
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#8:	Storing	data	and	Indexes	



Annoucements	

§  Extra	office	hours	till	midterm		
– Check	Piazza	post	
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STORING	DATA	
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DBMS	Layers:	

Query Optimization 
and Execution 

Relational Operators 

Files and Access Methods 

Buffer Management 

Disk Space Management 

DB 

Queries	

TODAY	à	
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Leverage	OS	for	disk/file	management?	

§  Layers	of	abstraction	are	good	…	but:	
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Leverage	OS	for	disk/file	management?	

§  Layers	of	abstraction	are	good	…	but:	
– Unfortunately,	OS	often	gets	in	the	way	of	
DBMS	
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Leverage	OS	for	disk/file	management?	

§  DBMS	wants/needs	to	do	things	“its	own	
way”	
– Specialized	prefetching	
– Control	over	buffer	replacement	policy	

•  LRU	not	always	best	(sometimes	worst!!)	
– Control	over	thread/process	scheduling	

•  “Convoy	problem”		
– Arises	when	OS	scheduling	conflicts	with	DBMS	
locking	

– Control	over	flushing	data	to	disk	
• WAL	protocol	requires	flushing	log	entries	to	disk	
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Disks	and	Files		

§  DBMS	stores	information																																												
on	disks.	
– but:	disks	are	(relatively)	VERY	
slow!	

§ Major	implications	for	DBMS	
design!	
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Disks	and	Files		

§ Major	implications	for	DBMS	design:	
– READ:	disk	->	main	memory	(RAM).	
– WRITE:	reverse	
– Both	are	high-cost	operations,		relative	to	in-memory	
operations,	so	must	be	planned	carefully!	
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Why	Not	Store	It	All	in	Main	Memory?	
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Why	Not	Store	It	All	in	Main	Memory?	

§  Costs	too	much.		
– disk:	~$1/Gb;	memory:	~$100/Gb		
– High-end	Databases	today	in	the	10-100	TB	
range.	

– Approx	60%	of	the	cost	of	a	production	system	is	
in	the	disks.	

§ Main	memory	is	volatile.	
§  Note:	some	specialized	systems	do	store	
entire	database	in	main	memory.			
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The	Storage	Hierarchy	
Smaller, Faster 

Bigger, Slower 
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The	Storage	Hierarchy	

– Main memory (RAM) for 
currently used data. 

– Disk for the main 
database (secondary 
storage). 

– Tapes for archiving older 
versions of the data 
(tertiary storage). 

 

Smaller, Faster 

Bigger, Slower 

Registers 

L1 Cache 

Main Memory 

Magnetic Disk 

Magnetic Tape 

.	.	.	
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Jim	Gray’s	Storage	Latency	Analogy:			
How	Far	Away	is	the	Data?	

Registers 
On Chip Cache 
On Board  Cache 

Memory  

Disk 

1 
2 

10 

100 

Tape  
  

10 9 

10 6 

Boston 

This Building 

This Room 
My Head 

10 min 

1.5 hr 

2 Years 

1 min 

Pluto 

2,000 Years 

The image cannot be displayed. Your 
computer may not have enough memory 
to open the image, or the image may have 
been corrupted. Restart your computer, 
and then open the file again. If the red x 
still appears, you may have to delete the 
image and then insert it again.

The image 
cannot be 
displayed. Your 
computer may 
not have 

The image 
cannot be 
displayed. Your 
computer may 
not have enough 

Andromeda 
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Disks	
§  Secondary	storage	device	of	choice.		
§ Main	advantage	over	tapes:		random	access	
vs.	sequential.	

§  Data	is	stored	and	retrieved	in	units	called	
disk	blocks	or	pages.	

§  Unlike	RAM,	time	to	retrieve	a	disk	page	
varies	depending	upon	location	on	disk.			
–  relative	placement	of	pages	on	disk	is	important!	
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Anatomy	of	a	Disk		

Platters 

Spindle 

•  Sector 
•  Track 
•  Cylinder 
•  Platter 
•  Block size = multiple 
of sector size (which is 
fixed) 

Disk head 

Arm movement 

Arm assembly 

Tracks 

Sector 
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Accessing	a	Disk	Page	

§  Time	to	access	(read/write)	a	disk	block:	
–  .	
–  .	
–  .	
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Accessing	a	Disk	Page	

§  Time	to	access	(read/write)	a	disk	block:	
– seek	time:	moving	arms	to	position	disk	head	
on	track	

–  rotational	delay:	waiting	for	block	to	rotate	
under	head	

–  transfer	time:	actually	moving	data	to/from	
disk	surface	
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Accessing	a	Disk	Page	

§  Relative	times?	
– seek	time:		
–  rotational	delay:		
–  transfer	time:	
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Accessing	a	Disk	Page	

§  Relative	times?	
– seek	time:	about	1	to	20msec		
–  rotational	delay:	0	to	10msec		
–  transfer	time:	<	1msec	per	4KB	page	

Transfer 

Seek 

Rotate 

transfer	
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Seek	time	&	rotational	delay	dominate	

§  Key	to	lower	I/O	cost:																																																									
reduce	seek/rotation	delays!																																															

§  Also	note:	For	shared	disks,	much	time	
spent	waiting	in	queue	for	access	to	
arm/controller	

Seek 

Rotate 

transfer	
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Arranging	Pages	on	Disk	

§  “Next” block	concept:			
– blocks	on	same	track,	followed	by	
– blocks	on	same	cylinder,	followed	by	
– blocks	on	adjacent	cylinder	

§  Accesing	‘next’	block	is	cheap	
§  A	useful	optimization:	pre-fetching	

– See	textbook	page	323	
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Rules	of	thumb…	

1. Memory	access	much	faster	than	disk	I/O								
(~	1000x)	

§  “Sequential”	I/O	faster	than	“random”	I/O									
(~	10x)	
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Conclusions---Storing	

§ Memory	hierarchy	
§  Disks:	(>1000x	slower)	-	thus	

– pack	info	in	blocks	
–  try	to	fetch	nearby	blocks	(sequentially)	
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TREE	INDEXES	
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Declaring	Indexes	

§  No	standard!	
§  Typical	syntax:	
CREATE INDEX StudentsInd ON 
Students(ID); 

CREATE INDEX CoursesInd ON 
Courses(Number, DeptName); 
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Types	of	Indexes	

§  Primary:	index	on	a	key	
– Used	to	enforce	constraints	

§  Secondary:	index	on	non-key	attribute	
§  Clustering:	order	of	the	rows	in	the	data	pages	
correspond	to	the	order	of	the	rows	in	the	index	
– Only	one	clustered	index	can	exist	in	a	given	table	
– Useful	for	range	predicates	

§  Non-clustering:	physical	order	not	the	same	as	
index	order	
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Using	Indexes	(1):	Equality	Searches	

§  Given	a	value	v,	the	index	takes	us	to	only	
those	tuples	that	have	v		in	the	attribute(s)	of	
the	index.	

§  E.g.		(use	CourseInd	index)		
SELECT Enrollment FROM Courses 
WHERE Number = “4604” and 
DeptName = “CS” 
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Using	Indexes	(1):	Equality	Searches	

§  Given	a	value	v,	the	index	takes	us	to	only	
those	tuples	that	have	v		in	the	attribute(s)	of	
the	index.	

§  Can	use	Hashes,	but	see	next 
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Using	Indexes	(2):	Range	Searches	

§  ``Find	all	students	with	gpa	>	3.0’’	
§  may	be	slow,	even	on	sorted	file	
§  Hashes	not	a	good	idea!		
§ What	to	do?	
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Page 1 Page 2 Page N Page 3 Data File 
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Range	Searches	

§  ``Find	all	students	with	gpa	>	3.0’’	
§  may	be	slow,	even	on	sorted	file	
§  Solution:		Create	an	`index’	file.	
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Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 Index File 
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Range	Searches	

§ More	details:	
§  if	index	file	is	small,	do	binary	search	there	
§  Otherwise??	
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Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 Index File 
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B-trees	

§  the	most	successful	family	of	index	schemes	
(B-trees,	B+-trees,	B*-trees)	

§  Can	be	used	for	primary/secondary,	
clustering/non-clustering	index.	

§  balanced	“n-way”	search	trees	
§  Original	Paper:	Rudolf	Bayer	and	McCreight,	E.	
M.	Organization	and	Maintenance	of	Large	
Ordered	Indexes.	Acta	Informatica	1,	173-189,	
1972.	
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B-trees	

§  Eg.,	B-tree	of	order	d=1:	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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B	-	tree	properties:	

§  each	node,	in	a	B-tree	of	order	d:	
– Key	order	
– at	most	n=2d	keys	
– at	least	d	keys	(except	root,	which	may	have	just	1	
key)	

– all	leaves	at	the	same	level	
–  if	number	of	pointers	is	k,	then	node	has	exactly	
k-1	keys	

–  (leaves	are	empty)	
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v1	 v2	 …	 vn-1	

p1	 pn	
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Properties	

§  “block	aware”	nodes:	each	node	is	a	disk	page	
§  O(log	(N))	for	everything!	(ins/del/search)	
§  typically,	if	d	=	50	-	100,	then	2	-	3	levels	
§  utilization	>=	50%,	guaranteed;	on	average	
69%	
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Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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JAVA	animation	

§  http://slady.net/java/bt/	

Prakash	2018	 VT	CS	4604	 38	



Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

H	steps	(=	disk	
accesses)	

42	



Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8	)	
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Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8	)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8	)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8	)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8	)	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Variations	

§  How	could	we	do	even	better	than	the	B-trees	
above?	
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B+	trees	-	Motivation	

§  B-tree	–	print	keys	in	sorted	order:	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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B+	trees	-	Motivation	

§  B-tree	needs	back-tracking	–	how	to	avoid	it?	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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B+	trees	-	Motivation	

§  Stronger	reason:	for	clustering	index,	data	
records	are	scattered:	
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1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	
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Solution:	B+	-	trees		

§  facilitate	sequential	ops	
§  They	string	all	leaf	nodes	together		
§  AND	
§  replicate	keys	from	non-leaf	nodes,	to	make	
sure	every	key	appears	at	the	leaf	level	

§  (vital,	for	clustering	index!)	
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B+	trees	
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1	 3	

6	

6	

9	

9	

<6	

>=6	 <9	
>=9	

7	 13	

53	



B+	trees	
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1	 3	

6	

6	

9	

9	

<6	

>=6	 <9	
>=9	

7	 13	

Index	Pages	

Data	Pages	
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B+	trees	

§ More	details:	next	(and	textbook)	
§  In	short:	on	split	

– at	leaf	level:	COPY	middle	key	upstairs	
– at	non-leaf	level:	push	middle	key	upstairs	(as	in	
plain	B-tree)	
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Example	B+	Tree	

§  Search	begins	at	root,	and	key	comparisons	
direct	it	to	a	leaf		

§  Search	for	5*,	15*,	all	data	entries	>=	24*	...	
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 Based on the search for 15*, we know it is not in the tree! 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 
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Inserting	a	Data	Entry	into	a	B+	Tree	

§  Find	correct	leaf	L.		
§  Put	data	entry	onto	L.	

–  If	L	has	enough	space,	done!	
– Else,	must	split		L	(into	L	and	a	new	node	L2)	

•  Redistribute	entries	evenly,	copy	up	middle	key.	

§  parent	node	may	overflow	
– but	then:	push	up	middle	key.	Splits	“grow”	tree;	
root	split	increases	height.			
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Example	B+	Tree	–	Inserting	30*	
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Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 
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Example	B+	Tree	–	Inserting	30*	
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Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 30*	
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Example	B+	Tree	-	Inserting	8*	
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Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 
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Example	B+	Tree	-	Inserting	8*	
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Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 

No	Space	
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Example	B+	Tree	-	Inserting	8*	
Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8* 

13 17 24 

5* 

So	Split!	
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Example	B+	Tree	-	Inserting	8*	
Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8* 

13 17 24 

5* 

So	Split!	

And	then	
push	middle	
UP	
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Example	B+	Tree	-	Inserting	8*	
Root 

17 24 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 

13 

23* 

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8* 

5	 13 17 24 

5* 

<5	 >=5	

Final	State	
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Example	B+	Tree	-	Inserting	21*	
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2* 3* 

Root 

5 

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 

13 17 24 

23* 

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 23* 
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Example	B+	Tree	-	Inserting	21*	
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2* 3* 

Root 

5 

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 

13 17 24 

23* 

2* 3* 14* 16* 19* 20* 24* 27* 29* 7* 5* 8* 21* 22* 23* 

17 21 24 13 5 Root	is	Full,	so	split	
recursively	
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Example	B+	Tree:	Recursive	split	
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•  Notice that root was also split, increasing height. 

2* 3* 

Root 

17 

21 24 

14* 16* 19* 20* 21* 22* 23* 24* 27* 29* 

13 5 

7* 5* 8* 
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Example:	Data	vs.	Index	Page	Split	

§  leaf:	‘copy’	
§  non-leaf:	‘push’	

§  why	not	‘copy’	
@	non-leaves?	

2* 3* 5* 7* 8* 

5 

5 21 24 

17 

13 

… 
2* 3* 5* 7* 

17 21 24 13 

Data 
Page 
Split 

Index 
Page 
Split 

8* 

5 
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Same	Inserting	21*:	The	Deferred	
Split	
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2* 3* 

Root 

5 

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 

13 17 24 

23* 

Note	this	has	free	
space.	So…	
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Inserting	21*:	The	Deferred	Split	
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2* 3* 

Root 

5 

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 

13 17 24 

23* 

LEND	keys	to	
sibling,	through	
PARENT!	

2* 3* 

Root 

5 

14* 16* 19* 20* 21* 23* 24* 27* 7* 5* 8* 

13 17 23 

22* 29* 
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Inserting	21*:	The	Deferred	Split	
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2* 3* 

Root 

5 

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 

13 17 24 

23* 

Shorter,	more	
packed,	faster	tree	

2* 3* 

Root 

5 

14* 16* 19* 20* 21* 23* 24* 27* 7* 5* 8* 

13 17 23 

22* 29* 

71	



Insertion	examples	for	you	to	try	
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2* 3* 

Root 

30 

14* 16* 21* 22* 23* 

13 5 

7* 5* 8* 

20 … (not shown) 

11* 

Insert the following data entries (in order): 28*, 6*, 25* 

72	



Answer…	
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2* 3* 

30 

7* 8* 14* 16* 

7 5 

6* 5* 

13 … 

After inserting 28*, 6* 

After inserting 25* 

21* 22* 23* 28* 

20 

11* 
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Answer…	
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2* 3* 

13 

20 23 

7* 8* 14* 16* 21* 22* 23* 25* 28* 

7 5 

6* 5* 

30 

… 

11* 

After inserting 25* 
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Deleting	a	Data	Entry	from	a	B+	Tree	

§  Start	at	root,	find	leaf	L	where	entry	belongs.	
§  Remove	the	entry.	

–  If	L	is	at	least	half-full,	done!		
–  If	L	underflows	

•  Try	to	re-distribute,	borrowing	from	sibling	(adjacent	
node	with	same	parent	as	L).	

•  If	re-distribution	fails,	merge	L	and	sibling.	
–  update	parent	
–  and	possibly	merge,	recursively	
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Deletion	from	B+Tree	
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2* 3* 

Root 
17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 
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Example:	Delete	19*	&	20*	

Deleting	19*	
is	easy:	

2* 3* 

Root 
17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

2* 3* 

Root 
17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

20* 22* 

•  Deleting	20*	->	re-distribution	(notice:	
27	copied	up)	

1 2 

3 
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2* 3* 

Root 
17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

								...	And	Then	Deleting	24*	

2* 3* 

Root 
17 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 27* 

30 

29* 

•  Must	merge	leaves:	OPPOSITE	of	insert	

3 

4 
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2* 3* 

Root 
17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

								...	And	Then	Deleting	24*	

2* 3* 

Root 
17 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 27* 

30 

29* 

•  Must	merge	leaves:	OPPOSITE	of	insert	

…	but	are	we	done??	

3 

4 
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	...	Merge	Non-Leaf	Nodes,	Shrink	
Tree	
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2* 3* 

Root 
17 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 27* 

30 

29* 

4 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 

Root 
30 13 5 17 

5 
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Example	of	Non-leaf	Re-distribution	

§  Tree	is	shown	below	during	deletion	of	24*.		
§  Now,	we	can	re-distribute	keys	
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Root 

13 5 17 20 

22 

30 

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2* 
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After	Re-distribution	

§  need	only	re-distribute	‘20’;	did	‘17’,	too	
§  why	would	we	want	to	re-distribute	more	
keys?	Ans:	reduces	likelihood	of	split	(see	
Book,	pg.	356)	
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14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3* 

Root 

13 5 

17 

30 20 22 
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Main	observations	for	deletion	

§  If	a	key	value	appears	twice	(leaf	+	nonleaf),	
the	above	algorithms	delete	it	from	the	leaf,	
only		

§  why	not	non-leaf,	too?	
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Main	observations	for	deletion	

§  If	a	key	value	appears	twice	(leaf	+	nonleaf),	
the	above	algorithms	delete	it	from	the	leaf,	
only		

§  why	not	non-leaf,	too?	
§  ‘lazy	deletions’	-	in	fact,	some	vendors	just	
mark	entries	as	deleted	(~	underflow),	
– and	reorganize/compact	later	
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Recap:	main	ideas	

§  on	overflow,	split	(and	‘push’,	or	‘copy’)	
– or	consider	deferred	split	

§  on	underflow,	borrow	keys;	or	merge	
– or	let	it	underflow...	
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B+	Trees	in	Practice	

§  Typical	order:	100.		Typical	fill-factor:	67%.	
– average	fanout	=	2*100*0.67	=	134	

§  Typical	capacities:	
– Height	4:	1334	=	312,900,721	entries	
– Height	3:	1333	=				2,406,104	entries	
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B+	Trees	in	Practice	

§  Can	often	keep	top	levels	in	buffer	pool:	
– Level	1	=											1	page	=					8	KB	
– Level	2	=						134	pages	=					1	MB	
– Level	3	=		17,956	pages	=	140	MB	
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Bulk	Loading	of	a	B+	Tree	

§  In	an	empty	tree,	insert	many	keys	
§ Why	not	one-at-a-time?	

– Too	slow!	
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Bulk	Loading	of	a	B+	Tree	

§  Initialization:		Sort	all	data	entries	
§  scan	list;	whenever	enough	for	a	page,	pack	
§  <repeat	for	upper	level>	
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3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 

89	



Prakash	2018	 VT	CS	4604	

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  
not yet in B+ tree 35 23 12 6 

10 20 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 

10 

12 23 

20 

35 

38 

not yet in B+ tree 
Data entry pages  

Bulk	Loading	of	a	B+	Tree	

#90	



A	Note	on	`Order’	

§  Order	(d)	concept	replaced	by	physical	space	
criterion	in	practice	(`at	least	half-full’).	

§ Many	real	systems	are	even	sloppier	than	this:	
they	allow	underflow,	and	only	reclaim	space	
when	a	page	is	completely	empty.	

§  (what	are	the	benefits	of	such	‘slopiness’?)	
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Conclusions	

§  B+tree	is	the	prevailing	indexing	method		
§  Excellent,	O(logN)	worst-case	performance	for	
ins/del/search;	(~3-4	disk	accesses	in	practice)	

§  guaranteed	50%	space	utilization;	avg	69%	
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Conclusions	

§  Can	be	used	for	any	type	of	index:	primary/
secondary,	sparse	(clustering),	or	dense	(non-
clustering)	

§  Several	fine-extensions	on	the	basic	algorithm	
– deferred	split;		
– bulk-loading	
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