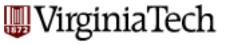


CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

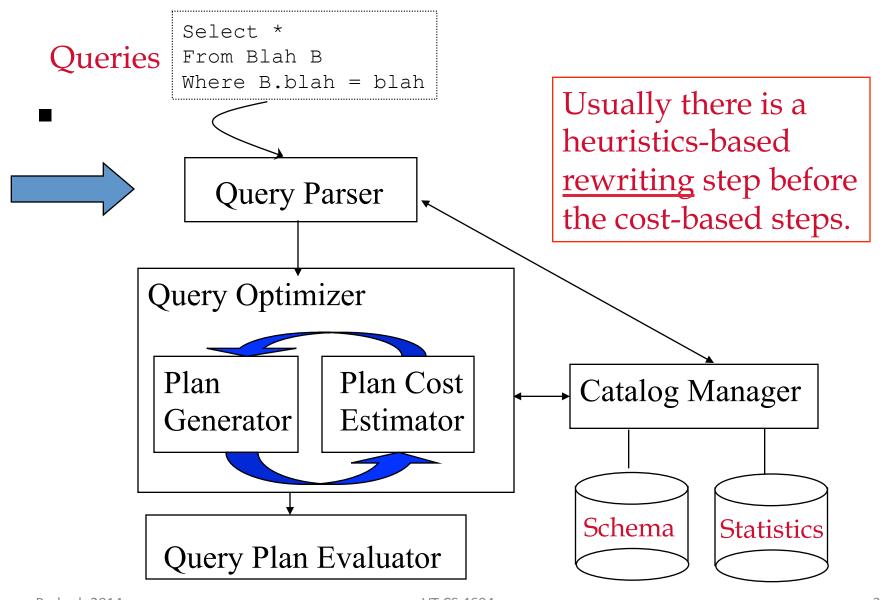
Lecture #12: Query Optimization

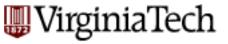


Notes

- Some parts from (a copy of the paper is on the course webpage)
 - Selinger, Patricia, M. Astrahan, D. Chamberlin,
 Raymond Lorie, and T. Price. "Access Path
 Selection in a Relational Database Management
 System." In Proceedings of ACM SIGMOD, Boston,
 MA, 1979, pp. 22-34.

■ VirginiaTech
Cost-based Query Sub-System



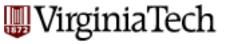


Multiple Algorithms: Range Searches

- Sequential Scan
- Hashes
- B-Trees

•

Saw some of them in previous lectures

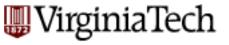


Multiple Algorithms: Joins

- Merge-Join (like merge-sort)
- Hash-Join (using hashes)
- Indexed-Join (using indexes)
- Nested loops Join (most obvious)

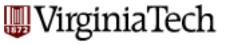
-

Saw some of them in previous lectures



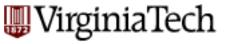
Why Query optimization?

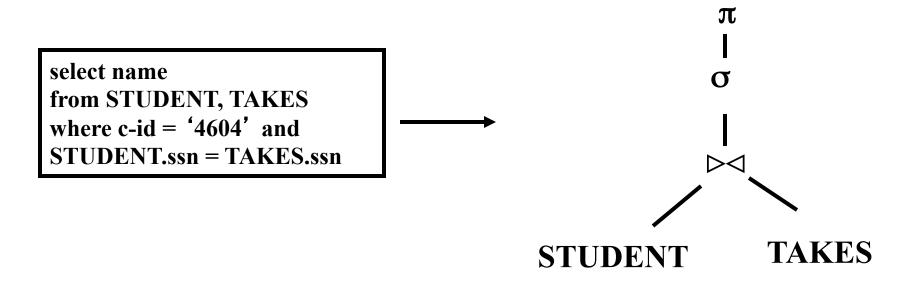
- SQL: ~declarative
- good q-opt -> big difference
 - eg., seq. Scan vs
 - B-tree index, on P=1,000 pages

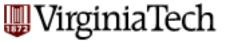


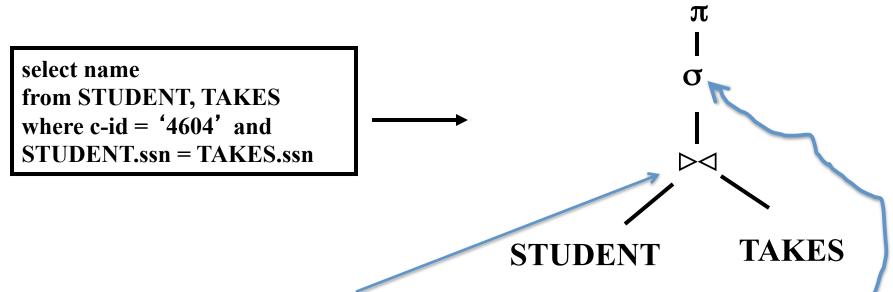
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best





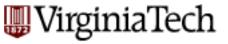


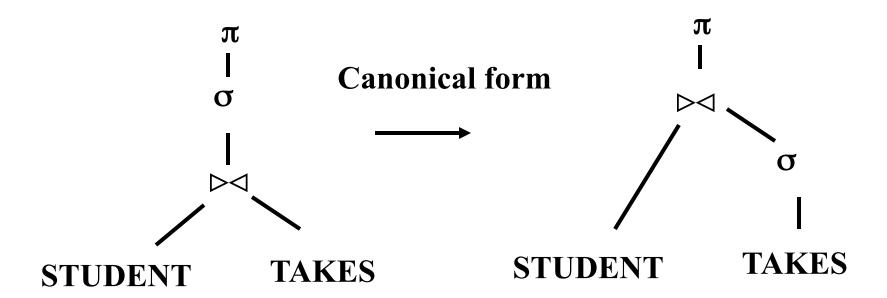


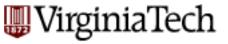
Join Predicate => STUDENT.ssn = TAKES.ssn (is assumed to be part of the join)

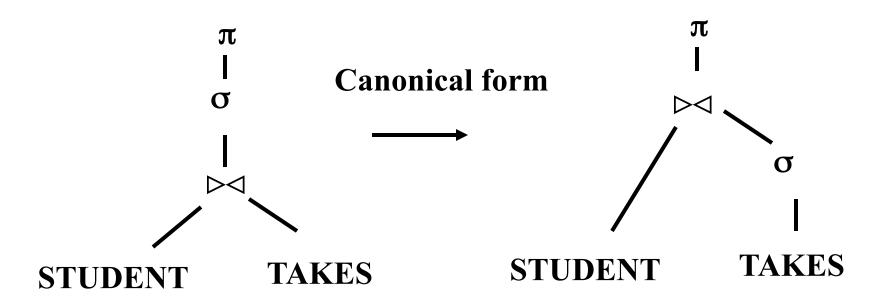
Non-join Predicate => c-id = '4604' (part of the explicit selection)

Prakash 2014 VT CS 4604



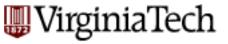


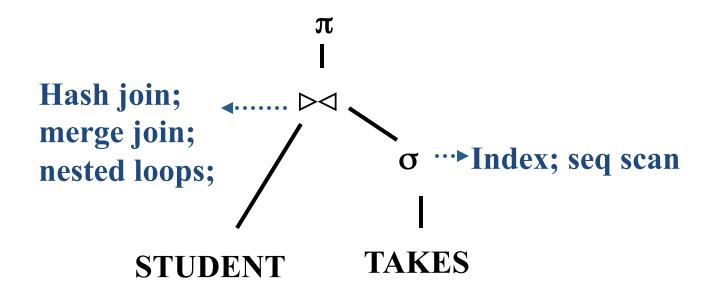


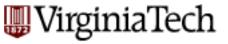


Canonical Form has the following properties:

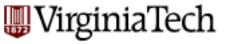
- 1. Push Selections as much as possible.
- 2. Push Projections as much as possible
- 3. It is a left-deep join tree (we will see this later)







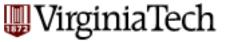
- A.k.a.: syntactic q-opt
- in short: perform selections and projections early



• Q: How to prove a transformation rule? $\sigma_{P}(R1 \bowtie R2) = \sigma_{P}(R1) \bowtie \sigma_{P}(R2)$

A: use RA, to show that LHS = RHS, eg:

$$\sigma_P(R1 \cup R2) = \sigma_P(R1) \cup \sigma_P(R2)$$



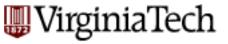
$$\sigma_{P}(R1 \cup R2) \stackrel{?}{=} \sigma_{P}(R1) \cup \sigma_{P}(R2)$$

$$t \in LHS \Leftrightarrow$$

$$t \in (R1 \cup R2) \land P(t) \Leftrightarrow$$

$$(t \in R1 \lor t \in R2) \land P(t) \Leftrightarrow$$

$$(t \in R1 \land P(t)) \lor (t \in R2) \land P(t)) \Leftrightarrow$$



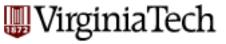
$$\sigma_{P}(R1 \cup R2) \stackrel{?}{=} \sigma_{P}(R1) \cup \sigma_{P}(R2)$$
...
$$(t \in R1 \land P(t)) \quad \lor \quad (t \in R2) \land P(t)) \Leftrightarrow$$

$$(t \in \sigma_{P}(R1)) \quad \lor \quad (t \in \sigma_{P}(R2)) \Leftrightarrow$$

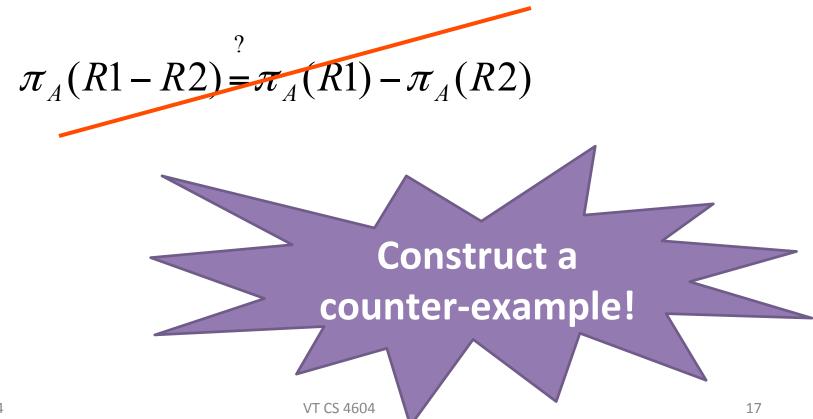
$$t \in \sigma_{P}(R1) \cup \sigma_{P}(R2) \Leftrightarrow$$

$$t \in RHS$$

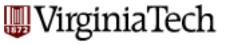
$$QED$$



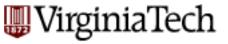
• Q: how to disprove a rule??



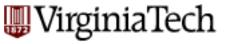
Prakash 2014



- Selections
 - perform them early
 - break a complex predicate, and push $\sigma_{p1^{\wedge}p2^{\wedge}...pn}(R) = \sigma_{p1}(\sigma_{p2}(...\sigma_{pn}(R))...)$
 - simplify a complex predicate
 - ('X=Y and Y=3') -> 'X=3 and Y=3'



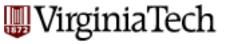
- Projections
 - perform them early (but carefully...)
 - Smaller tuples
 - Fewer tuples (if duplicates are eliminated)
 - project out all attributes except the ones requested or required (e.g., joining attr.)



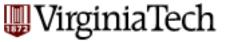
Joins

- Commutative , associative $R \bowtie S = S \bowtie R$ $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

— Q: n-way join - how many diff. orderings?



- Joins Q: n-way join how many diff. orderings?
- A: Catalan number ~ 4^n
 - Exhaustive enumeration: too slow.



(Some) Transformation Rules (1)

 Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

Selection operations are commutative.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

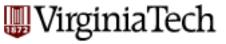
Only the last in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

Selections can be combined with Cartesian products and theta joins.

a.
$$\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$$

b.
$$\sigma_{\theta 1}(E_1 \bowtie_{\theta 2} E_2) = E_1 \bowtie_{\theta 1 \land \theta 2} E_2$$



(Some) Transformation Rules (2)

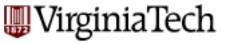
5. Theta-join operations (and natural joins) are commutative. $E_1 \bowtie_{\scriptscriptstyle{\mathsf{B}}} E_2 = E_2 \bowtie_{\scriptscriptstyle{\mathsf{B}}} E_1$

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta 1} E_2) \bowtie_{\theta 2 \land \theta 3} E_3 = E_1 \bowtie_{\theta 1 \land \theta 3} (E_2 \bowtie_{\theta 2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .



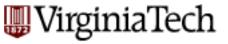
(Some) Transformation Rules (3)

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta 0}(E_1)) \bowtie_{\theta} E_2$$

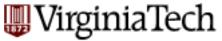
(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (E_1 \bowtie_{\theta} E_2) = (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$

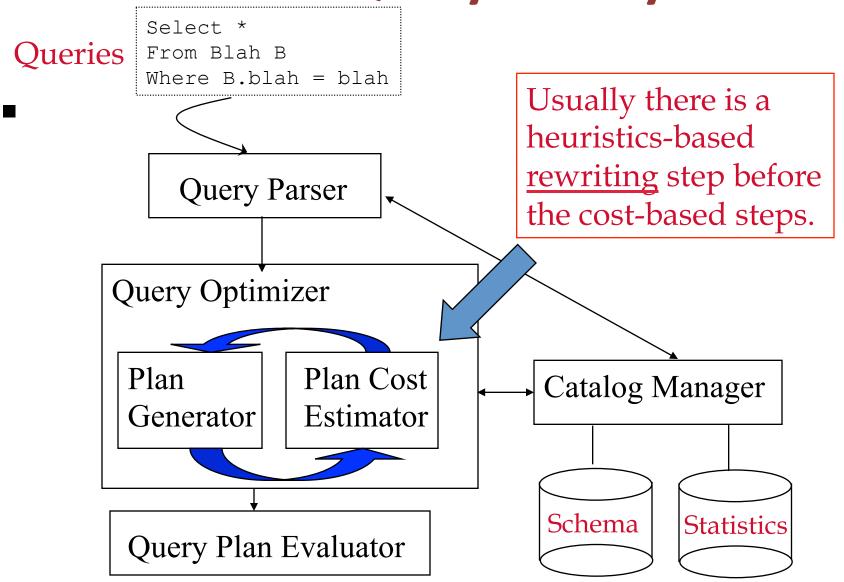


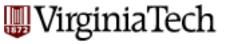
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best



Cost-based Query Sub-System





Cost estimation

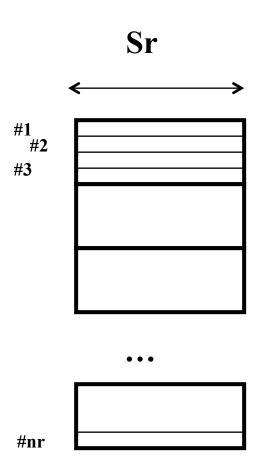
- Eg., find ssn's of students with an 'A' in 4604 (using seq. scanning)
- How long will a query take?
 - CPU (but: small cost; decreasing; tough to estimate)
 - Disk (mainly, # block transfers)
- How many tuples will qualify?
- (what statistics do we need to keep?)

Cost estimation

Statistics: for each relation 'r' we keep

- nr : # tuples;

– Sr : size of tuple in bytes



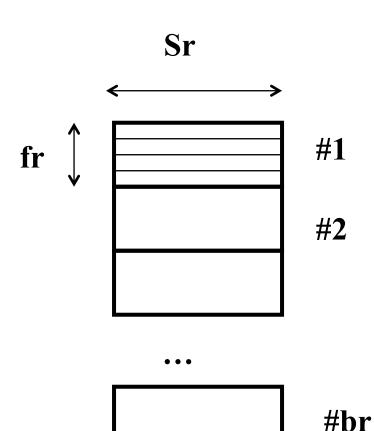
Cost estimation

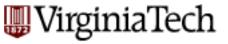
- Statistics: for each relation 'r' we keep
 - **—** ...
 - V(A,r): number of distinct values of attr.'A'
 - (recently, histograms, too)



Derivable statistics

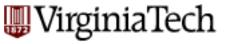
- blocking factor = max# records/block (=??)
- br: # blocks (=??)
- SC(A,r) = selection cardinality = avg# of records with A=given (=??)





Derivable statistics

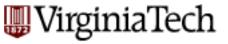
- blocking factor = max# records/block (= B/Sr;
 B: block size in bytes)
- br: # blocks (= nr / (blocking-factor))



Derivable statistics

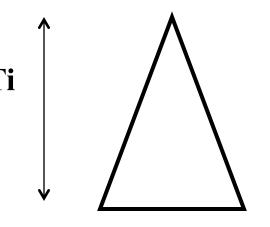
 SC(A,r) = selection cardinality = avg# of records with A=given (= nr / V(A,r)) (assumes uniformity...)

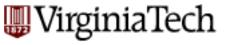
eg: 10,000 students, 10 departments – how many students in CS?



Additional quantities we need:

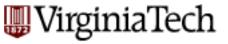
- For index 'i':
 - fi: average fanout (~50-100)
 - HTi: # levels of index 'i' (\sim 2-3)
 - ~ log(#entries)/log(fi)
 - LBi: # blocks at leaf level





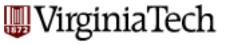
Statistics

- Where do we store them?
- How often do we update them?



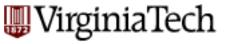
Q-opt steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
- estimate cost; pick best



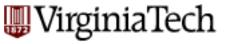
Selections

- we saw simple predicates (A=constant; eg., 'name=Smith')
- how about more complex predicates, like
 - 'salary > 10K'
 - 'age = 30 and job-code="analyst" '
- what is their selectivity?

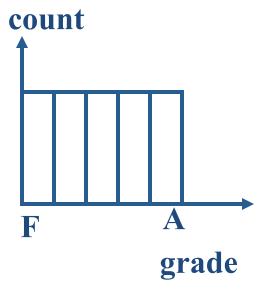


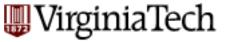
- selectivity sel(P) of predicate P :
 - == fraction of tuples that qualify
 - $-\operatorname{sel}(P) = \operatorname{SC}(P) / \operatorname{nr}$

Prakash 2014 VT CS 4604 37

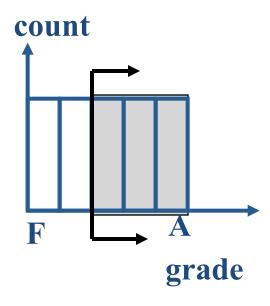


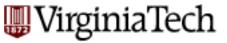
- eg., assume that V(grade, TAKES)=5 distinct values
- simple predicate P: A=constant
 - sel(A=constant) = 1/V(A,r)
 - eg., sel(grade= 'B') = 1/5
- (what if V(A,r) is unknown??)



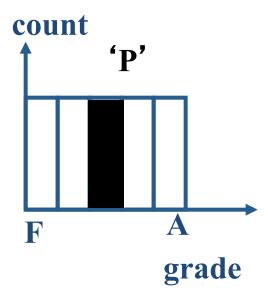


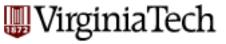
range query: sel(grade >= 'C')- sel(A>a) = (Amax - a) / (Amax - Amin)





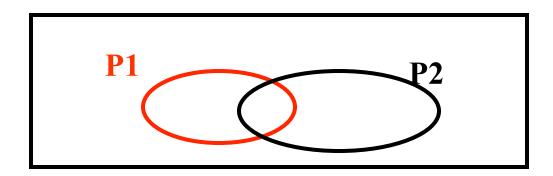
- negation: sel(grade != 'C')
 - $-\operatorname{sel}(\operatorname{not} P) = 1 \operatorname{sel}(P)$
 - (Observation: selectivity =~ probability)

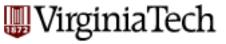




Conjunction:

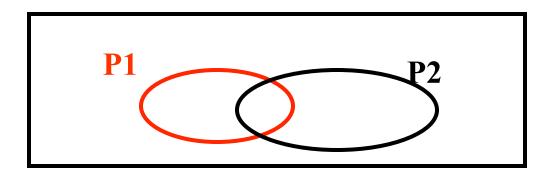
- sel(grade = 'C' and course = '4604')
- $-\operatorname{sel}(P1 \text{ and } P2) = \operatorname{sel}(P1) * \operatorname{sel}(P2)$
- INDEPENDENCE ASSUMPTION

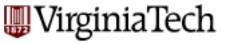




Disjunction:

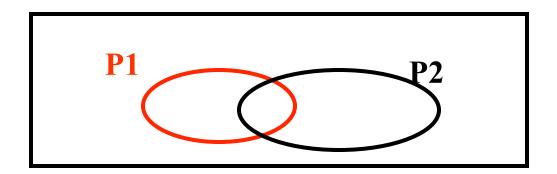
- sel(grade = 'C' or course = '4604')
- sel(P1 or P2) = sel(P1) + sel(P2) sel(P1 and P2)
- = sel(P1) + sel(P2) sel(P1)*sel(P2)
- INDEPENDENCE ASSUMPTION, again

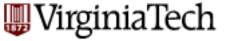




disjunction: in general

$$- \operatorname{sel}(P1 \text{ or } P2 \text{ or } ... Pn) = 1 - (1 - \operatorname{sel}(P1)) * (1 - \operatorname{sel}(P2)) * ... (1 - \operatorname{sel}(Pn))$$

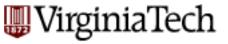




Selections Selectivity – summary

- sel(A=constant) = 1/V(A,r)
- sel(A>a) = (Amax a) / (Amax Amin)
- sel(not P) = 1 -sel(P)
- sel(P1 and P2) = sel(P1) * sel(P2)
- sel(P1 or P2) = sel(P1) + sel(P2) sel(P1)*sel(P2)
- sel(P1 or ... or Pn) = 1 (1-sel(P1))*...*(1-sel(Pn))
- UNIFORMITY and INDEPENDENCE ASSUMPTIONS

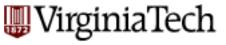
Prakash 2014 VT CS 4604 44



Result Size Estimation for Joins

- Q: Given a join of R and S, what is the range of possible result sizes (in #of tuples)?
 - Hint: what if R_cols∩S_cols = \emptyset ?
 - R_cols ∩ S_cols is a key for R (and a Foreign Key in S)?

Prakash 2014 VT CS 4604 45

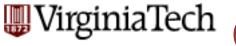


Result Size Estimation for Joins

- General case: R_cols∩S_cols = {A} (and A is key for neither)
 - match each R-tuple with S-tuples
 est_size <~ NTuples(R) * NTuples(S)/NKeys(A,S)
 <~ nr * ns / V(A,S)</pre>
 - symmetrically, for S:

– Overall:

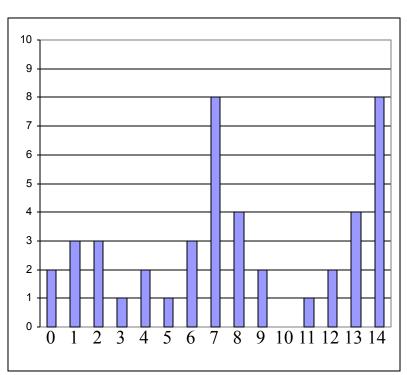
```
est_size = NTuples(R)*NTuples(S)/MAX{NKeys(A,S),
NKeys(A,R)}
```



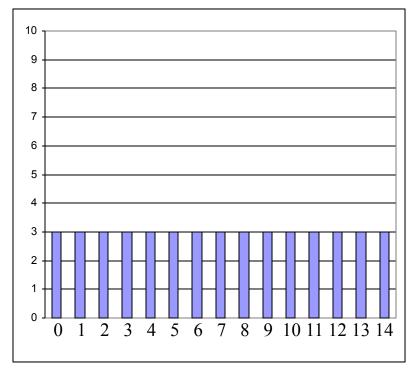
VirginiaTech On the Uniform Distribution **Assumption**

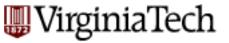
 Assuming uniform distribution is rather crude

Distribution D



Uniform distribution approximating D

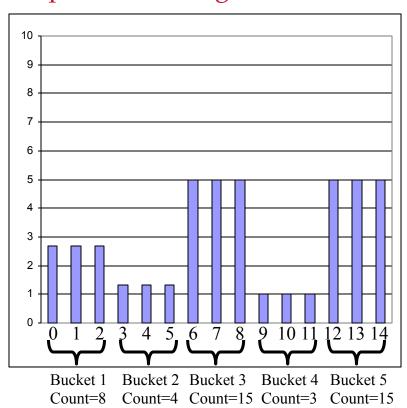




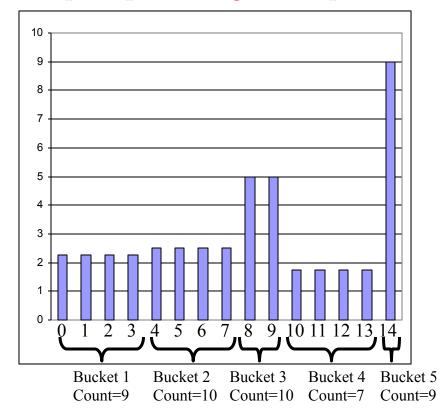
Histograms

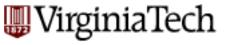
For better estimation, use a histogram

Equiwidth histogram



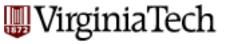
Equidepth histogram ~ quantiles



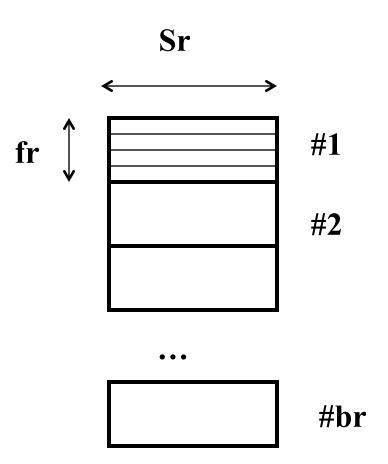


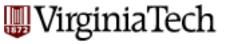
Q-opt Steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
 - single relation
 - multiple relations
- estimate cost; pick best



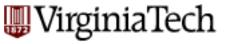
- Selections eg.,
 select *
 from TAKES
 where grade = 'A'
- Plans?





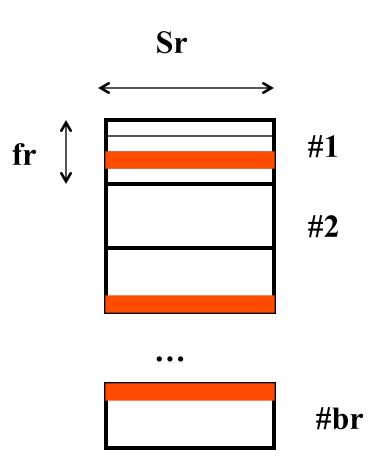
- Plans?
 - seq. scan
 - binary search
 - (if sorted & consecutive)
 - index search
 - if an index exists

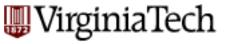




seq. scan - cost?

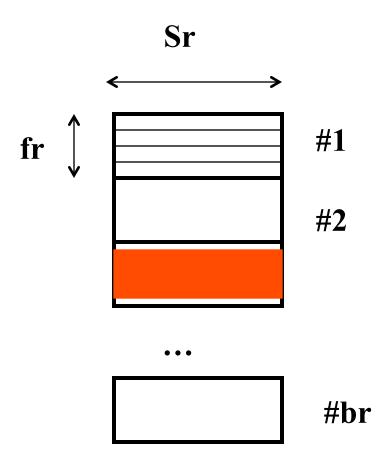
- br (worst case)
- br/2 (average, if we search for primary key)

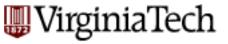




binary search – cost? if sorted and consecutive:

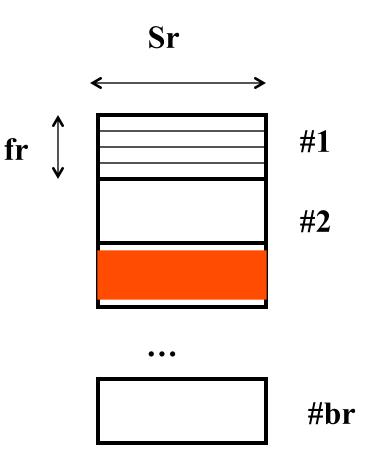
- ~log(br) +
- SC(A,r)/fr (=blocks spanned by qual. tuples)

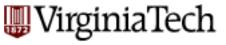


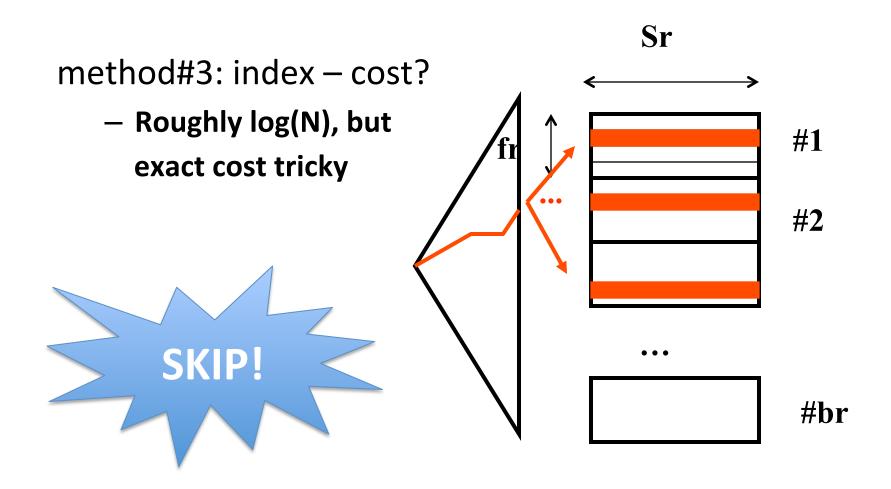


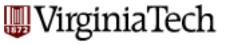
estimation of selection cardinalities SC(A,r):

 we saw it earlier how to do it for general conditions







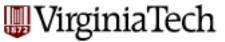


Q-opt Steps

- bring query in internal form (eg., parse tree)
- ... into 'canonical form' (syntactic q-opt)
- generate alt. plans
 - single relation
 - multiple relations
- estimate cost; pick best

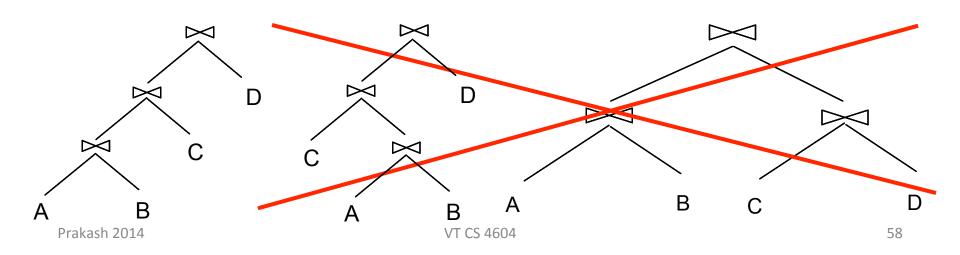
n-way joins

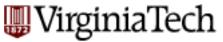
- r1 JOIN r2 JOIN ... JOIN rn
- typically, break problem into 2-way joins
 - choose between NL, sort merge, hash join, ...



Queries Over Multiple Relations

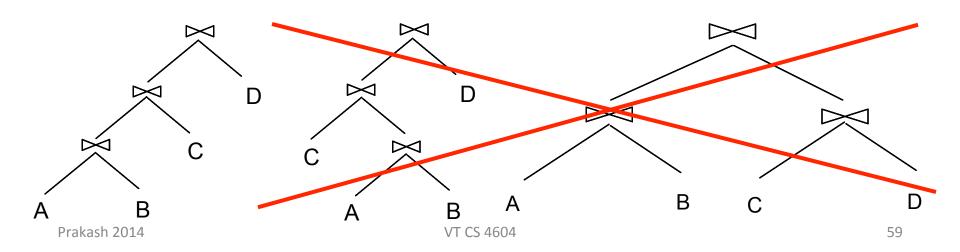
- As number of joins increases, number of alternative plans grows rapidly → need to restrict search space
- Fundamental decision in System R (IBM): <u>only left-deep join</u> <u>trees</u> are considered. Advantages?

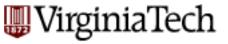




Queries Over Multiple Relations

- As number of joins increases, number of alternative plans grows rapidly → need to restrict search space
- Fundamental decision in System R (IBM): <u>only left-deep join</u> <u>trees</u> are considered. Advantages?
 - fully pipelined plans.
 - Intermediate results not written to temporary files.





Queries over Multiple Relations

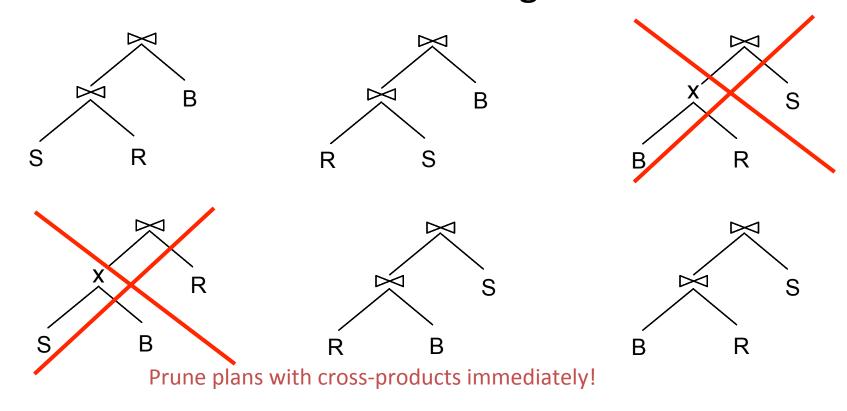
- Enumerate the orderings (= left deep tree)
- enumerate the plans for each operator
- enumerate the access paths for each table

Dynamic programming, to save cost estimations (we wont cover exact algorithm in class)

Prakash 2014 VT CS 4604 60

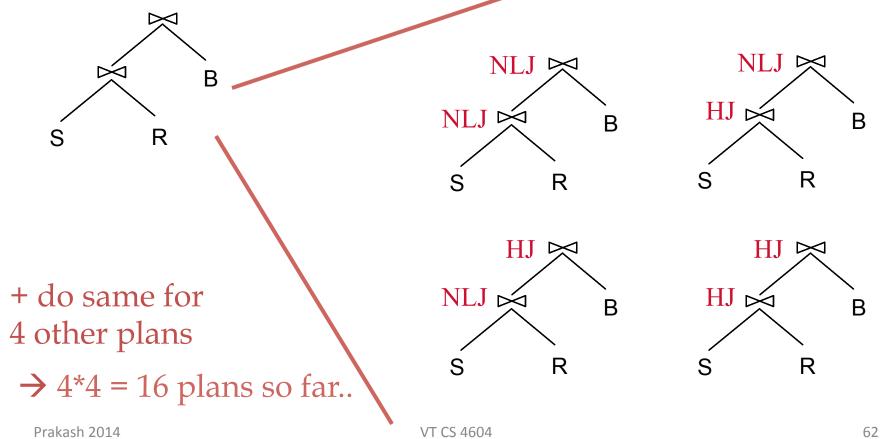
SELECT S.sname, B.bname, R.day FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:



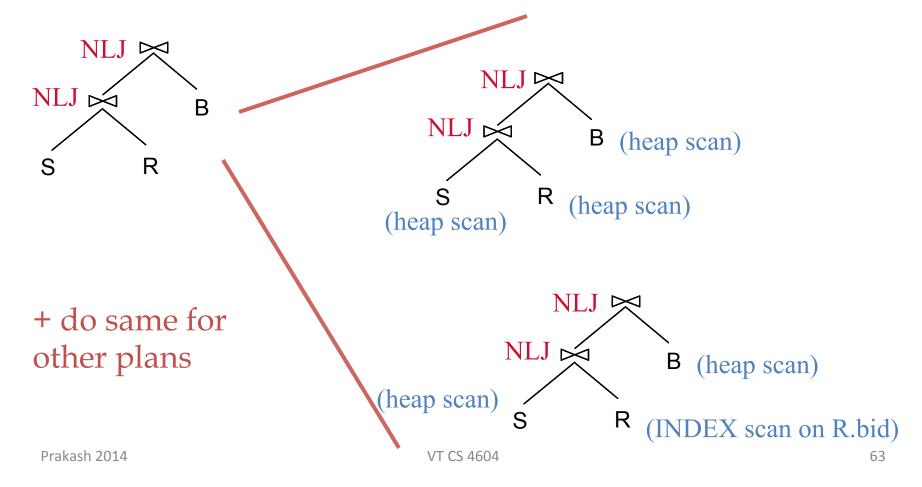
SELECT S.sname, B.bname, R.day FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid

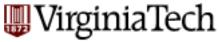
2. Enumerate join algorithm choices:



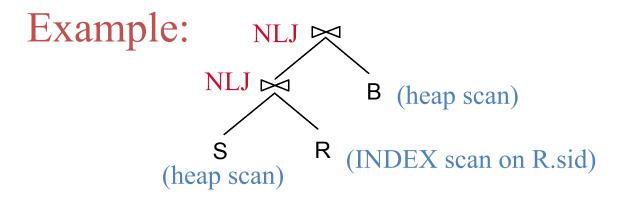
SELECT S.sname, B.bname, R.day FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid

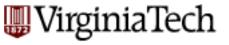
3. Enumerate access method choices:





Now estimate the cost of each plan





Conclusions

- Ideas to remember:
 - canonical parse tree
 - syntactic q-opt do selections/projections early
 - More complicated rules are also used
 - How to get selectivity estimations (uniformity, independence)
 - We saw mainly range and equality predicates
 - More complicated: histograms; join selectivity
 - left-deep joins
 - dynamic programming