:

1

3

o

Prakash 2014

o

O

7

<6 | © ‘ 9 ‘
B >
/ <9

o

o

VT CS 4604

54

MVirginiaTech
B - tree properties:

= each node, in a B-tree of order d:
— Key order
— at most n=2d keys

— at least d keys (except root, which may have just 1
key)

— all leaves at the same level
— if number of pointers is k, then node has exactly
pn
k-1 keys P
| vl | v2 ‘ Vn1

— (leaves are empty) 1 \l

Prakash 2014 VT CS 4604 55

MVirginiaTech

Properties

= “block aware” nodes: each node is a disk page
= O(log (N)) for everything! (ins/del/search)
= typically, if d =50 - 100, then 2 - 3 levels

= utilization >= 50%, guaranteed; on average
69%

Prakash 2014 VT CS 4604 56

MVirginiaTech

" Algo for exact match query? (eg., ssn=87)

Prakash 2014

Queries

<9

a
|

S

VT CS 4604

57

MVirginiaTech

JAVA animation

= http://slady.net/java/bt/

Prakash 2014 VT CS 4604

58

WVirginiaTech
Queries

" Algo for exact match query? (eg., ssn=87)

<6

1 |,13 7‘ ‘ 13
S

Prakash 2014 VT CS 4604

O=

59

MVirginiaTech
Queries

" Algo for exact match query? (eg., ssn=87)

<6

1 |,13 7‘ ‘ 13
S

Prakash 2014 VT CS 4604

O=

60

MVirginiaTech

Queries

" Algo for exact match query? (eg., ssn=87)

<6 6 9

>9
>6

1 || d7 0]
Ny N Uy 1/

Prakash 2014 VT CS 4604 61

O«=

MVirginiaTech

Queries

" Algo for exact match query? (eg., ssn=87)

A

6 9
<6 H steps (= disk

>9 accesses)
>6

L) BRI
e e R

Prakash 2014 VT CS 4604 62

O«=

MVirginiaTech
Queries

* what about range queries? (eg., 5<salary<8)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

Prakash 2014 VT CS 4604

63

IVirginiaTech
Queries

* what about range queries? (eg., 5<salary<8)

" Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6//‘ .

A H\\BHH
1 || | 12

MVirginiaTech
Queries

= what about range queries? (eg., 5<salary<8)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 ‘ |
]2 H | \13H i
| I | | I

Prakash 2014 VT CS 4604

IVirginiaTech
Queries

* what about range queries? (eg., 5<salary<8)

= Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6//‘ .

A H\\BHH
1 || | 12

MVirginiaTech

Queries

* what about range queries? (eg., 5<salary<8)

= Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

Prakash 2014

VT CS 4604

a)]
.\ |

67

MVirginiaTech
Variations

= How could we do even better than the B-trees
above?

Prakash 2014 VT CS 4604 68

MVirginiaTech

B+ trees - Motivation

= B-tree — print keys in sorted order:

<6 | ©
/ <9

1

3

o

Prakash 2014

o

O

7

o

\9\1\>9
ahca

VT CS 4604

69

[MVirginiaTech
B+ trees - Motivation

= B-tree needs back-tracking — how to avoid it?

<6 6 ‘9‘

Ly

Prakash 2014 VT CS 4604

MVirginiaTech
B+ trees - Motivation

= Stronger reason: for clustering index, data
records are scattered:
1 3 7

<6 '_6 ‘9‘
Ly

Prakash 2014 VT CS 4604

MVirginiaTech
Solution: B+ - trees

= facilitate sequential ops
" They string all leaf nodes together
= AND

" replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

= (vital, for clustering index!)

Prakash 2014 VT CS 4604

72

MVirginiaTech

<6 6
>:6 <9

1

3

Prakash 2014

o

O

B+ trees

6

o

° N\g
agan

VT CS 4604

73

MVirginiaTech
B+ trees

<6 |6 ‘ 9 ‘ Index Pages

>=6] <9 >~
e | il e |‘7 ‘|F_.|£9_H Data Pages
U O B © o o

Prakash 2014 VT CS 4604 74

MVirginiaTech
B+ trees

= More details: next (and textbook)

" |n short: on split
— at leaf level: COPY middle key upstairs

— at non-leaf level: push middle key upstairs (as in
plain B-tree)

Prakash 2014 VT CS 4604

75

MVirginiaTech
Example B+ Tree

= Search begins at root, and key comparisons
direct it to a leaf

= Search for 5:0'@15&3' data entries >= 24* ...
13

17 24 30

AN

2% | 3* | 5 | 7* 14*| 16* 19* 20*| 22* 24*| 27* [29* 33*[34*| 38*

Based on the search for 15%, we know it is not in the tree!

Prakash 2014 VT CS 4604

MVirginiaTech

Inserting a Data Entry into a B+ Tree

= Find correct leaf L.
" Put data entry onto L.

— If L has enough space, done!

— Else, must split L (into L and a new node L2)

* Redistribute entries evenly, copy up middle key.

" parent node may overf]
— but then: push up midd

oW
e key. Splits “grow’ tree;

root split increases heig

Nt.

Prakash 2014 VT CS 4604 77

WVirginiaTech

Example B+ Tree — Inserting 30*

Root \

Prakash 2014 VT CS 4604 78

WVirginiaTech

Example B+ Tree — Inserting 30*

Root \

2% [3* [5 | 7* 14*| 16* 19* 20*| 22* | 23* 24*| 271 29* |130%

Prakash 2014 VT CS 4604

WVirginiaTech

Example B+ Tree - Inserting 8*

Root \

Prakash 2014 VT CS 4604

MVirginiaTech

Example B+ Tree - Inserting 8*

Root \

No Space

Prakash 2014 VT CS 4604 81

MVirginiaTech
Example B+ Tree - Inserting 8*

Root \

13 17 24

So Split!

13 17 24

5+ | 7| 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

Prakash 2014 VT CS 4604

MVirginiaTech
Example B+ Tree - Inserting 8*

Root \

13 17 24

2% | 3% | 5 | 7* 14*| 16* 19%| 20*| 22* | 23* 24* | 27*%]| 29*

And then
push middle 13 (] 17 || 24

uP — /m/ \

2* | 3* | 5* 5+ | 7| 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

Prakash ZOll VT CS 4604

WVirginiaTech
Example B+ Tree - Inserting 8*

Root \

13 17 24

Final State

| 27 [29*

Prakash 2014 VT CS 4604

MVirginiaTech

Example B+ Tree - Inserting 21*
oot

2% 3* 5*| 7% | 8* 14*| 16* 191

17 || 24

—

22%| 23%| | 24*| 27*|29*

Prakash 2014 VT CS 4604

MVirginiaTech

Example B+ Tree - Inserting 21*

ROON

5 13 17 || 24
2% 3* 5% 77| 8* 14*| 16* 191 20* 22* 23%| | 24*| 27*| 29*
5 || 13 || 17 || 21 || 24 Root is Full, so split
recursively
V V V
2% 3 5| 771 8 14*| 16* 191 20* 211 22* 23* 24*| 27*[29*

Prakash 2014

VT CS 4604

86

MVirginiaTech

Example B+ Tree: Recursive split

oot

5 || 13 21 || 24
[N h y ~
2% | 3 5¢| 7| 8* 14*| 16* 191 20* 21*| 22| 23* 24*| 27% 29"

* Notice that root was also split, increasing height.

Prakash 2014 VT CS 4604 87

Example: Data vs. Index Page Split

Data
= |eaf: ‘copy’ Page 5
‘ : Split -
" non-leaf: push - \
b P o o o
= why not ‘copy’
Index
- ? 5 13 [| 17 || 21 || 24
@ non-leaves: Page
Split -
5 13 211| 24
y boo¥

Prakash 2014 VT CS 4604 #88

MVirginiaTech

ROON

Split

ame Inserting 21*: The Deferred

17

24

20

P

2% 3* 5*| 7% | 8* 14*

16*

191

* 22*

23%| | 24*| 27| 29*

Prakash 2014

VT CS 4604

\

Note this has free
space. So...

89

MVirginiaTech
Inserting 21*: The Deferred Split
oot

2% 3* 5| 7*| 8* 14*| 16* 191

17 || 24

—

H 22 23*| [24*[27*29*

LEND keys to

sibling, through
Root PARENT!

S) 13 17 || 23
2% 3 5* 7| 8* 14*[16* 199 207

21*22%| |23*| 24*{27*| 29*

Prakash 2014 VT CS 4604 90

MVirginiaTech
Inserting 21*: The Deferred Split
oot

2% 3* 5| 7*| 8* 14*| 16* 191

17 || 24

—

22%| 23%| | 24*| 27*|29*

Shorter, more

/ packed, faster tree
Root*

5 13 1711 23
2* 3* 5* 7* 8* 14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

Prakash 2014 VT CS 4604 91

WVirginiaTech

Insertion examples for you to try

oot

5 || 13 || 20 ... (not shown)
A\ h ~
/r\\ X X
2*| 3 5| 7% | 8* | 11+ | 14*| 16 21%| 22*(23

Insert the following data entries (in order): 28%, 6%, 25*

Prakash 2014 VT CS 4604

MVirginiaTech

After inserting 28%,

Answer...

6*

30

/'

VAN

2% 3* 5* [6*

| 28

After inserting 25*

Prakash 2014

VT CS 4604

WVirginiaTech

Answer...

After inserting 25%
13 || 30
5 (| 7 j 20 || 23
b N N
2% | 3* 5*| 6* 7+ |18* |11+ 14*| 16* 217 22* 23| 25%| 28"

Prakash 2014

VT CS 4604

94

MVirginiaTech
Deleting a Data Entry from a B+ Tree

= Start at root, find leaf L where entry belongs.

= Remove the entry.
— If Lis at least half-full, done!
— If L underflows

e Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

* |f re-distribution fails, merge L and sibling.

— update parent
— and possibly merge, recursively

Prakash 2014 VT CS 4604 95

MVirginiaTech

Deletion from B+Tree

Root N\

5 13 j 21 24
4 N ~

Prakash 2014 VT CS 4604

MVirginiaTech
Example: Delete 19* & 20*

Root

17
| ° . 13j Deleting 19* | 24 || 30

L\ e SN e

2% | 3 5¢| 7+ | 8* 14*16* 207 22* 24*| 27*(29* 33+ 34* 38*| 39*

Root

17
5 13 j 27 || 30
Y N 4 -~
2% | 3* 5% | 7*| 8* 14*(16* 221 24* 27| 29* 337| 34* 387| 39

e Deleting 20* -> re-distribution (notice:
Prakash 2014 27 COpiEd Up)

MVirginiaTech

... And Then Deleting 24*

Root

17
j 27 || 30
+| 8+ 14+ 16 221 24* 27*[20* 33+ 34%| 38*[39*

‘ Root
17

5 13 j 30 | T~
4 \ 4 \\
2% 3* 5| 77| 8* 14*| 16* 22| 27| 29+ 33*| 34* 38| 39"

- ® Must merge leaves: OPPOSITE of insert -

MVirginiaTech

... And Then Deleting 24*

Root

17
j 27 || 30
+| 8+ 14+ 16 221 24* 27*[20* 33+ 34%| 38*[39*

‘ oot 47 ... but are we done??

5 13 j 30 | T~
4 \ 4 \\
2% 3* 5| 77| 8* 14*| 16* 22| 27| 29+ 33*| 34* 38| 39"

- ® Must merge leaves: OPPOSITE of insert -

Tree

‘ginf??eﬁlerge Non-Leaf Nodes, Shrink

Root

‘ 17

5 13 j 30 | T~

4 \ y
2% 3* 5| 7*| 8* 14*| 16* 22| 27* 29* 33*| 34* 38| 39"
Root
5 13 17 30

¥ X ¥ X ¥ X ¥ X

2* | 3% 51 7% | 8* 14* | 16* 22%| 27*| 29* 33*| 34* [38* | 39*

Prakash 2014

VT CS 4604

100

MVirginiaTech

Example of Non-leaf Re-distribution

" Tree is shown below during deletion of 24*.

"= Now, we can re-distribute keys

/’

Roo\

22

Wo
\ N

13 (117 || 20
2% 3* So*| 7*| 8* 14* 16* 171 18% 204 21 224 271 29 334 344 38* 39"

Prakash 2014

VT CS 4604

101

[MVirginiaTech

After Re-distribution

= need only re-distribute ‘20" ; did ‘17, too

= why would we want to re-distribute more

keys?

5 || 13 20| 22| 30
[| L <
K 5t 7| 8 14*16* 171187 20" 21* 224271291 ||33*3438*|39"

Prakash 2014

VT CS 4604

102

MVirginiaTech
Main observations for deletion

" If a key value appears twice (leaf + nonleaf),
the above algorithms delete it from the leaf,

only
= why not non-leaf, too?

Prakash 2014 VT CS 4604 103

MVirginiaTech
Main observations for deletion

" If a key value appears twice (leaf + nonleaf),
the above algorithms delete it from the leaf,

only
= why not non-leaf, too?

= ‘lazy deletions’ - in fact, some vendors just
mark entries as deleted (~ underflow),

— and reorganize/compact later

Prakash 2014 VT CS 4604 104

[MVirginiaTech
Recap: main ideas

= on overflow, split (and ‘push’, or ‘copy’)
— or consider deferred split

= on underflow, borrow keys; or merge

— or let it underflow...

Prakash 2014 VT CS 4604 105

MVirginiaTech
B+ Trees in Practice

" Typical order: 100. Typical fill-factor: 67%.
— average fanout = 2*100*0.67 = 134

= Typical capacities:
— Height 4: 1334 =312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

Prakash 2014 VT CS 4604 106

MVirginiaTech

= Can often keep top levels in buffer pool:

— Leve
— Leve

— Leve

Prakash 2014

B+ Trees in Practice

1= 1 page= 8KB
2= 134 pages= 1MB
3= 17,956 pages =140 MB

VT CS 4604

107

MVirginiaTech
B+ trees with duplicates

" Everything so far: assumed unique key values

= How to extend B+-trees for duplicates?
— Alt. 2: <key, rid>
— Alt. 3: <key, {rid list}>

= 2 approaches, roughly equivalent

Prakash 2014 VT CS 4604 108

MVirginiaTech
B+ trees with duplicates

= approach#l: repeat the key values, and

extend B+ tree algo’ s appropriately - eg.
many ‘14’ s

Prakash 2014 VT CS 4604 109

MVirginiaTech
B+ trees with duplicates

= approach#l: subtle problem with deletion:

" treat rid as part of the key, thus making it
unique

Prakash 2014 VT CS 4604 110

WVirginiaTech
B+ trees with duplicates

= approach#2: store each key value: once

" but store the {rid list} as variable-length field
(and use overflow pages, if needed)

13 || 14 || 24
Am//_\ | K&
20 | 3| 5" | 7| 11314 ridisyy| | 227 23 247 2720

Prakash 2014 VT CS 4604 111

MVirginiaTech

B+trees in Practice

" prefix compression;
" bulk-loading;
= ‘order’

Prakash 2014 VT CS 4604

112

MVirginiaTech
Prefix Key Compression

" Important to increase fan-out. (Why?)

= Key values in index entries only “direct traffic’ ;
can often compress them.

/I Papadopoulos * Pernikovskaya k

Prakash 2014 VT CS 4604 113

MVirginiaTech

Prefix Key Compression

" Important to increase fan-out. (Why?)

= Key values in index entries only ‘direct traffic’;
can often compress them.

/l Pap ‘Per

Prakash 2014

_k

VT CS 4604 114

MVirginiaTech
Bulk Loading of a B+ Tree

" |n an empty tree, insert many keys
" Why not one-at-a-time?
— Too slow!

Prakash 2014 VT CS 4604 115

MVirginiaTech

Bulk Loading of a B+ Tree

= |nitialization: Sort all data entries

" scan list; whenever enough for a page, pack

" <repeat for upper level>

Roch

Sorted pages of data entries; not yet in B+ tree

/

3* | 4*

/e

* 10*

11*| [12%13* |20*22*| |23%|31% |35*|36*| |38*|41*| [44*

Prakash 2014

VT CS 4604 116

Bulk Loading of a B+ Tree

Root 101 (20

/ y

Data entry pages
6 | / 12 | A 23. 35 \ not yet in B+ tree

3*(4*(| 6%|9%| [10%11% (121137 |20%22% (239317 |35%36%|||38%417 |44

Root 20
j 10 \ | 35]. Data entry pages
/ \ l \ not yet in B+ tree
6 12 23 ' 38

Prakash 2014 £\ V[SN\ %\l N\ ‘/%\l K\/ m\

3*[4*[[6%]9*| [10%11% [121131 [20%22% [23%317 |35%36%| [38141%

*Q

L
H

MVirginiaTech

A Note on “Order’

" Order (d) concept replaced by physical space
criterion in practice (‘at least half-full’).

" Why do we need it?

— Index pages can typically hold many more entries than
leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Prakash 2014 VT CS 4604 118

MVirginiaTech
A Note on ‘Order’

= Many real systems are even sloppier than this:
they allow underflow, and only reclaim space
when a page is completely empty.

» (what are the benefits of such ‘slopiness’ ?)

Prakash 2014 VT CS 4604 119

MVirginiaTech

Conclusions

= B+tree is the prevailing indexing method

= Excellent, O(logN) worst-case performance for
ins/del/search; (~3-4 disk accesses in practice)

= guaranteed 50% space utilization; avg 69%

Prakash 2014 VT CS 4604 120

MVirginiaTech

Conclusions

= Can be used for any type of index: primary/
secondary, sparse (clustering), or dense (non-
clustering)

= Several fine-extensions on the basic algorithm
— deferred split; prefix compression; (underflows)
— bulk-loading
— duplicate handling

Prakash 2014 VT CS 4604 121

