
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#8:	Storing	data	and	Indexes	

Annoucements	

§  Extra	office	hours	till	midterm		
– Check	Piazza	post	

Prakash	2018	 VT	CS	4604	 2	

STORING	DATA	

Prakash	2018	 VT	CS	4604	 3	

Prakash	2018	 VT	CS	4604	

DBMS	Layers:	

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Queries	

TODAY	à	

4	

Prakash	2018	 VT	CS	4604	

Leverage	OS	for	disk/file	management?	

§  Layers	of	abstraction	are	good	…	but:	

5	

Prakash	2018	 VT	CS	4604	

Leverage	OS	for	disk/file	management?	

§  Layers	of	abstraction	are	good	…	but:	
– Unfortunately,	OS	often	gets	in	the	way	of	
DBMS	

6	

Prakash	2018	 VT	CS	4604	

Leverage	OS	for	disk/file	management?	

§  DBMS	wants/needs	to	do	things	“its	own	
way”	
– Specialized	prefetching	
– Control	over	buffer	replacement	policy	

•  LRU	not	always	best	(sometimes	worst!!)	
– Control	over	thread/process	scheduling	

•  “Convoy	problem”		
– Arises	when	OS	scheduling	conflicts	with	DBMS	
locking	

– Control	over	flushing	data	to	disk	
• WAL	protocol	requires	flushing	log	entries	to	disk	

7	

Prakash	2018	 VT	CS	4604	

Disks	and	Files		

§  DBMS	stores	information																																												
on	disks.	
– but:	disks	are	(relatively)	VERY	
slow!	

§ Major	implications	for	DBMS	
design!	

8	

Prakash	2018	 VT	CS	4604	

Disks	and	Files		

§ Major	implications	for	DBMS	design:	
– READ:	disk	->	main	memory	(RAM).	
– WRITE:	reverse	
– Both	are	high-cost	operations,		relative	to	in-memory	
operations,	so	must	be	planned	carefully!	

9	

Prakash	2018	 VT	CS	4604	

Why	Not	Store	It	All	in	Main	Memory?	

10	

Prakash	2018	 VT	CS	4604	

Why	Not	Store	It	All	in	Main	Memory?	

§  Costs	too	much.		
– disk:	~$1/Gb;	memory:	~$100/Gb		
– High-end	Databases	today	in	the	10-100	TB	
range.	

– Approx	60%	of	the	cost	of	a	production	system	is	
in	the	disks.	

§ Main	memory	is	volatile.	
§  Note:	some	specialized	systems	do	store	
entire	database	in	main	memory.			

11	

Prakash	2018	 VT	CS	4604	

The	Storage	Hierarchy	
Smaller, Faster

Bigger, Slower

12	

Prakash	2018	 VT	CS	4604	

The	Storage	Hierarchy	

– Main memory (RAM) for
currently used data.

– Disk for the main
database (secondary
storage).

– Tapes for archiving older
versions of the data
(tertiary storage).

Smaller, Faster

Bigger, Slower

Registers

L1 Cache

Main Memory

Magnetic Disk

Magnetic Tape

.	.	.	

13	

Prakash	2018	 VT	CS	4604	

Jim	Gray’s	Storage	Latency	Analogy:			
How	Far	Away	is	the	Data?	

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape

10 9

10 6

Boston

This Building

This Room
My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

The image cannot be displayed. Your
computer may not have enough memory
to open the image, or the image may have
been corrupted. Restart your computer,
and then open the file again. If the red x
still appears, you may have to delete the
image and then insert it again.

The image
cannot be
displayed. Your
computer may
not have

The image
cannot be
displayed. Your
computer may
not have enough

Andromeda

14	

Prakash	2018	 VT	CS	4604	

Disks	
§  Secondary	storage	device	of	choice.		
§ Main	advantage	over	tapes:		random	access	
vs.	sequential.	

§  Data	is	stored	and	retrieved	in	units	called	
disk	blocks	or	pages.	

§  Unlike	RAM,	time	to	retrieve	a	disk	page	
varies	depending	upon	location	on	disk.			
–  relative	placement	of	pages	on	disk	is	important!	

15	

Prakash	2018	 VT	CS	4604	

Anatomy	of	a	Disk		

Platters

Spindle

•  Sector
•  Track
•  Cylinder
•  Platter
•  Block size = multiple
of sector size (which is
fixed)

Disk head

Arm movement

Arm assembly

Tracks

Sector

#16	

Prakash	2018	 VT	CS	4604	

Accessing	a	Disk	Page	

§  Time	to	access	(read/write)	a	disk	block:	
–  .	
–  .	
–  .	

17	

Prakash	2018	 VT	CS	4604	

Accessing	a	Disk	Page	

§  Time	to	access	(read/write)	a	disk	block:	
– seek	time:	moving	arms	to	position	disk	head	
on	track	

–  rotational	delay:	waiting	for	block	to	rotate	
under	head	

–  transfer	time:	actually	moving	data	to/from	
disk	surface	

18	

Prakash	2018	 VT	CS	4604	

Accessing	a	Disk	Page	

§  Relative	times?	
– seek	time:		
–  rotational	delay:		
–  transfer	time:	

19	

Prakash	2018	 VT	CS	4604	

Accessing	a	Disk	Page	

§  Relative	times?	
– seek	time:	about	1	to	20msec		
–  rotational	delay:	0	to	10msec		
–  transfer	time:	<	1msec	per	4KB	page	

Transfer

Seek

Rotate

transfer	

20	

Prakash	2018	 VT	CS	4604	

Seek	time	&	rotational	delay	dominate	

§  Key	to	lower	I/O	cost:																																																									
reduce	seek/rotation	delays!																																															

§  Also	note:	For	shared	disks,	much	time	
spent	waiting	in	queue	for	access	to	
arm/controller	

Seek

Rotate

transfer	

21	

Prakash	2018	 VT	CS	4604	

Arranging	Pages	on	Disk	

§  “Next” block	concept:			
– blocks	on	same	track,	followed	by	
– blocks	on	same	cylinder,	followed	by	
– blocks	on	adjacent	cylinder	

§  Accesing	‘next’	block	is	cheap	
§  A	useful	optimization:	pre-fetching	

– See	textbook	page	323	

22	

Prakash	2018	 VT	CS	4604	

Rules	of	thumb…	

1. Memory	access	much	faster	than	disk	I/O								
(~	1000x)	

§  “Sequential”	I/O	faster	than	“random”	I/O									
(~	10x)	

23	

Prakash	2018	 VT	CS	4604	

Conclusions---Storing	

§ Memory	hierarchy	
§  Disks:	(>1000x	slower)	-	thus	

– pack	info	in	blocks	
–  try	to	fetch	nearby	blocks	(sequentially)	

24	

TREE	INDEXES	

Prakash	2018	 VT	CS	4604	 25	

Declaring	Indexes	

§  No	standard!	
§  Typical	syntax:	
CREATE INDEX StudentsInd ON
Students(ID);

CREATE INDEX CoursesInd ON
Courses(Number, DeptName);

Prakash	2018	 VT	CS	4604	 26	

Types	of	Indexes	

§  Primary:	index	on	a	key	
– Used	to	enforce	constraints	

§  Secondary:	index	on	non-key	attribute	
§  Clustering:	order	of	the	rows	in	the	data	pages	
correspond	to	the	order	of	the	rows	in	the	index	
– Only	one	clustered	index	can	exist	in	a	given	table	
– Useful	for	range	predicates	

§  Non-clustering:	physical	order	not	the	same	as	
index	order	

Prakash	2018	 VT	CS	4604	 27	

Using	Indexes	(1):	Equality	Searches	

§  Given	a	value	v,	the	index	takes	us	to	only	
those	tuples	that	have	v		in	the	attribute(s)	of	
the	index.	

§  E.g.		(use	CourseInd	index)		
SELECT Enrollment FROM Courses
WHERE Number = “4604” and
DeptName = “CS”

Prakash	2018	 VT	CS	4604	 28	

Using	Indexes	(1):	Equality	Searches	

§  Given	a	value	v,	the	index	takes	us	to	only	
those	tuples	that	have	v		in	the	attribute(s)	of	
the	index.	

§  Can	use	Hashes,	but	see	next

Prakash	2018	 VT	CS	4604	 29	

Using	Indexes	(2):	Range	Searches	

§  ``Find	all	students	with	gpa	>	3.0’’	
§  may	be	slow,	even	on	sorted	file	
§  Hashes	not	a	good	idea!		
§ What	to	do?	

Prakash	2018	 VT	CS	4604	

Page 1 Page 2 Page N Page 3 Data File

30	

Range	Searches	

§  ``Find	all	students	with	gpa	>	3.0’’	
§  may	be	slow,	even	on	sorted	file	
§  Solution:		Create	an	`index’	file.	

Prakash	2018	 VT	CS	4604	

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1 Index File

31	

Range	Searches	

§ More	details:	
§  if	index	file	is	small,	do	binary	search	there	
§  Otherwise??	

Prakash	2018	 VT	CS	4604	

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1 Index File

32	

B-trees	

§  the	most	successful	family	of	index	schemes	
(B-trees,	B+-trees,	B*-trees)	

§  Can	be	used	for	primary/secondary,	
clustering/non-clustering	index.	

§  balanced	“n-way”	search	trees	
§  Original	Paper:	Rudolf	Bayer	and	McCreight,	E.	
M.	Organization	and	Maintenance	of	Large	
Ordered	Indexes.	Acta	Informatica	1,	173-189,	
1972.	

Prakash	2018	 VT	CS	4604	 33	

B-trees	

§  Eg.,	B-tree	of	order	d=1:	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

34	

B	-	tree	properties:	

§  each	node,	in	a	B-tree	of	order	d:	
– Key	order	
– at	most	n=2d	keys	
– at	least	d	keys	(except	root,	which	may	have	just	1	
key)	

– all	leaves	at	the	same	level	
–  if	number	of	pointers	is	k,	then	node	has	exactly	
k-1	keys	

–  (leaves	are	empty)	

Prakash	2018	 VT	CS	4604	

v1	 v2	 …	 vn-1	

p1	 pn	

35	

Properties	

§  “block	aware”	nodes:	each	node	is	a	disk	page	
§  O(log	(N))	for	everything!	(ins/del/search)	
§  typically,	if	d	=	50	-	100,	then	2	-	3	levels	
§  utilization	>=	50%,	guaranteed;	on	average	
69%	

Prakash	2018	 VT	CS	4604	 36	

Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

37	

JAVA	animation	

§  http://slady.net/java/bt/	

Prakash	2018	 VT	CS	4604	 38	

Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

39	

Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

40	

Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

41	

Queries	

§  Algo	for	exact	match	query?	(eg.,	ssn=8?)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

H	steps	(=	disk	
accesses)	

42	

Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8)	

Prakash	2018	 VT	CS	4604	 43	

Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

44	

Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

45	

Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

46	

Queries	

§  what	about	range	queries?	(eg.,	5<salary<8)	
§  Proximity/	nearest	neighbor	searches?	(eg.,	
salary	~	8)	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

47	

Variations	

§  How	could	we	do	even	better	than	the	B-trees	
above?	

Prakash	2018	 VT	CS	4604	 48	

B+	trees	-	Motivation	

§  B-tree	–	print	keys	in	sorted	order:	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

49	

B+	trees	-	Motivation	

§  B-tree	needs	back-tracking	–	how	to	avoid	it?	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

50	

B+	trees	-	Motivation	

§  Stronger	reason:	for	clustering	index,	data	
records	are	scattered:	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

7	

9	

13	

<6	

>6	 <9	
>9	

51	

Solution:	B+	-	trees		

§  facilitate	sequential	ops	
§  They	string	all	leaf	nodes	together		
§  AND	
§  replicate	keys	from	non-leaf	nodes,	to	make	
sure	every	key	appears	at	the	leaf	level	

§  (vital,	for	clustering	index!)	

Prakash	2018	 VT	CS	4604	 52	

B+	trees	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

6	

9	

9	

<6	

>=6	 <9	
>=9	

7	 13	

53	

B+	trees	

Prakash	2018	 VT	CS	4604	

1	 3	

6	

6	

9	

9	

<6	

>=6	 <9	
>=9	

7	 13	

Index	Pages	

Data	Pages	

54	

B+	trees	

§ More	details:	next	(and	textbook)	
§  In	short:	on	split	

– at	leaf	level:	COPY	middle	key	upstairs	
– at	non-leaf	level:	push	middle	key	upstairs	(as	in	
plain	B-tree)	

Prakash	2018	 VT	CS	4604	 55	

Example	B+	Tree	

§  Search	begins	at	root,	and	key	comparisons	
direct	it	to	a	leaf		

§  Search	for	5*,	15*,	all	data	entries	>=	24*	...	

Prakash	2018	 VT	CS	4604	

 Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

56	

Inserting	a	Data	Entry	into	a	B+	Tree	

§  Find	correct	leaf	L.		
§  Put	data	entry	onto	L.	

–  If	L	has	enough	space,	done!	
– Else,	must	split		L	(into	L	and	a	new	node	L2)	

•  Redistribute	entries	evenly,	copy	up	middle	key.	

§  parent	node	may	overflow	
– but	then:	push	up	middle	key.	Splits	“grow”	tree;	
root	split	increases	height.			

Prakash	2018	 VT	CS	4604	 57	

Example	B+	Tree	–	Inserting	30*	

Prakash	2018	 VT	CS	4604	

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

58	

Example	B+	Tree	–	Inserting	30*	

Prakash	2018	 VT	CS	4604	

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23* 30*	

59	

Example	B+	Tree	-	Inserting	8*	

Prakash	2018	 VT	CS	4604	

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

60	

Example	B+	Tree	-	Inserting	8*	

Prakash	2018	 VT	CS	4604	

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

No	Space	

61	

Prakash	2018	 VT	CS	4604	

Example	B+	Tree	-	Inserting	8*	
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8*

13 17 24

5*

So	Split!	

62	

Prakash	2018	 VT	CS	4604	

Example	B+	Tree	-	Inserting	8*	
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 5* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8*

13 17 24

5*

So	Split!	

And	then	
push	middle	
UP	

63	

Prakash	2018	 VT	CS	4604	

Example	B+	Tree	-	Inserting	8*	
Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 23* 7* 8*

5	 13 17 24

5*

<5	 >=5	

Final	State	

64	

Example	B+	Tree	-	Inserting	21*	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8* 23*

65	

Example	B+	Tree	-	Inserting	21*	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 24* 27* 29* 7* 5* 8* 21* 22* 23*

17 21 24 13 5 Root	is	Full,	so	split	
recursively	

66	

Example	B+	Tree:	Recursive	split	

Prakash	2018	 VT	CS	4604	

•  Notice that root was also split, increasing height.

2* 3*

Root

17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

13 5

7* 5* 8*

67	

Prakash	2018	 VT	CS	4604	

Example:	Data	vs.	Index	Page	Split	

§  leaf:	‘copy’	
§  non-leaf:	‘push’	

§  why	not	‘copy’	
@	non-leaves?	

2* 3* 5* 7* 8*

5

5 21 24

17

13

…
2* 3* 5* 7*

17 21 24 13

Data
Page
Split

Index
Page
Split

8*

5

#68	

Same	Inserting	21*:	The	Deferred	
Split	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

Note	this	has	free	
space.	So…	

69	

Inserting	21*:	The	Deferred	Split	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

LEND	keys	to	
sibling,	through	
PARENT!	

2* 3*

Root

5

14* 16* 19* 20* 21* 23* 24* 27* 7* 5* 8*

13 17 23

22* 29*

70	

Inserting	21*:	The	Deferred	Split	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

5

14* 16* 19* 20* 22* 24* 27* 29* 7* 5* 8*

13 17 24

23*

Shorter,	more	
packed,	faster	tree	

2* 3*

Root

5

14* 16* 19* 20* 21* 23* 24* 27* 7* 5* 8*

13 17 23

22* 29*

71	

Insertion	examples	for	you	to	try	

Prakash	2018	 VT	CS	4604	

2* 3*

Root

30

14* 16* 21* 22* 23*

13 5

7* 5* 8*

20 … (not shown)

11*

Insert the following data entries (in order): 28*, 6*, 25*

72	

Answer…	

Prakash	2018	 VT	CS	4604	

2* 3*

30

7* 8* 14* 16*

7 5

6* 5*

13 …

After inserting 28*, 6*

After inserting 25*

21* 22* 23* 28*

20

11*

73	

Answer…	

Prakash	2018	 VT	CS	4604	

2* 3*

13

20 23

7* 8* 14* 16* 21* 22* 23* 25* 28*

7 5

6* 5*

30

…

11*

After inserting 25*

74	

Deleting	a	Data	Entry	from	a	B+	Tree	

§  Start	at	root,	find	leaf	L	where	entry	belongs.	
§  Remove	the	entry.	

–  If	L	is	at	least	half-full,	done!		
–  If	L	underflows	

•  Try	to	re-distribute,	borrowing	from	sibling	(adjacent	
node	with	same	parent	as	L).	

•  If	re-distribution	fails,	merge	L	and	sibling.	
–  update	parent	
–  and	possibly	merge,	recursively	

Prakash	2018	 VT	CS	4604	 75	

Deletion	from	B+Tree	

Prakash	2018	 VT	CS	4604	 76	

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

1

Prakash	2018	 VT	CS	4604	

Example:	Delete	19*	&	20*	

Deleting	19*	
is	easy:	

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

20* 22*

•  Deleting	20*	->	re-distribution	(notice:	
27	copied	up)	

1 2

3

77	

Prakash	2018	 VT	CS	4604	

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

								...	And	Then	Deleting	24*	

2* 3*

Root
17

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 27*

30

29*

•  Must	merge	leaves:	OPPOSITE	of	insert	

3

4

78	

Prakash	2018	 VT	CS	4604	

2* 3*

Root
17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

								...	And	Then	Deleting	24*	

2* 3*

Root
17

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 27*

30

29*

•  Must	merge	leaves:	OPPOSITE	of	insert	

…	but	are	we	done??	

3

4

79	

	...	Merge	Non-Leaf	Nodes,	Shrink	
Tree	

Prakash	2018	 VT	CS	4604	

2* 3*

Root
17

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 27*

30

29*

4

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root
30 13 5 17

5

80	

Example	of	Non-leaf	Re-distribution	

§  Tree	is	shown	below	during	deletion	of	24*.		
§  Now,	we	can	re-distribute	keys	

Prakash	2018	 VT	CS	4604	

Root

13 5 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2*

81	

After	Re-distribution	

§  need	only	re-distribute	‘20’;	did	‘17’,	too	
§  why	would	we	want	to	re-distribute	more	
keys?	Ans:	reduces	likelihood	of	split	(see	
Book,	pg.	356)	

Prakash	2018	 VT	CS	4604	

14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3*

Root

13 5

17

30 20 22

82	

Main	observations	for	deletion	

§  If	a	key	value	appears	twice	(leaf	+	nonleaf),	
the	above	algorithms	delete	it	from	the	leaf,	
only		

§  why	not	non-leaf,	too?	

Prakash	2018	 VT	CS	4604	 83	

Main	observations	for	deletion	

§  If	a	key	value	appears	twice	(leaf	+	nonleaf),	
the	above	algorithms	delete	it	from	the	leaf,	
only		

§  why	not	non-leaf,	too?	
§  ‘lazy	deletions’	-	in	fact,	some	vendors	just	
mark	entries	as	deleted	(~	underflow),	
– and	reorganize/compact	later	

Prakash	2018	 VT	CS	4604	 84	

Recap:	main	ideas	

§  on	overflow,	split	(and	‘push’,	or	‘copy’)	
– or	consider	deferred	split	

§  on	underflow,	borrow	keys;	or	merge	
– or	let	it	underflow...	

Prakash	2018	 VT	CS	4604	 85	

B+	Trees	in	Practice	

§  Typical	order:	100.		Typical	fill-factor:	67%.	
– average	fanout	=	2*100*0.67	=	134	

§  Typical	capacities:	
– Height	4:	1334	=	312,900,721	entries	
– Height	3:	1333	=				2,406,104	entries	

Prakash	2018	 VT	CS	4604	 86	

B+	Trees	in	Practice	

§  Can	often	keep	top	levels	in	buffer	pool:	
– Level	1	=											1	page	=					8	KB	
– Level	2	=						134	pages	=					1	MB	
– Level	3	=		17,956	pages	=	140	MB	

Prakash	2018	 VT	CS	4604	 87	

Bulk	Loading	of	a	B+	Tree	

§  In	an	empty	tree,	insert	many	keys	
§ Why	not	one-at-a-time?	

– Too	slow!	

Prakash	2018	 VT	CS	4604	 88	

Bulk	Loading	of	a	B+	Tree	

§  Initialization:		Sort	all	data	entries	
§  scan	list;	whenever	enough	for	a	page,	pack	
§  <repeat	for	upper	level>	

Prakash	2018	 VT	CS	4604	

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

89	

Prakash	2018	 VT	CS	4604	

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages
not yet in B+ tree 35 23 12 6

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Bulk	Loading	of	a	B+	Tree	

#90	

A	Note	on	`Order’	

§  Order	(d)	concept	replaced	by	physical	space	
criterion	in	practice	(`at	least	half-full’).	

§ Many	real	systems	are	even	sloppier	than	this:	
they	allow	underflow,	and	only	reclaim	space	
when	a	page	is	completely	empty.	

§  (what	are	the	benefits	of	such	‘slopiness’?)	

Prakash	2018	 VT	CS	4604	 91	

Conclusions	

§  B+tree	is	the	prevailing	indexing	method		
§  Excellent,	O(logN)	worst-case	performance	for	
ins/del/search;	(~3-4	disk	accesses	in	practice)	

§  guaranteed	50%	space	utilization;	avg	69%	

Prakash	2018	 VT	CS	4604	 92	

Conclusions	

§  Can	be	used	for	any	type	of	index:	primary/
secondary,	sparse	(clustering),	or	dense	(non-
clustering)	

§  Several	fine-extensions	on	the	basic	algorithm	
– deferred	split;		
– bulk-loading	

Prakash	2018	 VT	CS	4604	 93	

