

CS 4604: Introduction to Database Management Systems

B. Aditya Prakash Lecture #5: Entity/Relational Models---Part 1

E/R: NOT IN BOOK!

- IMPORTANT:
 - Follow only lecture slides for this topic!
 - Differences from the book:
 - More details
 - Slightly different notation

- Also, Handout 2 is out (practice for E/R).
- Will discuss questions in class next week.

Database Design

- Requirements Analysis
- Conceptual Design
- Logical Design
- Schema Refinement
- Physical Design
- Security Design

user's needs high level (E/R) tables (schema) normalization indices etc. access controls

Database Design

- Requirements Analysis
- Conceptual Design
- Logical Design
- Schema Refinement
- Physical Design
- Security Design

user's needs **high level (E/R)** tables (schema) normalization indices etc. access controls

WirginiaTech Basic Database Terminology

- Data model : describes high-level conceptual structuring of data
 - Example: Data is set of student records, each with ID, name, address, and courses
 - Example: Data is a graph where nodes represent people and edges represent friendship relations
- Schema describes how data is to be structured and stored in a database
 - Defined during creation of the database
 - Schemas rarely change
- Data is actual "instance" of database
 - Updated continuously
 - Changes rapidly

Why Learn About Database Modeling?

- The way in which data is stored is very important for subsequent access and manipulation by SQL.
- Properties of a good data model:
 - It is easy to write correct and easy to understand queries.
 - Minor changes in the problem domain do not change the schema.
 - Major changes in the problem domain can be handled without too much difficulty.
 - Can support efficient database access.

Purpose of E/R Model

- The E/R model allows us to sketch the design of a database informally.
 - Represent different types of data and how they relate to each other
- Designs are drawings called *entity-relationship diagrams*.
- Fairly mechanical ways to convert E/R diagrams to real implementations like relational databases exist.

Purpose of E/R Model

- When designing E/R diagrams,
 - forget about relations/tables!
 - only consider how to model the information you need to represent in your database.

Example

 Professors advising students, Students taking courses, Students taught by professors

Tools

Entities ('entity sets')

 Relationships ('rel. sets') and mapping constraints

Attributes

Example

 Professors advising students, Students taking courses, Students taught by professors

Nouns \rightarrow entity sets Verbs \rightarrow relationship sets

Entity Sets

- Entity = "thing" or objects
- Entity set = collection of similar entities.
 - Similar to a class in object-oriented languages.
- Attribute = property of an entity set.
 - Generally, all entities in a set have the same properties.
 - Our convention is to use 'atomic attributes' e.g. integers, character strings etc.
 - FYI: there exist
 - multivalued or set-valued attributes (eg., 'dependents' for EMPLOYEE)
 - derived attributes (eg., 15% tip)

E/R Diagrams

- In an entity-relationship diagram, each entity set is represented by a rectangle.
- Each attribute of an entity set is represented by an oval, with a line to the rectangle representing its entity set.

Example: Entity Sets

Relationships

- A relationship connects two or more entity sets.
- It is represented by a diamond, with lines to each of the entity sets involved.

Don't confuse 'Relationships' with 'Relations'!

Example: Relationships

Instance of an E/R Diagram

An E/R is NOT an implementation of the DB
 Just a notation for specifying structure

 Still useful to think of instance of an E/R Diagram === the particular data stored in a database

Instance of an Entity Set

- For each entity set, the instance stores a specific set of entities
- Each entity is a tuple containing specific values for each attribute
- Example: Instance of Entity set Students

Name	PID	Address
Hermione Grainger	HG	Gryffindor Tower
Draco Malfoy	DM	Slytherin Tower
Harry Potter	HP	Gryffindor Tower
Ron Weasley	RW	Gryffindor Tower

Instance of a Relationship

Example: Instance of relationship Takes (no DeptName)

Student	PID	Address	CourseName	Enrollment	Grade
Hermione Grainger	HG	Gryffindor	Potions	∞	A-
Draco Malfoy	DM	Slytherin	Potions	∞	В
Harry Potter	HP	Gryffindor	Potions	∞	А
Ron Weasley	RW	Gryffindor	Potions	∞	С

Relationship R between (entity sets) E and F

Relates some *entities* in E to some *entities* in F

Instance of a Relationship

- Instance is a set of pairs of tuples (e; f) where e is in E and f is in F
 - Instance need not relate every tuple in E with every tuple in F
 - Relationship set for R: the pairs of tuples (e; f) related by R
- (Conceptually) An instance of R is simply the 'concatentation' of the attribute lists for all pairs of tuples (e; f) in the relationship set for R
- 'Tuples' in R have two components, one from E and one from F

Attributes for a Relationship

- Question: What is Grade an attribute of?
- Such an attribute is a property of the entitypairs in the relationship

Many-Many Relationships

In a many-many relationship, an entity of either set can be connected to many entities of the other set.

Many-One Relationships

- Some binary relationships are many -one from one entity set to another .
- Each entity of the first set is connected to at most one entity of the second set.
- But an entity of the second set can be connected to zero, one, or many entities of the first set.

One-One Relationships

- In a one-one relationship, each entity of either entity set is related to at most one entity of the other set.
- The schema defines the multiplicity of relationships. Don't use the instances of the schema to determine multiplicity.

Representing "Multiplicity"

- Show a many-one relationship by an arrow entering the "one" side.
- Show a one-one relationship by arrows entering both entity sets.

Different kinds of relationships

Exactly one

In some situations, we can also assert "exactly one," i.e., each entity of one set must be related to exactly one entity of the other set.
 To do so, we use a rounded arrow.

Example: Exactly One

- Consider *Best-course* between *Profs* and *Courses*.
- Some courses are not the best-course of any professor, so a rounded arrow to *Profs* would be inappropriate.
- But a professor has to have a best-course

Roles in Relationships

- Can the same entity set appear more than once in the same relationship?
- Prerequisite relationship between two
 Courses

But which course is the pre-req?

Roles in Relationships

Label the connecting lines with the *role* of the entity

Parallel Relationships

- Can there be more than one relationship between the same pair of entities?
- TA and Take relationship between Students and Classes

WirginiaTech Are Attributes on Relationships Needed

Attribute on relationship → Attribute to an entity and make relationship multi-way

Entity vs. attribute

- Entity EMPLOYEE (w/ emp#, name, job_code, ...)
- Q: How about 'spouse' entity or attribute?
- Q: How about 'dependents'?

Entity vs. attribute

- Entity EMPLOYEE (w/ emp#, name, job_code, ...)
- Q: How about 'spouse' entity or attribute?
- A: probably, 'attribute' is enough
- Q: How about 'dependents'?
- A: Entity we may have many dependents

Multi-way Relationships

- Relationships may connect more than 2 entity sets
- >= 1 professor can teach a course but each student evaluates each professor separately
- Three-way Evaluation relationship between Students, Professors, and Classes

Multi-way Relationships

- >= 1 professor can teach a course but each student taught by at most one professor, and each student only evaluates that professor
- Add arrow directed towards Professors

퉳 Virginia Tech

Multiplicity in Multiway Relationships

An arrow pointing to an entity set E => if we select an entity from each of the other entity sets, the selected entities are related to at most one entity in E

 E/R diagram forbids connections between "Hermione Grainger", "Potions" and two different professors.

Binary vs Ternary Rel.

Can a ternary rel. be replaced by binary rels?

Attempt 1

Attempt 1: contd.

- S "can-supply" P, D "needs" P, and D "deals-with" S does not imply that D has agreed to buy P from S.
- How do we record qty?

Attempt 2

Attempt 2: contd

Converting Multiway to Binary

- It is easy to convert a multiway relationship to multiple binary relationships
 - Create a new connecting entity set. Think of its entities as the tuples in the relationship set for the multiway relationship
 - Introduce relationships from the connecting entity set to each of the entities in the original relationship
 - If an entity set plays > 1 role, create a relationship for each role

Converting Multiway to Binary

Converting Multiway to Binary

Not exactly equivalent, but can be made so by additional FDs.

Example of the Conversion

 Instance of Evaluation (ternary) relationship before conversion:

Student	Course	Professor	Grade
Hermione Grainger	Potions	Snape	F-
Draco Malfoy	Potions	Snape	A*
Harry Potter	Potions	Lupin	A+
Ron Weasley	Potions	Lupin	B+

Example of the Conversion

Instance of Evaluation (ternary) relationship before conversion:

Student
Course

VT

After

Evaluation entity set

Eval_Id	Grade
e1	F-
e2	A*
e3	A+
e4	B+

Grade F-Hermione Grainger Potions Snape A* Draco Malfoy Potions Snape Harry Potter Potions Lupin A+Ron Weasley Potions Lupin B+

Student_of entity set

	Eval_Id	<i>al_Id</i> Student	
	e1	Hermione Grainger	
	e2	Draco Malfoy	
	e3	Harry Potter	
C!	e4	Ron Weasley	

Details of the Conversion

- Create an entity in the new Evaluation entity set for each instance (row) in the ternary Evaluation relationship.
- In the Student_of relationship, relate each entity in the Evaluation entity set with the corresponding student entity.
- How many students can the Student_of relationship relate an Evaluation entity to?
 Only one!
- Therefore, the multiplicity of Student_of is many-to-one from Evaluation to Student.

Conversion

🎚 VirginiaTech

Subclasses: Example

 University Employees, Handout 2 (will be released next week)

All employees have a unique ID. In addition to professors, universities also employ staff. The university pays all its employees a salary. Professors come in three flavors: 9-month appointees, calendar year appointees, and research professors. Each 9month appointee and research professor has a grant that pays part of the employee's salary. Calendar year and 9-month professors teach classes while research professors do not.

Subclasses: Example

University Employees, Handout 2 (will be released next week)

All employees have a unique ID. In addition to professors, universities also employ staff. The university pays all its employees a salary. Professors come in three flavors: 9-month appointees, calendar year appointees, and research professors. Each 9-month appointee and research professor has a grant that pays part of the employee's salary. Calendar year and 9-month professors teach classes while research professors do not.

Someone from staff IS A employee A Professor IS A employee A Research Professor IS A Professor A Teacher IS A Professor A 9-month appointee IS A ??

Subclasses: Example

University Employees, Handout 2 (will be released next week)

All employees have a unique ID. In addition to professors, universities also employ staff. The university pays all its employees a salary. Professors come in three flavors: 9-month appointees, calendar year appointees, and research professors. Each 9-month appointee and research professor has a grant that pays part of the employee's salary. Calendar year and 9-month professors teach classes while research professors do not.

Someone from staff IS A employee A Professor IS A employee A Research Professor IS A Professor A Teacher IS A Professor A 9-month appointee IS A Teacher!

Subclasses: Example

• University Employees, Handout 2

Subclasses in the E/R Model

- A subclass of an entity set E is an entity set F such that
 - each entity in F is an entity in E
 - the entity set F must have at least one attribute or participate in at least one relationship that E does not
- Connect E to F using an *isa* relationship denoted by a triangle
- Convention is to draw E above F
- Each *isa* relationship is one-one but we do not draw the arrows.
- The set of *isa* relationships must form a tree.

Subclasses: Example

University Students, Handout 2

Students enrolled in a university can be either undergraduates or graduates. Graduate students can be enrolled either in a Masters or a Ph.D. program. Each graduate student must submit a thesis. The thesis can be uniquely identified by its title. Each student can be a TA for at most one course. Furthermore, a course can have at most one graduate student as a TA (it may have multiple undergraduate TAs).

WirginiaTech Subclasses: Example

University Students, Handout 2

E/R vs. OO Subclasses

- In object-oriented programming languages, each object is in only one class.
 - A subclass inherits variables and methods from the superclasses.
- In an E/R diagram, an entity has components in all the subclasses to which it belongs
 - If an entity e has a component in an subclass, then e has a component in the superclass
 - Does *e* have a component in the root?
 - The attributes of *e* are the union of the attributes of its components
 - *e* participates in all the relationships its components participate in

Components of an Entity

- Prof. Fingers InMany Pies has a 9-month appointment, teaches in one semester every year, and does not teach in the other semester.
- In the other semesters, his research grant pays his salary.
- Which entity sets does he have components in? (using a different *isa* hierarchy than before)

Components of an Entity

- How do we represent students enrolled in combined Bachelors-Masters programs?
- Such a student has components in multiple entity sets

Components of an Entity

Such a student has components in multiple

