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MVirginiaTech
Announcement

= Next class:
— Some query processing
— And quick review for midterm
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MVirginiaTech

EXTENDIBLE HASHING
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[MVirginiaTech
(Static) Hashing

= Problem: “find EMP record with ssn=123"

= What if disk space was free, and time was at
premium?
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MVirginiaTech
Hashing

= A: Brilliant idea: key-to-address
transformation:

#0 page
NN
123; Smith; Main str . #123 page
NN
#999,999,999
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MVirginiaTech

Hashing

" Since space is NOT free:
= yse M, instead of 999,999,999 slots
* hash function: h(key) = slot-id

#0 page

123; Smith; Main str

Prakash 2018

T #123 page

#999,999,999
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MVirginiaTech
Hashing

= Typically: each hash bucket is a page, holding
many records:

#0 page

123; Smith; Mainstr———__, #h(123)

Prakash 2018 VT CS 4604



MVirginiaTech
Hashing

= Notice: could have clustering, or non-

clustering versions:
‘Q’ #0 page
vV vV
123; Smith; Main str. ‘\

< ~ #h(123)
NN
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MVirginiaTech

Hashing

= Notice: could have clustering, or non-
clustering versions:

1

EMP file

234; Johnson; Forbes ave

( >#h(123) 123
4 {\\'v \

Prakash 2018

VT CS 4604

123; Smith; Main str.

345; Tompson; Fifth ave




MVirginiaTech
Design decisions

= 1) formula h() for hashing function
= ?2) size of hash table M
= 3) collision resolution method

Prakash 2018 VT CS 4604
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MVirginiaTech

Problem with static hashing

= problem: overflow?
= problem: underflow? (underutilization)
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[MVirginiaTech
Solution: Dynamic/extendible

hashing

» idea: shrink / expand hash table on demand..
= ..dynamic hashing
= Details: how to grow gracefully, on overflow?

= Many solutions - One of them: ‘extendible
hashing™ [Fagin et al]

Prakash 2018 VT CS 4604 12



MVirginiaTech

Extendible hashing

N

123; Smith; Main str. ” UL

N

v

Prakash 2018 VT CS 4604

#0 page

#h(123)
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MVirginiaTech

Extendible hashing

solution: #0 page
split the bucket in two k R;
123; Smith; Main str. > UL #h(123)
N
M

Prakash 2018 VT CS 4604 14



MVirginiaTech
Extendible hashing

in detail:
= keep a directory, with ptrs to hash-buckets
= Q: how to divide contents of bucket in two?

" A: hash each key into a very long bit string;
keep only as many bits as needed

Eventually:
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MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101.4

10011.4

directory
00... |
01... -
10... | |
11... |

101001...

Prakash 2018

10110.4

\\\\\\\\\\\\*

1101...

VT CS 4604

16



MVirginiaTech

Extendible hashing

directory

00...

01...

10101.4

///////////' 0001...
0111...
?'

10011.4

10110.4

11...

\\\\\\\\\\\\*

1101...

NRN

101001...

Prakash 2018

VT CS 4604
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MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101..

10011..
10110..

directory
00... |
01... -
10... | |
11... |

Prakash 2018

\]_0‘1001---

split on 3-rd bit

1101...

VT CS 4604
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MVirginiaTech

Extendible hashing

directory
///////////' 0001...
00 - 0111...
01... -
_//
10... — 10011..) 10101..}
11... | — | 101001}..
_\ 10110.}

Prakash 2018

new page / bucket

1101...

VT CS 4604
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MVirginiaTech

Extendible hashing

directory

000
001...

010...

011...
100...

(doubled)/

M\N\\

v

0111...

new page / bucket

10101..

101001..

101...

110...

ERE

111...

Prakash 2018

1101...

VT CS 4604

10110..
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MVirginiaTech
Extendible hashing

BEFORE AFTER
/ 0001... 000L. I ——— [ 000...
00... 1 0111... 0111... \— 001...
01... ~
. 010...
10 —— — [10101.] I ]
SO I 10011.! |!10011. |10101.4 h 011...
11 — 10110. . 101001}.. 1 100
XX _\10‘1001." 10110." [~ Y
101...
1101... 1101... \—
— 110...
- 111...
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MVirginiaTech
Extendible hashing

= Summary: directory doubles on demand
= or halves, on shrinking files
* needs ‘local’ and ‘global’ depth

Prakash 2018 VT CS 4604
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LINEAR HASHING

kash 2018 VT CS 4604
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WVirginiaTech
Linear hashing - overview

= Motivation

" main idea

" search algo

" insertion/split algo
= deletion

Prakash 2018 VT CS 4604
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MVirginiaTech
Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

= A:split buckets from left to right, regardless of
which one overflowed ( ‘crazy’, but it works
well!) - Eg.:

Prakash 2018 VT CS 4604 26



MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)
Assume capacity: 3 records / bucket

Insert key ‘17’

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604
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WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1
17

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604
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MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1

17 Split #0, anyway!!!
bucket- id 0 1 2 3
4 8 5 9 6 7 11
13

Prakash 2018 VT CS 4604
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WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

Split #0, anyway!!!

17 Q: But, how?

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604
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WVirginiaTech
Linear hashing

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

17

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

bucket- id 0 1 2 3 4

17

Prakash 2018 VT CS 4604 32



VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N

bucket- id

Prakash 2018

hl(x) =x mod (2*N)

11

17

VT CS 4604

overflow
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VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
h1(x) =x mod (2*N)

lsplit ptr

bucket- id 0 1 2 3 4

17 overflow

Prakash 2018 VT CS 4604
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WVirginiaTech

Linear hashing - searching?

hO(x) = x mod N (for the un-split buckets)
hi(x) = x mod (2*N) (for the splitted ones)

lsplit ptr

bucket- id 0 1 2 3 4

17 overflow

Prakash 2018 VT CS 4604



VirginiaTech

Linear hashing - searching?

Q1l: find key ‘6" ? Q2: find key ‘4’ ?

Q3: key ‘8’ ?
lsplit ptr
bucket- id 0 1 2 3 4
8 59 6 7 11 4
13
17 overflow

Prakash 2018 VT CS 4604



VirginiaTech

Linear hashing - searching?

Algo to find key ‘k’:
e compute b= h0(k);
o if b<split-ptr, compute b=h1(k)

e search bucket b

Prakash 2018 VT CS 4604
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VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

Prakash 2018 VT CS 4604 39



MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?
= Al: space utilization >= u-max

Prakash 2018 VT CS 4604
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MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

= Al: space utilization > u-max

= A2: avg length of ovf chains > max-len
= A3: ...

Prakash 2018 VT CS 4604



VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)
4

what if we reach the right edge??

Prakash 2018 VT CS 4604
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MVirginiaTech
Linear hashing - split now?

hO(x) =x mod N (for the un-split buckets) h1(x) = x mod (2*N) for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing - split now?

hO(x) = x mod N
the splitted ones)

(for the un-split buckets) h1(x) = x mod (2*N) (for

split ptr

Prakash 2018

VT CS 4604
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MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s = 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2018 VT CS 4604
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MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s - 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing - split now?

this state is called ‘full expansion’

split ptr

: &

0 1 2 3 4 5 6 7

Prakash 2018 VT CS 4604 47



MVirginiaTech

Linear hashing - observations

In general, at any point of time, we have at most two h.f. active, of the form:
°h (x) = x mod (N * 2")
°h,.,(x) =x mod (N * 2"1)

(after a full expansion, we have only one h.f.)
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MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

Prakash 2018 VT CS 4604 49



MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

® if the underflow criterion is met
— contract!

Prakash 2018 VT CS 4604
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MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604 51



MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604 52



MVirginiaTech

Prakash 2018

Hashing - pros?

VT CS 4604
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MVirginiaTech

Hashing - pros?
= Speed,

— on exact match queries
— on the average

Prakash 2018 VT CS 4604
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MVirginiaTech

Prakash 2018

B(+)-trees - pros?

VT CS 4604
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MVirginiaTech
B(+)-trees - pros?

= Speed on search:
— exact match queries, worst case
— range queries
— nearest-neighbor queries

» Speed on insertion + deletion
" smooth growing and shrinking (no re-org)

Prakash 2018 VT CS 4604
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MVirginiaTech
Conclusions

= B-trees and variants: in all DBMSs

= hash indices: in some

— (but hashing in useful for joins...: will see in later
lecture)

Prakash 2018 VT CS 4604
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MVirginiaTech

SORTING

Prakash 2018

VT CS 4604
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MVirginiaTech

Prakash 2018

Why Sort?

VT CS 4604
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IVirginiaTech
Why Sort?

= select ... order by

- e.g., find students in increasing gpa order
" bulk loading B+ tree index.
" duplicate elimination (select distinct)
= select ... group by
" Sort-merge join algorithm involves sorting.



MVirginiaTech
Outline

" fwo-way merge sort
= external merge sort
" fine-tunings

" B+ trees for sorting

Prakash 2018 VT CS 4604
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MVirginiaTech

2-Way Sort: Requires 3 Buffers

" Pass O0: Read a page, sort it, write it.

— only one buffer page is used

" Pass 1, 2, 3, ..., etc.: requires 3 buffer pages

— merge pairs of runs into runs twice as long

— three buffer pages used.

>
| 1 | INPUT 1
| : INPUT 2
v
Disk

OUTPUT

I
7

Main memory buffers

Prakash 2018 VT CS 4604
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MVirginiaTech
Two-Way External Merge Sort

3.4 (6,2 [9.4] [87] [56] [34] [2] B input ile
= Each pass we read + ] T | | Ppasso

. . . 3.4| (2,6] 4.9 [7.8] |5.6] [1.3] | 2 - 1-page runs
write each page in file.

Prakash 2018



MVirginiaTech
Two-Way External Merge Sort

- Input file

3.4/ (62| 94| [8,7] |56 [3.1

= Each pass we read + — 14—

+— PASS 0
. . . 3.4| |2,6] (4,9 |7.8 |5.6/ |13 1-page runs
write each page infile. | == =~

“— PASS 1
2.3 4.7 1,3 2-page runs
4.6 8,9 5»,6 .

IN [N

Prakash 2018



MVirginiaTech
Two-Way External Merge Sort

- Input file

3.4| (6,2] 19.4| (8,7 |5.6] 3.1
= Each pass we read + — 14—

+— PASS 0
. . . 3.4| |2,6] (4,9 |7.8 |5.6/ |13
write each page in file.

(N [N

1-page runs
V4

N N7 N7 “— PpASS 1
2.3 4,7 1,3 E

2-page runs

4.6 8,9 5,6
. o PASS 2
4.4 1.2

4-page runs
6.7 3,5

Prakash 2018



MVirginiaTech
Two-Way External Merge Sort

34 |62 9.4 8.7 5.6 3.1 B inputiile
= Each pass we read + ] T | | Ppasso
. . . 3.4| |2,6] (4,9 |7.8 |5.6] 13| | 2 1-page runs
write each page infile. S =" i1
2.3 4.7 1,3 2-page runs
4.6 8,9 5,6
. PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
1,2
2,3
3.4 8-page runs
4,5
6,6
7,8
Prakash 2018 VT CS 4604 9 66




MVirginiaTech

Two-Way External Merge Sort

= Each pass we read + write

each page in file.

= N pagesin the file =>
= [log2 N] +1

= So total cost is:

2N(|'10g2 N" + 1)

" |/dea: Divide and conquer:
sort subfiles and merge

Prakash 2018

3,4 16,2 0.4 (87 |56 3.1 B inputiile
| PASSO
3.4| (2.6 49| (7.8 [5.6] [1,3] [ 2 1-page runs
\\ // \\ // \M/ \ / PASS 1
2.3 4.7 1,3 E 2-page runs
4.6 8,9 5,6
N PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
\-/ PASS 3
1,2
2,3
3.4 8-page runs
4.5
6,6
7,8
VT CS 4604 9 67




MVirginiaTech

External merge sort

B > 3 buffers
= Q1: how to sort?
m (Q2: cost?

Prakash 2018 VT CS 4604
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MVirginiaTech

General External Merge Sort

B>3 buffer pages. How to sort a file with N pages?

Disk

Prakash 2018

B Main memory buffers

VT CS 4604
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WVirginiaTech
General External Merge Sort

— Pass 0: use B buffer pages. Produce [N/ B] sorted runs
of B pages each.

- Pass 1, 2, ..., etc.: merge B-1 runs.

< > INPUT 1 < >
\_// >

I I | |
| | » INPUT 2 \
\ . | |

OUTPUT ,
.~ | TinNPuT B-1 ~

Disk B Main memory buffers Disk

Prakash 2018 VT CS 4604 70



MVirginiaTech
Sorting

— create sorted runs of size B (how many?)
— merge them (how?)

HRNi
]

Prakash 2018 VT CS 4604
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MVirginiaTech

Sorting

— create sorted runs of size B

— merge first B-1 runs into a sorted run of
(B-1) *B, ...

e | L
R

R

Prakash 2018 VT CS 4604




MVirginiaTech
Sorting

— How many steps we need to do?
‘i, where B*(B-1)"i>N
— How many reads/writes per step? N+N

HRNi
ENEE

Prakash 2018 VT CS 4604




MVirginiaTech
Cost of External Merge Sort

* Number of passes: 1+[log, [N/ B]]
" Cost=2N * (# of passes)

Prakash 2018 VT CS 4604 74



MVirginiaTech
Cost of External Merge Sort

" E.g., with 5 buffer pages, to sort 108 page
file:
— Pass0: [108/ 5% 22 sorted runs of 5 pages
each (last run is only 3 pages)

- Pass1: [22/4T6 sorted runs of 20 pages
each (last run is only 8 pages)

— Pass 2: 2 sorted runs, 80 pages and 28 pages
— Pass 3: Sorted file of 108 pages

Formula check: Tlog, 22'=3 ...+ 1 = 4 passes V

Prakash 2018 VT CS 4604
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MVirginiaTech

Number of Passes of External Sort

(1/0 cost is 2N times number of passes)

N B=3 |B=5 |B=9 |B=17 |B=129|B=257
100 7 4 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 | 7 5 4 2 2
100,000 17 | 9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000| 30 | 15 10 8 5 4

Prakash 2018

VT CS 4604

76




WVirginiaTech

Internal Sort Algorithm

" Quicksort is a fast way to sort in memory.

Prakash 2018 VT CS 4604 77



MVirginiaTech
Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

Prakash 2018 VT CS 4604

78



MVirginiaTech

Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

= Al: Blocked I/O (exchange a few r.d.a for
several sequential ones)

= A2: double-buffering

Prakash 2018 VT CS 4604 79



MVirginiaTech
Double Buffering

* To reduce wait time for I/O request to

complete, can prefetch into shadow
block’ .

— Potentially, more passes; in practice, most files
still sorted in 2-3 passes.

INPUT 1

~ INPUT 2

Ea——
ey 21 Ol
o 0 0 b
m block size
INPUT K]

Prakash 2018 VT CS 4604
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MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered
— B+ tree is not clustered

Prakash 2018 VT CS 4604 81



[MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered Good ideal!
— B+ tree is not clustered Could be a very bad idea!

Prakash 2018 VT CS 4604 82



MVirginiaTech
Clustered B+ Tree Used for Sorting

= Cost: root to the left- Index
most leaf, then (Directs search)
retrieve all leaf pages

T e Data Entries

TR TR TR NN TR TR

Rt ("Sequence set")

LT L T T L L T T

Nl SN

Data Records

(Alternative 1)

Always better than external sorting!

Prakash 2018 VT CS 4604 83



WVirginiaTech
Unclustered B+ Tree Used for Sorting

= Alternative (2) for data entries; each data
entry contains rid of a data record. In
general, one I/O per data record!

Index
(Directs search)

e Data Entries
kX -.-..::.. (!!Sequence Set")

Data Records

Prakash 2018 84



MVirginiaTech
External Sorting vs. Unclustered Inde»

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 {100,000  |1,000,000 {10,000,000
1,000,000 |8,000,000 {1,000,000 (10,000,000 {100,000,000
10,000,000 80,000,000 {10,000,000 {100,000,000 |{1,000,000,000

p: # of records per page
B=1,000 and block size=32 for sorting
Prakash 2018 p=100 is the more realistic value.



MVirginiaTech
Summary

" External sorting is important

= External merge sort minimizes disk 1/O cost:
— Pass 0: Produces sorted runs of size B (# buffer
pages).
— Later passes: merge runs.
= Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.



