
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#4:	SQL---Part	2	

Overview - detailed - SQL

§  DML
§  other parts:
– views
– modifications
–  joins
– DDL
– constraints

Prakash	2018	 VT	CS	4604	 2	

VIEWS	

Prakash	2018	 VT	CS	4604	 3	

Views	
§  A	view	is	a	relation	that	does	not	exist	physically.	

§  A	view	is	defined	by	a	query	over	other	relations	(tables	
and/or	views).	

§  Just	like	a	table,	a	view	can	be		
–  queried:	the	query	processor	replaces	the	view	by	its	definition.	
–  used	in	other	queries.	

§  Unlike	a	table,	a	view	cannot	be	updated	unless	it	satisfies	
certain	conditions.	

Prakash	2018	 VT	CS	4604	 4	

Example:	View	Definition	
§  CREATE	VIEW	ViewName	AS	Query;	

§  Suppose	we	want	to	perform	a	set	of	queries	on	those	
students	who	have	taken	courses	both	in	the	computer	
science	and	the	mathematics	departments.	

Prakash	2018	 VT	CS	4604	 5	

Example:	View	Definition	
§  Suppose	we	want	to	perform	a	set	of	queries	on	those	students	

who	have	taken	courses	both	in	the	computer	science	and	the	
mathematics	departments.	

§  Let	us	create	a	view	to	store	the	PIDs	of	these	students	and	the	
	CS-Math	course	pairs	they	took.	
	CREATE	VIEW	CSMathStudents	AS	
	 	SELECT	T1.StudentPID,	T1.Number	AS	CSNum,	T2.Number	AS	
MathNum	
	 	FROM	Take	AS	T1,	Take	AS	T2	
	 	WHERE	(T1.StudentPID	=	T2.StudentPID)	
	 	 	AND	(T1.DeptName	=	’CS’)	
	 	 	AND	(T2.DeptName	=	’Math’);	

Prakash	2018	 VT	CS	4604	 6	

Querying	Views	

§  Query	a	view	as	if	it	were	a	base	table.	
§  How	many	students	took	both	CS	and	Math	
courses?		

				SELECT	COUNT(StudentPID)		
				FROM	CSMathStudents	

Prakash	2018	 VT	CS	4604	 7	

Querying	Views	
§  Just	replace	view	by	its	definition	
				SELECT	COUNT(StudentPID)		
				FROM	CSMathStudents	
	
				SELECT	COUNT(StudentPID)		
				FROM		
							(SELECT	T1.StudentPID,	T1.Number	AS	CSNum,	

T2.Number	AS	MathNum	
	 	FROM	Take	AS	T1,	Take	AS	T2	
	 	WHERE	(T1.StudentPID	=	T2.StudentPID)	
	 	 	AND	(T1.DeptName	=	’CS’)	
	 	 	AND	(T2.DeptName	=	’Math’));	

Prakash	2018	 VT	CS	4604	 8	

Modifying	Views	
§  What	does	it	mean	to	modify	a	view?	

§  How	is	tuple	deletion	from	a	view	executed?	

§  Can	we	insert	a	tuple	into	a	view?	Where	will	it	
be	inserted,	since	a	view	does	not	physically	
exist?	

§  Can	we	insert	tuples	into	any	view?	SQL	includes	
rules	that	specify	which	views	are	updatable.	

Prakash	2018	 VT	CS	4604	 9	

Deleting	Views	

§  DROP	VIEW	CSMathStudents;	

§  Like	a	Symbolic	Link:	only	the	view	definition	
is	deleted	

Prakash	2018	 VT	CS	4604	 10	

Deleting	Tuples	from	Views	

§  Delete	tuples	for	students	taking	'CS	4604'.	
				DELETE	FROM	CSMathStudents	
				WHERE	(CSNum	=	4604);	
§  Deletion	is	executed	as	if	were	executing	
			DELETE	FROM	Take	
			WHERE	(Number	=	4604);	
§  Incorrect:	non-CS	tuples	where	(Number	=	
4604)	will	be	deleted.	

?	

Prakash	2018	 VT	CS	4604	 11	

Deleting	Tuples	from	Views	

§  Tuples	only	seen	in	the	view	should	be	
deleted!	

§  Add	conditions	to	the	WHERE	clause	
	
DELETE	FROM	CSMathStudents		
WHERE	(CSNum	=	4604)	AND	(DeptName	=	'CS');	
	

Prakash	2018	 VT	CS	4604	 12	

Inserting	tuples	into	Views	

§  Again,	passed	through	to	the	underlying	
relation	

		INSERT	INTO	CSMathStudents	
		VALUES	('123-45-6789',	4604,	8811);	

§  But	Take	schema	is	(PID,	Number,	Dept)	
– what	should	dept	values	be?	
– NULL?		
			Then	it	is	not	part	of	CSMathStudents!	

	Prakash	2018	 VT	CS	4604	 13	

Inserting	tuples	into	Views	

§  CREATE	VIEW	CSStudents	AS	
			SELECT	StudentPID,	Number	
			FROM	Take	
			WHERE	(DeptName	=	'CS');	

§  INSERT	INTO	CSStudents	
				VALUES	('123-45-6789',	4604);		
	
	

Works?	

Same	
Problem	

Prakash	2018	 VT	CS	4604	 14	

Inserting	tuples	into	Views	

§  Include	DeptName	in	the	view's	schema	
§  CREATE	VIEW	CSStudents	AS	
			SELECT	StudentPID,	DeptName,	Number	
			FROM	Take	
			WHERE	(DeptName	=	'CS');	

§  INSERT	INTO	CSStudents	
				VALUES	('123-45-6789',	'CS',	4604)	

Prakash	2018	 VT	CS	4604	 15	

Updatable	Views	

§  The	idea	is	that	there	must	be	a	one-one	
relationship	between	rows	in	the	view	and	the	
rows	in	the	underlying	table	

	
View		 Table	

Prakash	2018	 VT	CS	4604	 16	

Updatable	Views	

SQL:92	standard:	
§  Defined	by	selecting/projecting	some	
attributes	from	one	relation	R	

§  R	may	itself	be	an	updatable	view.	
§  Use	SELECT	and	not	SELECT	DISTINCT.	
§  FROM	clause	can	contain	only	one	occurrence	
of	R	and	must	not	contain	any	other	relation.	

§  NO	aggregation	operations	
Prakash	2018	 VT	CS	4604	 17	

EXTRA:	NOT	
IN	EXAM	

Materialized	Views	

§  Two	kinds:	
1.   Virtual		=	not	stored	in	the	database;	just	a	query	for	

constructing	the	relation.	
2.  Materialized		=	actually	constructed	and	stored.	
	
WHY?		
–  Some	views	may	be	frequently	used	in	queries.		
–  It	may	be	efficient	to	materialize	such	a	view,	i.e.,	
maintain	its	value		at	all	times	as	a	physical	table	

Prakash	2018	 VT	CS	4604	 18	

Declaring	Views	

§  Declare	by:	
	 	CREATE	[MATERIALIZED]	VIEW		<name>		AS		<query>;	

§  Default	is	virtual.	

Prakash	2018	 VT	CS	4604	 19	

Maintaining	Materializing	Views	

§  Cost?	
– Re-computing	it	when	the	underlying	tables	
change	

– Materialized	view	may	be	much	larger	than	
original	relations,	e.g.,	in	the	case	of	joins	

EXTRA:	NOT	
IN	EXAM	

Prakash	2018	 VT	CS	4604	 20	

Maintaining	Materialized	Views	
§  CREATE	MATERIALIZED	VIEW	CSStudents	AS		
				SELECT	StudentPID,	DeptName,	Number	
				FROM	Take	
				WHERE	(DeptName	=	'CS');	
§  When?	
–  Insertion/deletion/update	of	Take	

§  Cost?	
–  Insertion	of	tuple:	Insert	tuple	into	CSStudents	only	if	new	
tuple	has	DeptName	=	'CS’	

–  Same	for	Deletion	
–  Update?	Delete	followed	by	an	Insert…	

EXTRA:	NOT	
IN	EXAM	

Prakash	2018	 VT	CS	4604	 21	

Maintaining	Materialized	Views	

§  Key	idea	is	that	many	materialized	views	can	
be	updated	incrementally.	

§ More	info:	Sections	25.9,	and	25.10.1	from	
the	textbook	(~3	pages	total)	

EXTRA:	NOT	
IN	EXAM	

Prakash	2018	 VT	CS	4604	 22	

MODIFICATIONS,	JOINS,	DDL	

Prakash	2018	 VT	CS	4604	 23	

Reminder: mini-U db

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2018	 VT	CS	4604	 24	

DML	-	insertions	etc	

insert	into	student	
values	(“123”,	“smith”,	“main”)	
	
insert	into	student(ssn,	name,	address)	
values	(“123”,	“smith”,	“main”)	

Prakash	2018	 VT	CS	4604	 25	

DML	-	insertions	etc	

bulk	insertion:	how	to	insert,	say,	a	table	of	
‘foreign-student’s,	in	bulk?	

Prakash	2018	 VT	CS	4604	 26	

DML	-	insertions	etc	

bulk	insertion:	
	
insert	into	student	
	select	ssn,	name,	address	

			from	foreign-student	

Prakash	2018	 VT	CS	4604	 27	

DML	-	deletion	etc	

delete	the	record	of	‘smith’	
	

Prakash	2018	 VT	CS	4604	 28	

DML	-	deletion	etc	

delete	the	record	of	‘smith’:	
	
delete	from	student	
	where	name=‘smith’	

	
(careful	-	it	deletes	ALL	the	‘smith’s!)	

Prakash	2018	 VT	CS	4604	 29	

DML	-	update	etc	

record	the	grade	‘A’	for	ssn=123	and	course	4604	
	
update	takes	
set	grade=“A”	
where	ssn=“123”	and	c-id=“4604”	
	
(will	set	to	“A”		ALL	such	records)	

Prakash	2018	 VT	CS	4604	 30	

DML	-	joins	

so	far:	‘INNER’	joins,	eg:	
	
select	ssn,	c-name	
from	takes,	class	
where	takes.c-id	=	class.c-id	
	

Prakash	2018	 VT	CS	4604	 31	

DML	-	joins	

Equivalently:	
	
select	ssn,	c-name	
from	takes	join	class	on	takes.c-id	=	class.c-id	
	

Prakash	2018	 VT	CS	4604	 32	

Joins		

select	[column	list]	
from		table_name	
			[inner	|	{left	|	right	|	full}	outer]	join	
				table_name	
				on	qualification_list	
where…	

	

Prakash	2018	 VT	CS	4604	 33	

Inner	join	

SSN c-name
123 s.e
234 s.e o.s.:	gone!	

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

Prakash	2018	 VT	CS	4604	 34	

CLASS
c-id c-name units

4613 s.e. 2
4609 o.s. 2

Outer	join	

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

SSN c-name
123 s.e
234 s.e.
null o.s.

Prakash	2018	 VT	CS	4604	 35	

CLASS
c-id c-name units

4613 s.e. 2
4609 o.s. 2

Outer	join	

SSN c-name
123 s.e
234 s.e.
null o.s.

select	ssn,	c-name	
from	takes	right	outer	join	class	on	takes.c-
id=class.c-id	

Prakash	2018	 VT	CS	4604	 36	

Outer	join	
§  left	outer	join	
§  right	outer	join	
§  full	outer	join	
§  natural	join	

Prakash	2018	 VT	CS	4604	 37	

Null	Values	

§  null	->	unknown,	or	inapplicable,	(or	…)	
§  Complications:	
– 3-valued	logic		(true,	false	and	unknown).	
– null	=	null	:	false!!	

Prakash	2018	 VT	CS	4604	 38	

Overview - detailed - SQL

§  DML
§  other parts:
– views
– modifications
–  joins
– DDL
– constraints

Prakash	2018	 VT	CS	4604	 39	

Data	Definition	Language	

create	table	student	
(ssn	char(9)	not	null,	
		name	char(30),	
		address	char(50),	
primary	key	(ssn))	

Prakash	2018	 VT	CS	4604	 40	

Data	Definition	Language	

create	table	r(A1	D1,	…,	An	Dn,	
				integrity-constraint1,	
				…	
				integrity-constraint-n)	

Prakash	2018	 VT	CS	4604	 41	

Data	Definition	Language	

Domains:	
§  char(n),	varchar(n)	
§  int,	numeric(p,d),	real,	double	precision	
§  float,	smallint	
§  date,	time	

Prakash	2018	 VT	CS	4604	 42	

Data	Definition	Language	

delete	a	table:	difference	between	
			drop	table	student	
	
			delete	from	student	

Prakash	2018	 VT	CS	4604	 43	

Data	Definition	Language	

modify		a	table:		
alter	table	student	drop	address	
	
alter	table	student	add	major	char(10)	

Prakash	2018	 VT	CS	4604	 44	

CONSTRAINTS	

Prakash	2018	 VT	CS	4604	 45	

Data	Definition	Language	

integrity	constraints:	
§  primary	key	
§  foreign	key	
§  check(P)	

Prakash	2018	 VT	CS	4604	 46	

Data	Definition	Language	

create	table	takes	
(ssn	char(9)	not	null,	
		c-id	char(5)	not	null,	
		grade	char(1),	
primary	key	(ssn,	c-id),	
check		grade	in	(“A”,	“B”,	“C”,	“D”,	“F”))	

Prakash	2018	 VT	CS	4604	 47	

Maintaining	Integrity	of	Data	
§  Data	is	dirty.	
§  How	does	an	application	ensure	that	a	database	modification	

does	not	corrupt	the	tables?	

§  Two	approaches:	
–  Application	programs	check	that	database	modifications	are	
consistent.	

–  Use	the	features	provided	by	SQL.	

Prakash	2018	 VT	CS	4604	 48	

Maintaining	Integrity	of	Data	
§  Data	is	dirty.	
§  How	does	an	application	ensure	that	a	database	modification	

does	not	corrupt	the	tables?	

§  Two	approaches:	
–  Application	programs	check	that	database	modifications	are	
consistent.	

–  Use	the	features	provided	by	SQL.	

Prakash	2018	 VT	CS	4604	 49	

Integrity	Checking	in	SQL	
§  PRIMARY	KEY	and	UNIQUE	constraints.	
§  FOREIGN	KEY	constraints.	
§  Constraints	on	attributes	and	tuples.	
§  Triggers	(schema-level	constraints).	

§  How	do	we	express	these	constraints?	
§  How	do	we	check	these	constraints?	
§  What	do	we	do	when	a	constraint	is	violated?	
	

Prakash	2018	 VT	CS	4604	 50	

Keys	in	SQL	

§  A	set	of	attributes	S	is	a	key	for	a	relation	R	if	every	pair	of	
tuples	in	R	disagree	on	at	least	one	attribute	in	S.	

§  Select	one	key	to	be	the	PRIMARY	KEY;	declare	other	keys	
using	UNIQUE.	

Prakash	2018	 VT	CS	4604	 51	

Primary	Keys	in	SQL	
§  Modify	the	schema	of	Students	to	declare	PID	to	be	the	key.	

–  CREATE	TABLE	Students(
	 	 	PID	VARCHAR(8)	PRIMARY	KEY,	
	 	 	Name	CHAR(20),	Address	VARCHAR(255));	

§  What	about	Courses,	which	has	two	attributes	in	its	key?	
–  CREATE	TABLE	Courses(Number	integer,	DeptName:	
	 	 	VARCHAR(8),	CourseName	VARCHAR(255),	Classroom	

	 	 	VARCHAR(30),	Enrollment	integer,		
	 	 	PRIMARY	KEY	(Number,	DeptName)	
);	

	
Prakash	2018	 VT	CS	4604	 52	

Effect	of	Declaring	PRIMARY	KEYs	

§  Two	tuples	in	a	relation	cannot	agree	on	all	the	attributes	in	
the	key.	DBMS	will	reject	any	action	that	inserts	or	updates	a	
tuple	in	violation	of	this	rule.	

§  A	tuple	cannot	have	a	NULL	value	in	a	key	attribute.	

Prakash	2018	 VT	CS	4604	 53	

Other	Keys	in	SQL	
§  If	a	relation	has	other	keys,	declare	them	using	the	UNIQUE	

keyword.	
§  Use	UNIQUE	in	exactly	the	same	places	as	PRIMARY	KEY.	

§  There	are	two	differences	between	PRIMARY	KEY	and	
UNIQUE:	
–  A	table	may	have	only	one	PRIMARY	KEY	but	more	than	one	set	
of	attributes	declared	UNIQUE.	

–  A	tuple	may	have	NULL	values	in	UNIQUE	attributes.	

Prakash	2018	 VT	CS	4604	 54	

Enforcing	Key	Constraints	
§  Upon	which	actions	should	an	RDBMS	enforce	a	key	

constraint?	
§  Only	tuple	update	and	insertion.	
§  RDMBS	searches	the	tuples	in	the	table	to	find	if	any	tuple	

exists	that	agrees	with	the	new	tuple	on	all	attributes	in	the	
primary	key.	

§  To	speed	this	process,	an	RDBMS	automatically	creates	an	
efficient	search	index	on	the	primary	key.	

§  User	can	instruct	the	RDBMS	to	create	an	index	on	one	or	
more	attributes	

Prakash	2018	 VT	CS	4604	 55	

Foreign	Key	Constraints	
§  Referential	integrity	constraint:	in	the	relation	Teach	(that	
“connects”	Courses	and	Professors),	if	Teach	relates	a	course	
to	a	professor,	then	a	tuple	corresponding	to	the	professor	
must	exist	in	Professors.	

§  How	do	we	express	such	constraints	in	Relational	Algebra?	
§  Consider	the	Teach(ProfessorPID,	Number,	DeptName)	

relation.	
	every	non-NULL	value	of	ProfessorPID	inTeach	must	be	a	valid	
ProfessorPID	in	Professors.	

§  RA		πProfessorPID(Teach)								π	PID(Professors).	⊆

Prakash	2018	 VT	CS	4604	 56	

Referential	Integrity	constraints	

‘foreign	keys’	-	eg:	
create	table	takes(
	ssn	char(9)	not	null,	

			c-id	char(5)	not	null,	
			grade	integer,	
			primary	key(ssn,	c-id),	
			foreign	key	ssn	references	student,	
			foreign	key	c-id	references	class)	

	

Prakash	2018	 VT	CS	4604	 57	

Referential	Integrity	constraints	

				…	
foreign	key	ssn	references	student,	
	foreign	key	c-id	references	class)	

Effect:		
– expects	that	ssn	to	exist	in	‘student’	table	
– blocks	ops	that	violate	that	-	how??	

•  insertion?	
•  deletion/update?	

	
Prakash	2018	 VT	CS	4604	 58	

Requirements	for	FOREIGN	KEYs	

§  If	a	relation	R	declares	that	some	of	its	attributes	refer	to	
foreign	keys	in	another	relation	S,	then	these	attributes	must	
be	declared	UNIQUE	or	PRIMARY	KEY	in	S.	

§  Values	of	the	foreign	key	in	R	must	appear	in	the	referenced	
	attributes	of	some	tuple	in	S.	

Prakash	2018	 VT	CS	4604	 59	

Enforcing	Referential	Integrity	
§  Three	policies	for	maintaining	referential	integrity.	

§  Default	policy:	reject	violating	modifications.	

§  Cascade	policy:	mimic	changes	to	the	referenced	attributes	
at	the	foreign	key.	

§  Set-NULL	policy:	set	appropriate	attributes	to	NULL.	

Prakash	2018	 VT	CS	4604	 60	

Default	Policy	for	Enforcing	
Referential	Integrity	

§  Reject	violating	modifications.	There	are	four	cases.	

§  Insert	a	new	Teach	tuple	whose	ProfessorPID	is	not	NULL	and	
is	not	the	PID	of	any	tuple	in	Professors.	

§  Update	the	ProfessorPID	attribute	in	a	tuple	in	Teach	to	a	
value	that	is	not	the	PID	value	of	any	tuple	in	Professors.	

§  Delete	a	tuple	in	Professors	whose	PID	value	is	the	
ProfessorPID	value	for	one	or	more	tuples	in	Teach.	

§  Update	the	PID	value	of	a	tuple	in	Professors	when	the	old	
PID	value	is	the	value	of	ProfessorPID	in	one	or	more	tuples	
of	Teach.	

	Prakash	2018	 VT	CS	4604	 61	

Cascade	Policy	for	Enforcing	
Referential	Integrity	

§  Only	applies	to	deletions	of	or	updates	to	tuples	in	the	
referenced	relation	(e.g.,	Professors).	

§  If	we	delete	a	tuple	in	Professors,	delete	all	tuples	in	Teach	
that	refer	to	that	tuple.	

§  If	we	update	the	PID	value	of	a	tuple	in	Professors	from	p1	to	
p2,	update	all	value	of	ProfessorPID	in	Teach	that	are	p1	to	
p2.	

Prakash	2018	 VT	CS	4604	 62	

Set-NULL	Policy	for	Enforcing	
Referential	Integrity	

§  Also	applies	only	to	deletions	of	or	updates	to	tuples	in	the	
referenced	relation	(e.g.,	Professors).	

§  If	we	delete	a	tuple	in	Professors,	set	the	ProfessorPID	
attributes	of	all	tuples	in	Teach	that	refer	to	the	deleted	tuple	
to	NULL.	

§  If	we	update	the	PID	value	of	a	tuple	in	Professors	from	p1	to	
p2,	set	all	values	of	ProfessorPID	in	Teach	that	are	p1	to	NULL	

Prakash	2018	 VT	CS	4604	 63	

Referential	Integrity	constraints	in	
SQL	

				…	
foreign	key	ssn	references	student	
				on	delete	cascade	
				on	update	cascade,	
...	

§  ->	eliminate	all	student	enrollments	
§  other	options	(set	to	null,	to	default	etc)	

Prakash	2018	 VT	CS	4604	 64	

Constraining	Attributes	and	
Tuples	

§  SQL	also	allows	us	to	specify	constraints	on	attributes	in	a	
relation	and	on	tuples	in	a	relation.	
–  Disallow	courses	with	a	maximum	enrollment	greater	than	100.	
–  A	chairperson	of	a	department	must	teach	at	most	one	course	
every	semester.	

§  How	do	we	express	such	constraints	in	SQL?	
§  How	can	we	change	our	minds	about	constraints?	
§  A	simple	constraint:	NOT	NULL	

–  Declare	an	attribute	to	be	NOT	NULL	after	its	type	in	a	CREATE	
TABLE	statement.	

–  Effect	is	to	disallow	tuples	in	which	this	attribute	is	NULL.	

Prakash	2018	 VT	CS	4604	 65	

Attribute-Based	CHECK	Constraints	
§  Disallow	courses	with	a	maximum	enrollment	greater	than	

100.	

§  CREATE	TABLE	Courses(...	
	 	 	Enrollment	INT	CHECK	(Enrollment	<=	100)	...);	

§  The	condition	can	be	any	condition	that	can	appear	in	a	
WHERE	clause.	

§  CHECK	statement	may	use	a	subquery	to	mention	other	
attributes	of	the	same	or	other	relations.	

§  An	attribute-based	CHECK	constraint	is	checked	only	when	
the	value	of	that	attribute	changes.	

Prakash	2018	 VT	CS	4604	 66	

Tuple-Based	CHECK	Constraints	
§  Tuple-based	CHECK	constraints	are	checked	whenever	a	

tuple	is	inserted	into	or	updated	in	a	relation.	

§  A	chairperson	of	a	department	teaches	at	most	one	course	in	
any	semester.	
	CREATE	TABLE	Teach(...	
	 	 	CHECK	ProfessorPID	NOT	IN	
	 	 	 	((SELECT	ProfessorPID	FROM	Teach)	
	 	 	 	INTERSECT	
	 	 	 	(SELECT	ChairmanPID	FROM	Departments)	
)	
);	

Prakash	2018	 VT	CS	4604	 67	

Weapons	for	IC:	

§  assertions	
– create	assertion	<assertion-name>	check	
<predicate>	

§  triggers	(~	assertions	with	‘teeth’)	
– on	operation,	if	condition,	then	action	

Prakash	2018	 VT	CS	4604	 68	

Assertions:	Example	

§  Can’t	have	more	courses	than	students	
(‘Pigeonhole	Principle’)		

	
CREATE	ASSERTION	FewStudents	CHECK	(
		(SELECT	COUNT(*)	FROM	Students)	<=		
		(SELECT	COUNT(*)	FROM	Courses)		
);	

Prakash	2018	 VT	CS	4604	 69	

Triggers:	Motivation	

§  triggers	(~	assertions	with	‘teeth’)	
– on	operation,	if	condition,	then	action	

Prakash	2018	 VT	CS	4604	 70	

Triggers	-	example	

define	trigger	zerograde	on	update	takes	
(if	new	takes.grade	<	0	
		then	takes.grade	=	0)	

Prakash	2018	 VT	CS	4604	 71	

Triggers	-	discussion	

§  more	complicated:	“managers	have	higher		
salaries	than	their	subordinates”	-	a	trigger	
can		automatically	boost	mgrs	salaries	

§  triggers:	tricky	(infinite	loops…)	

Prakash	2018	 VT	CS	4604	 72	

OK,	what	could	have	been	done?	

Prakash	2018	 VT	CS	4604	 73	

