VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #2: The Relational Model

MVirginiaTech
News

= Project Assignment 1 is out
= Due Date: Friday Feb 1, 2013, start of class

Prakash 2013 VT CS 4604

Course Outline

= Weeks 1-5, 13: Query/ = Weeks 9-13: Relational

Manipulation Design

Languages — The relational model

— Relational Algebra — Converting ER to “R”

— Data definition — Normalization to avoid

— Programming with SQL redundancy

= Weeks 6-8: Data = Week 14-15: Students’

Modeling choice

— Entity-Relationship (E/R) — Practice Problems
approach — XML

— Specifying Constraints — Query optimization

— Good E/R design — Data mining

Prakash 2013 VT CS 4604

MVirginiaTech

Data Model

= A Data Model is a notation for describing data or information.
— Structure of data (e.g. arrays, structs)

* Conceptual model: In databases, structures are at a higher
level.

— Operations on data (Modifications and Queries)

e Limited Operations: Ease of programmers and efficiency of
database.

— Constraints on data (what the data can be)

= Examples of data models
— The Relational Model
— The Semistructured-Data Model
XML and related standards
— Object-Relational Model

Prakash 2013 VT CS 4604

VirginiaTech

The Relational Model

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Structure: Table (like an array of structs)

= Operations: Relational alebgra (selection,
projection, conditions, etc)

= Constraints: E.g., grades can be only {A, B, C, F}

Prakash 2013 VT CS 4604

MVirginiaTech
The Semi-structured model

<CoursesTaken>
<Student>Hermione Grainger</Student>
<Course>Potions</Course>
<Grade>A</Grade>
<Student>Draco Malfoy</Student>
<Course>Potions</Course>
<Grade>B</Grade>

</CouréééTaken>
= Structure: Trees or graphs, tags define role played by

different pieces of data.

= Operations: Follow paths in the implied tree from one
element to another.

= Constraints: E.g., can express limitations on data types

Prakash 2013 VT CS 4604

MVirginiaTech
Comparing the two models

= Flexibility: XML can represent graphs

= Ease of use: SQL enables programmer to
express wishes at high level.

Prakash 2013 VT CS 4604

MVirginiaTech
The Relational Model

= Simple: Built around a single concept for
modeling data: the relation or table.

— A relational database is a collection of relations.
— Each relation is a table with rows and columns.

= Supports high-level programming language (SQL).
— Limited but very useful set of operations

= Has an elegant mathematical design theory.

= Most current DBMS are relational (Oracle, IBM DB2,
MS SQL)

Prakash 2013 VT CS 4604

MVirginiaTech

Relations

= Arelation is a two-dimensional table:
— Relation == table.
— Attribute == column name.
— Tuple == row (not the header row).

= Database == collection of relations.
= Arelation has two parts:
— Schema defines column heads of the table (attributes).
— Instance contains the data rows (tuples, rows, or records) of the table.

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
| Harry Potter Potions A |
Prakash 2013 . WeaSIey W CSPZ'gOtI;'ronS - 9

WVirginiaTech

Schema
CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= The schema of a relation is the name of the relation followed
by a parenthesized list of attributes.

CoursesTaken (Student, Course, Grade)
= Adesignin a relational model consists of a set of schemas.
= Such a set of schemas is called a relational database schema.

Prakash 2013 VT CS 4604 10

MVirginiaTech
Relations: Equivalent Representations

CoursesTaken :
Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

CoursesTaken (Student, Course, Grade)
= Relation is a set of tuples and not a list of tuples.
— Order in which we present the tuples does not matter.
— Very important!
= The attributes in a schema are also a set (not a list).
— Schema is the same irrespective of order of attributes.
CoursesTaken (Student, Grade, Course)
— We specify a “standard” order when we introduce a schema.

" How many equivalent representations are there for a relation with
m attributes and n tuples? il

Prakash 2013 VT CS 4604 11

MVirginiaTech

Degree and Cardinality

CoursesTaken :

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

= Degree/Arity is the number of fields/attributes in schema (=3

in the table above)

= Cardinality is the number of tuples in relation (=4 in the table

above)

Prakash 2013

VT CS 4604

MVirginiaTech

Keys of Relations

= Keys are one form of integrity constraints (IC)
— No pair of tuples should have identical keys

" What is the key for CoursesTaken?
— Student if only one course in the relation
— Pair (Student, Course) if multiple courses
— What if student takes same course many times?

Student Course Grade
Hermione Grainger Potions A
Draco Malfoy Potions B
Harry Potter Potions A
Ron Weasley Potions C

Prakash 2013 VT CS 4604

13

W VirginiaTech

Keys of Relations

= Keys help associate tuples in different

relations
SID__ | D | Grade |
15-401 A
15-401 B
Student GPA
14-501 B
Hermione 3.9
Grainger

Draco Malfoy | 3.0
Harry Potter 3.7

Ron Weasley 3.1

Prakash 2013 VT CS 4604 14

|VirginiaTech

Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned to
a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have 2= 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most one
chairperson (or dept. head). A chairperson is not allowed to head
two or more departments.

|VirginiaTech

Example

Create a database for managing class enrollments in a single
semester. You should keep track of all students (their names, Ids,
and addresses) and professors (name, |Id, department). Do not
record the address of professors but keep track of their ages.
Maintain records of courses also. Like what classroom is assigned
to a course, what is the current enrollment, and which department
offers it. At most one professor teaches each course. Each student
evaluates the professor teaching the course. Note that all course
offerings in the semester are unique, i.e. course names and
numbers do not overlap. A course can have 2> 0 pre-requisites,
excluding itself. A student enrolled in a course must have enrolled
in all its pre-requisites. Each student receives a grade in each
course. The departments are also unique, and can have at most
one chairperson (or dept. head). A chairperson is not allowed to
head two or more departments.

MVirginiaTech
Relational Design for the Example

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2013 VT CS 4604 17

MVirginiaTech
Relational Desigh Example: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2013 VT CS 4604 18

MVirginiaTech
Relational Design: Keys?

= Students (PID: string, Name: string, Address: string)

* Professors (PID: string, Name: string, Office: string, Age: integer,
DepartmentName: string)

= Courses (Number: integer, DeptName: string, CourseName: string, Classroom:
string, Enrollment: integer)

= Teach (ProfessorPID: string, Number: integer, DeptName: string)

= Take (StudentPID: string, Number: integer, DeptName: string, Grade: string,
ProfessorEvaluation: integer)

= Departments (Name: string, ChairmanPID: string)

* PreReq (Number: integer, DeptName: string, PreReqNumber: integer,
PreReqDeptName: string)

Prakash 2013 VT CS 4604 19

MVirginiaTech
Issues to Consider in the Design

" Can we merge Courses and Teach since each
professor teaches at most one course?

= Do we need a separate relation to store evaluations?

= How can we handle pre-requisites that are “or’’s,
e.g., you can take CS 4604 if you have taken either CS
3114 or CS 26067

" How do we generalize this schema to handle data
over more than one semester?

* What modifications does the schema need if more
than one professor can teach a course?

Prakash 2013 VT CS 4604 20

