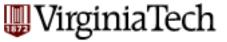

CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Midterm Review


MIDTERM REVIEW

Course Outline

- Weeks 1–4: Query/ Manipulation Languages and Data Modeling
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design
- Weeks 5–8: Indexes, Processing and Optimization
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- Week 9-10: Relational Design
 - Functional Dependencies
 - Normalization to avoid redundancy
- Week 11-12: Concurrency Control
 - Transactions
 - Logging and Recovery
- Week 13–14: Students' choice
 - Practice Problems
 - XML
 - Data mining and warehousing



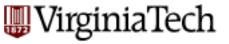
Course Outline: For Midterm Exam

- Weeks 1–4: Query/ Manipulation Languages and Data Modeling
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design
- Weeks 5–8: Indexes, Processing and Optimization
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- Week 9-10: Relational Design
 - Functional Dependencies
 - Normalization to avoid redundancy
- Week 11-12: Concurrency Control
 - Transactions
 - Logging and Recovery
- Week 13–14: Students' choice
 - Practice Problems
 - XML
 - Data mining and warehousing

No Query
Processing/
Optimization

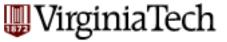
FUNDAMENTAL Relational operators


• selection $\sigma_{condition}$ (R)

ullet projection $\pi_{att-list}(R)$

cartesian productR X S

set union
R U S

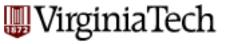

set difference
R - S

Relational ops

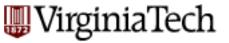
Surprisingly, they are enough!


- Derived/convenience operators:
 - set intersection \cap
 - − join (theta join, natural join)
 - 'rename' operator $\rho_{R'}(R)$
 - division $R \div S$

Basic SQL Query

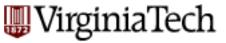

SELECT [DISTINCT] target-list FROM relation-list WHERE qualification;

- Relation-list: A list of relation names (possibly with range-variable after each name).
- Target-list: A list of attributes of relations in relation-list
- Qualification: conditions on attributes
- DISTINCT: optional keyword for duplicate removal.
 - Default = no duplicate removal!
- ORDER BY: for sorting values

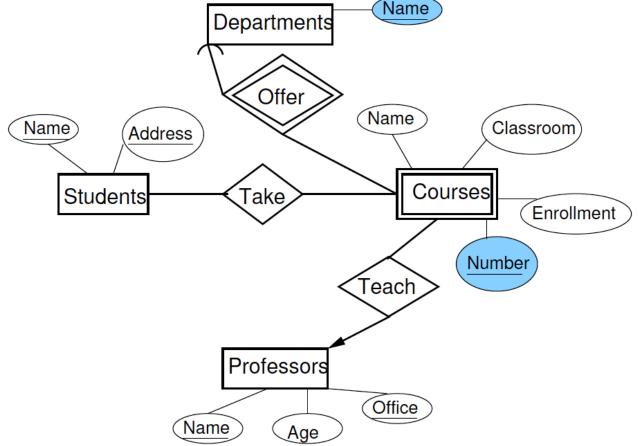

SQL

- Handling Sub-queries
- SQL Data Definition Commands
- Constraints
- Triggers
- **-** ...
- Note how referential integrity can be enforced (foreign key; on delete cascade etc.)

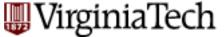
E/R Diagrams


- IMPORTANT:
 - Follow only lecture slides for this topic!
 - Differences from the book:
 - More details
 - Slightly different notation

Relationships

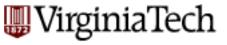

- Show a many-one relationship by an arrow entering the "one" side.
 Many —— One
- Show a one-one relationship by arrows entering both entity sets. One One
- In some situations, we can also assert "exactly one," i.e., each entity of one set must be related to exactly one entity of the other set. To do so, we use a rounded arrow.

Prakash 2018 VT CS 4604 10

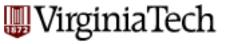


E/R Example (does not contain ISA)

Each department teaches multiple courses. Each course has a number. What is the key for the entity set Courses?

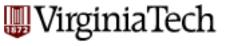


Prakash 2018 11


Converting E/R Diagrams to Relational Designs

- Entity Set → Relation
 - Attribute of Entity Set → Attribute of a Relation
- Relationship → relation whose attributes are
 - Attribute of the relationship itself
 - Key attributes of the connected entity sets
- Several special cases:
 - Weak entity sets.
 - Combining relations (especially for many-one relationships)
 - ISA relationships and subclasses
- Also note how referential integrity comes in (foreign keys)

Tree Indexes


- B+-Trees
 - Carefully understand the Definition!
 - Searching
 - Inserting
 - Deleting

Hashing/Sorting

- Extendible Hashing
- Linear Hashing
- External Sorting

- Again, how to search and build, internalize the structure
- Sorting: understand the process, how to cost it, how many passes it takes etc.

Exam

- No aids allowed EXCEPT:
 - Only written (not typed) 1 letter-size page (you may use both sides)
 - A calculator (NOT your smartphone)
- Duration: 75 mins, during class Oct 4, 2018

- More or less equal weightage to all the topics
 - Questions will be similar to the HWs, Handouts