VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash
Lecture #9: Hashing, and Sorting

MVirginiaTech
Announcement

= Next class:
— Some query processing
— And quick review for midterm

Prakash 2018 VT CS 4604

MVirginiaTech

EXTENDIBLE HASHING

Prakash 2018 VT CS 4604

[MVirginiaTech
(Static) Hashing

= Problem: “find EMP record with ssn=123"

= What if disk space was free, and time was at
premium?

Prakash 2018 VT CS 4604

MVirginiaTech
Hashing

= A: Brilliant idea: key-to-address
transformation:

#0 page
NN
123; Smith; Main str . #123 page
NN
#999,999,999

Prakash 2018 VT CS 4604 5

MVirginiaTech

Hashing

" Since space is NOT free:
= yse M, instead of 999,999,999 slots
* hash function: h(key) = slot-id

#0 page

123; Smith; Main str

Prakash 2018

T #123 page

#999,999,999

VT CS 4604

MVirginiaTech
Hashing

= Typically: each hash bucket is a page, holding
many records:

#0 page

123; Smith; Mainstr———__, #h(123)

Prakash 2018 VT CS 4604

MVirginiaTech
Hashing

= Notice: could have clustering, or non-

clustering versions:
‘Q’ #0 page
vV vV
123; Smith; Main str. ‘\

< ~ #h(123)
NN

Prakash 2018 VT CS 4604

MVirginiaTech

Hashing

= Notice: could have clustering, or non-
clustering versions:

1

EMP file

234; Johnson; Forbes ave

(>#h(123) 123
4 {\\'v \

Prakash 2018

VT CS 4604

123; Smith; Main str.

345; Tompson; Fifth ave

MVirginiaTech
Design decisions

= 1) formula h() for hashing function
= ?2) size of hash table M
= 3) collision resolution method

Prakash 2018 VT CS 4604

10

MVirginiaTech

Problem with static hashing

= problem: overflow?
= problem: underflow? (underutilization)

Prakash 2018 VT CS 4604 11

[MVirginiaTech
Solution: Dynamic/extendible

hashing

» idea: shrink / expand hash table on demand..
= ..dynamic hashing
= Details: how to grow gracefully, on overflow?

= Many solutions - One of them: ‘extendible
hashing™ [Fagin et al]

Prakash 2018 VT CS 4604 12

MVirginiaTech

Extendible hashing

N

123; Smith; Main str. ” UL

N

v

Prakash 2018 VT CS 4604

#0 page

#h(123)

13

MVirginiaTech

Extendible hashing

solution: #0 page
split the bucket in two k R;
123; Smith; Main str. > UL #h(123)
N
M

Prakash 2018 VT CS 4604 14

MVirginiaTech
Extendible hashing

in detail:
= keep a directory, with ptrs to hash-buckets
= Q: how to divide contents of bucket in two?

" A: hash each key into a very long bit string;
keep only as many bits as needed

Eventually:

Prakash 2018 VT CS 4604 15

MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101.4

10011.4

directory
00... |
01... -
10... | |
11... |

101001...

Prakash 2018

10110.4

*

1101...

VT CS 4604

16

MVirginiaTech

Extendible hashing

directory

00...

01...

10101.4

///////////' 0001...
0111...
?'

10011.4

10110.4

11...

*

1101...

NRN

101001...

Prakash 2018

VT CS 4604

17

MVirginiaTech

Extendible hashing

///////////' 0001...
0111...
/

10101..

10011..
10110..

directory
00... |
01... -
10... | |
11... |

Prakash 2018

\]_0‘1001---

split on 3-rd bit

1101...

VT CS 4604

18

MVirginiaTech

Extendible hashing

directory
///////////' 0001...
00 - 0111...
01... -
_//
10... — 10011..) 10101..}
11... | — | 101001}..
_\ 10110.}

Prakash 2018

new page / bucket

1101...

VT CS 4604

19

MVirginiaTech

Extendible hashing

directory

000
001...

010...

011...
100...

(doubled)/

M\N\\

v

0111...

new page / bucket

10101..

101001..

101...

110...

ERE

111...

Prakash 2018

1101...

VT CS 4604

10110..

20

MVirginiaTech
Extendible hashing

BEFORE AFTER
/ 0001... 000L. I ——— [000...
00... 1 0111... 0111... \— 001...
01... ~
. 010...
10 —— — [10101.] I]
SO I 10011.! |!10011. |10101.4 h 011...
11 — 10110. . 101001}.. 1 100
XX _\10‘1001." 10110." [~ Y
101...
1101... 1101... \—
— 110...
- 111...

Prakash 2018 VT CS 4604

MVirginiaTech
Extendible hashing

= Summary: directory doubles on demand
= or halves, on shrinking files
* needs ‘local’ and ‘global’ depth

Prakash 2018 VT CS 4604

22

I Vir

Pra

giniaTech

LINEAR HASHING

kash 2018 VT CS 4604

23

WVirginiaTech
Linear hashing - overview

= Motivation

" main idea

" search algo

" insertion/split algo
= deletion

Prakash 2018 VT CS 4604

24

MVirginiaTech
Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

Prakash 2018 VT CS 4604

25

MVirginiaTech

Linear hashing

= Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

" Q: can we do something simpler, with
smoother growth?

= A:split buckets from left to right, regardless of
which one overflowed (‘crazy’, but it works
well!) - Eg.:

Prakash 2018 VT CS 4604 26

MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)
Assume capacity: 3 records / bucket

Insert key ‘17’

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604

27

WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1
17

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604

28

MVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

overflow of bucket#1

17 Split #0, anyway!!!
bucket- id 0 1 2 3
4 8 5 9 6 7 11
13

Prakash 2018 VT CS 4604

29

WVirginiaTech
Linear hashing

Initially: h(x) =x mod N (N=4 here)

Split #0, anyway!!!

17 Q: But, how?

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604

30

WVirginiaTech
Linear hashing

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

17

bucket- id 0 1 2 3

Prakash 2018 VT CS 4604

31

MVirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
hl(x) =x mod (2*N)

bucket- id 0 1 2 3 4

17

Prakash 2018 VT CS 4604 32

VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N

bucket- id

Prakash 2018

hl(x) =x mod (2*N)

11

17

VT CS 4604

overflow

33

VirginiaTech

Linear hashing - after split:

A: use two h.f.: hO(x) =x mod N
h1(x) =x mod (2*N)

lsplit ptr

bucket- id 0 1 2 3 4

17 overflow

Prakash 2018 VT CS 4604

34

WVirginiaTech

Linear hashing - searching?

hO(x) = x mod N (for the un-split buckets)
hi(x) = x mod (2*N) (for the splitted ones)

lsplit ptr

bucket- id 0 1 2 3 4

17 overflow

Prakash 2018 VT CS 4604

VirginiaTech

Linear hashing - searching?

Q1l: find key ‘6" ? Q2: find key ‘4’ ?

Q3: key ‘8’ ?
lsplit ptr
bucket- id 0 1 2 3 4
8 59 6 7 11 4
13
17 overflow

Prakash 2018 VT CS 4604

VirginiaTech

Linear hashing - searching?

Algo to find key ‘k’:
e compute b= h0(k);
o if b<split-ptr, compute b=h1(k)

e search bucket b

Prakash 2018 VT CS 4604

37

VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)

Prakash 2018 VT CS 4604

38

MVirginiaTech

Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

Prakash 2018 VT CS 4604 39

MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?
= Al: space utilization >= u-max

Prakash 2018 VT CS 4604

40

MVirginiaTech
Linear hashing - insertion?

" notice: overflow criterion is up to us!!
= Q:suggestions?

= Al: space utilization > u-max

= A2: avg length of ovf chains > max-len
= A3: ...

Prakash 2018 VT CS 4604

VirginiaTech

Linear hashing - insertion?

Algo: insert key ‘k’

e compute appropriate bucket ‘b’

e if the overflow criterion is true
esplit the bucket of ‘split-ptr’

e split-ptr ++ (*)
4

what if we reach the right edge??

Prakash 2018 VT CS 4604

42

MVirginiaTech
Linear hashing - split now?

hO(x) =x mod N (for the un-split buckets) h1(x) = x mod (2*N) for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604

43

MVirginiaTech

Linear hashing - split now?

hO(x) = x mod N
the splitted ones)

(for the un-split buckets) h1(x) = x mod (2*N) (for

split ptr

Prakash 2018

VT CS 4604

44

MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s = 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2018 VT CS 4604

45

MVirginiaTech
Linear hashing - split now?

et O ==TTTOTI TV {Jor the un-s - 2*N) (for
the splitted ones)
split ptr
0 1 2 3 4 5 6

Prakash 2018 VT CS 4604

46

MVirginiaTech

Linear hashing - split now?

this state is called ‘full expansion’

split ptr

: &

0 1 2 3 4 5 6 7

Prakash 2018 VT CS 4604 47

MVirginiaTech

Linear hashing - observations

In general, at any point of time, we have at most two h.f. active, of the form:
°h (x) = x mod (N * 2")
°h,.,(x) =x mod (N * 2"1)

(after a full expansion, we have only one h.f.)

Prakash 2018 VT CS 4604 48

MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

Prakash 2018 VT CS 4604 49

MVirginiaTech

Linear hashing - deletion?

" reverse of insertion:

® if the underflow criterion is met
— contract!

Prakash 2018 VT CS 4604

50

MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604 51

MVirginiaTech

Linear hashing - how to contract?

hO(x) = mod N (for the un-split buckets) h1(x) = mod (2*N) (for
the splitted ones)

split ptr

Prakash 2018 VT CS 4604 52

MVirginiaTech

Prakash 2018

Hashing - pros?

VT CS 4604

53

MVirginiaTech

Hashing - pros?
= Speed,

— on exact match queries
— on the average

Prakash 2018 VT CS 4604

54

MVirginiaTech

Prakash 2018

B(+)-trees - pros?

VT CS 4604

55

MVirginiaTech
B(+)-trees - pros?

= Speed on search:
— exact match queries, worst case
— range queries
— nearest-neighbor queries

» Speed on insertion + deletion
" smooth growing and shrinking (no re-org)

Prakash 2018 VT CS 4604

56

MVirginiaTech
Conclusions

= B-trees and variants: in all DBMSs

= hash indices: in some

— (but hashing in useful for joins...: will see in later
lecture)

Prakash 2018 VT CS 4604

57

MVirginiaTech

SORTING

Prakash 2018

VT CS 4604

58

MVirginiaTech

Prakash 2018

Why Sort?

VT CS 4604

59

IVirginiaTech
Why Sort?

= select ... order by

- e.g., find students in increasing gpa order
" bulk loading B+ tree index.
" duplicate elimination (select distinct)
= select ... group by
" Sort-merge join algorithm involves sorting.

MVirginiaTech
Outline

" fwo-way merge sort
= external merge sort
" fine-tunings

" B+ trees for sorting

Prakash 2018 VT CS 4604

61

MVirginiaTech

2-Way Sort: Requires 3 Buffers

" Pass O0: Read a page, sort it, write it.

— only one buffer page is used

" Pass 1, 2, 3, ..., etc.: requires 3 buffer pages

— merge pairs of runs into runs twice as long

— three buffer pages used.

>
| 1 | INPUT 1
| : INPUT 2
v
Disk

OUTPUT

I
7

Main memory buffers

Prakash 2018 VT CS 4604

62

MVirginiaTech
Two-Way External Merge Sort

3.4 (6,2 [9.4] [87] [56] [34] [2] B input ile
= Each pass we read +] T | | Ppasso

. . . 3.4| (2,6] 4.9 [7.8] |5.6] [1.3] | 2 - 1-page runs
write each page in file.

Prakash 2018

MVirginiaTech
Two-Way External Merge Sort

- Input file

3.4/ (62| 94| [8,7] |56 [3.1

= Each pass we read + — 14—

+— PASS 0
. . . 3.4| |2,6] (4,9 |7.8 |5.6/ |13 1-page runs
write each page infile. | == =~

“— PASS 1
2.3 4.7 1,3 2-page runs
4.6 8,9 5»,6 .

IN [N

Prakash 2018

MVirginiaTech
Two-Way External Merge Sort

- Input file

3.4| (6,2] 19.4| (8,7 |5.6] 3.1
= Each pass we read + — 14—

+— PASS 0
. . . 3.4| |2,6] (4,9 |7.8 |5.6/ |13
write each page in file.

(N [N

1-page runs
V4

N N7 N7 “— PpASS 1
2.3 4,7 1,3 E

2-page runs

4.6 8,9 5,6
. o PASS 2
4.4 1.2

4-page runs
6.7 3,5

Prakash 2018

MVirginiaTech
Two-Way External Merge Sort

34 |62 9.4 8.7 5.6 3.1 B inputiile
= Each pass we read +] T | | Ppasso
. . . 3.4| |2,6] (4,9 |7.8 |5.6] 13| | 2 1-page runs
write each page infile. S =" i1
2.3 4.7 1,3 2-page runs
4.6 8,9 5,6
. PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
1,2
2,3
3.4 8-page runs
4,5
6,6
7,8
Prakash 2018 VT CS 4604 9 66

MVirginiaTech

Two-Way External Merge Sort

= Each pass we read + write

each page in file.

= N pagesin the file =>
= [log2 N] +1

= So total cost is:

2N(|'10g2 N" + 1)

" |/dea: Divide and conquer:
sort subfiles and merge

Prakash 2018

3,4 16,2 0.4 (87 |56 3.1 B inputiile
| PASSO
3.4| (2.6 49| (7.8 [5.6] [1,3] [2 1-page runs
\\ // \\ // \M/ \ / PASS 1
2.3 4.7 1,3 E 2-page runs
4.6 8,9 5,6
N PASS 2
4.4 1.2 4-page runs
6,7 3,5
8.9 6
\-/ PASS 3
1,2
2,3
3.4 8-page runs
4.5
6,6
7,8
VT CS 4604 9 67

MVirginiaTech

External merge sort

B > 3 buffers
= Q1: how to sort?
m (Q2: cost?

Prakash 2018 VT CS 4604

68

MVirginiaTech

General External Merge Sort

B>3 buffer pages. How to sort a file with N pages?

Disk

Prakash 2018

B Main memory buffers

VT CS 4604

69

WVirginiaTech
General External Merge Sort

— Pass 0: use B buffer pages. Produce [N/ B] sorted runs
of B pages each.

- Pass 1, 2, ..., etc.: merge B-1 runs.

< > INPUT 1 < >
_// >

I I | |
| | » INPUT 2 \
\ . | |

OUTPUT ,
.~ | TinNPuT B-1 ~

Disk B Main memory buffers Disk

Prakash 2018 VT CS 4604 70

MVirginiaTech
Sorting

— create sorted runs of size B (how many?)
— merge them (how?)

HRNi
]

Prakash 2018 VT CS 4604

71

MVirginiaTech

Sorting

— create sorted runs of size B

— merge first B-1 runs into a sorted run of
(B-1) *B, ...

e | L
R

R

Prakash 2018 VT CS 4604

MVirginiaTech
Sorting

— How many steps we need to do?
‘i, where B*(B-1)"i>N
— How many reads/writes per step? N+N

HRNi
ENEE

Prakash 2018 VT CS 4604

MVirginiaTech
Cost of External Merge Sort

* Number of passes: 1+[log, [N/ B]]
" Cost=2N * (# of passes)

Prakash 2018 VT CS 4604 74

MVirginiaTech
Cost of External Merge Sort

" E.g., with 5 buffer pages, to sort 108 page
file:
— Pass0: [108/ 5% 22 sorted runs of 5 pages
each (last run is only 3 pages)

- Pass1: [22/4T6 sorted runs of 20 pages
each (last run is only 8 pages)

— Pass 2: 2 sorted runs, 80 pages and 28 pages
— Pass 3: Sorted file of 108 pages

Formula check: Tlog, 22'=3 ...+ 1 = 4 passes V

Prakash 2018 VT CS 4604

75

MVirginiaTech

Number of Passes of External Sort

(1/0 cost is 2N times number of passes)

N B=3 |B=5 |B=9 |B=17 |B=129|B=257
100 7 4 3 2 1 1
1,000 10 | 5 4 3 2 2
10,000 13 | 7 5 4 2 2
100,000 17 | 9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 4 3
100,000,000 | 26 | 14 9 7 4 4
1,000,000,000| 30 | 15 10 8 5 4

Prakash 2018

VT CS 4604

76

WVirginiaTech

Internal Sort Algorithm

" Quicksort is a fast way to sort in memory.

Prakash 2018 VT CS 4604 77

MVirginiaTech
Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

Prakash 2018 VT CS 4604

78

MVirginiaTech

Blocked 1/0 & double-buffering

= So far, we assumed random disk access

= Cost changes, if we consider that runs are
written (and read) sequentially

=" What could we do to exploit it?

= Al: Blocked I/O (exchange a few r.d.a for
several sequential ones)

= A2: double-buffering

Prakash 2018 VT CS 4604 79

MVirginiaTech
Double Buffering

* To reduce wait time for I/O request to

complete, can prefetch into shadow
block’ .

— Potentially, more passes; in practice, most files
still sorted in 2-3 passes.

INPUT 1

~ INPUT 2

Ea——
ey 21 Ol
o 0 0 b
m block size
INPUT K]

Prakash 2018 VT CS 4604

80

MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered
— B+ tree is not clustered

Prakash 2018 VT CS 4604 81

[MVirginiaTech
Using B+ Trees for Sorting

= Scenario: Table to be sorted has B+ tree index on
sorting column(s).

" /dea: Can retrieve records in order by traversing
leaf pages.

" /s this a good idea?

= Cases to consider:
— B+ tree is clustered Good ideal!
— B+ tree is not clustered Could be a very bad idea!

Prakash 2018 VT CS 4604 82

MVirginiaTech
Clustered B+ Tree Used for Sorting

= Cost: root to the left- Index
most leaf, then (Directs search)
retrieve all leaf pages

T e Data Entries

TR TR TR NN TR TR

Rt ("Sequence set")

LT L T T L L T T

Nl SN

Data Records

(Alternative 1)

Always better than external sorting!

Prakash 2018 VT CS 4604 83

WVirginiaTech
Unclustered B+ Tree Used for Sorting

= Alternative (2) for data entries; each data
entry contains rid of a data record. In
general, one I/O per data record!

Index
(Directs search)

e Data Entries
kX -.-..::.. (!!Sequence Set")

Data Records

Prakash 2018 84

MVirginiaTech
External Sorting vs. Unclustered Inde»

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 {100,000 |1,000,000 {10,000,000
1,000,000 |8,000,000 {1,000,000 (10,000,000 {100,000,000
10,000,000 80,000,000 {10,000,000 {100,000,000 |{1,000,000,000

p: # of records per page
B=1,000 and block size=32 for sorting
Prakash 2018 p=100 is the more realistic value.

MVirginiaTech
Summary

" External sorting is important

= External merge sort minimizes disk 1/O cost:
— Pass 0: Produces sorted runs of size B (# buffer
pages).
— Later passes: merge runs.
= Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

