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Overview - detailed - SQL 

§  DML 
§  other parts:  
– views 
– modifications 
–  joins 
– DDL 
– constraints 
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VIEWS	
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Views	
§  A	view	is	a	relation	that	does	not	exist	physically.	

§  A	view	is	defined	by	a	query	over	other	relations	(tables	
and/or	views).	

§  Just	like	a	table,	a	view	can	be		
–  queried:	the	query	processor	replaces	the	view	by	its	definition.	
–  used	in	other	queries.	

§  Unlike	a	table,	a	view	cannot	be	updated	unless	it	satisfies	
certain	conditions.	
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Example:	View	Definition	
§  CREATE	VIEW	ViewName	AS	Query;	

§  Suppose	we	want	to	perform	a	set	of	queries	on	those	
students	who	have	taken	courses	both	in	the	computer	
science	and	the	mathematics	departments.	
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Example:	View	Definition	
§  Suppose	we	want	to	perform	a	set	of	queries	on	those	students	

who	have	taken	courses	both	in	the	computer	science	and	the	
mathematics	departments.	

§  Let	us	create	a	view	to	store	the	PIDs	of	these	students	and	the	
	CS-Math	course	pairs	they	took.	
	CREATE	VIEW	CSMathStudents	AS	
	 	SELECT	T1.StudentPID,	T1.Number	AS	CSNum,	T2.Number	AS	
MathNum	
	 	FROM	Take	AS	T1,	Take	AS	T2	
	 	WHERE	(T1.StudentPID	=	T2.StudentPID)	
	 	 	AND	(T1.DeptName	=	’CS’)	
	 	 	AND	(T2.DeptName	=	’Math’);	
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Querying	Views	

§  Query	a	view	as	if	it	were	a	base	table.	
§  How	many	students	took	both	CS	and	Math	
courses?		

				SELECT	COUNT(StudentPID)		
				FROM	CSMathStudents	
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Querying	Views	
§  Just	replace	view	by	its	definition	
				SELECT	COUNT(StudentPID)		
				FROM	CSMathStudents	
	
				SELECT	COUNT(StudentPID)		
				FROM		
							(SELECT	T1.StudentPID,	T1.Number	AS	CSNum,	

T2.Number	AS	MathNum	
	 	FROM	Take	AS	T1,	Take	AS	T2	
	 	WHERE	(T1.StudentPID	=	T2.StudentPID)	
	 	 	AND	(T1.DeptName	=	’CS’)	
	 	 	AND	(T2.DeptName	=	’Math’));	
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Modifying	Views	
§  What	does	it	mean	to	modify	a	view?	

§  How	is	tuple	deletion	from	a	view	executed?	

§  Can	we	insert	a	tuple	into	a	view?	Where	will	it	
be	inserted,	since	a	view	does	not	physically	
exist?	

§  Can	we	insert	tuples	into	any	view?	SQL	includes	
rules	that	specify	which	views	are	updatable.	
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Deleting	Views	

§  DROP	VIEW	CSMathStudents;	

§  Like	a	Symbolic	Link:	only	the	view	definition	
is	deleted	
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Deleting	Tuples	from	Views	

§  Delete	tuples	for	students	taking	'CS	4604'.	
				DELETE	FROM	CSMathStudents	
				WHERE	(CSNum	=	4604);	
§  Deletion	is	executed	as	if	were	executing	
			DELETE	FROM	Take	
			WHERE	(Number	=	4604);	
§  Incorrect:	non-CS	tuples	where	(Number	=	
4604)	will	be	deleted.	

?	
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Deleting	Tuples	from	Views	

§  Tuples	only	seen	in	the	view	should	be	
deleted!	

§  Add	conditions	to	the	WHERE	clause	
	
DELETE	FROM	CSMathStudents		
WHERE	(CSNum	=	4604)	AND	(DeptName	=	'CS');	
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Inserting	tuples	into	Views	

§  Again,	passed	through	to	the	underlying	
relation	

		INSERT	INTO	CSMathStudents	
		VALUES	('123-45-6789',	4604,	8811);	

§  But	Take	schema	is	(PID,	Number,	Dept)	
– what	should	dept	values	be?	
– NULL?		
			Then	it	is	not	part	of	CSMathStudents!	
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Inserting	tuples	into	Views	

§  CREATE	VIEW	CSStudents	AS	
			SELECT	StudentPID,	Number	
			FROM	Take	
			WHERE	(DeptName	=	'CS');	

§  INSERT	INTO	CSStudents	
				VALUES	('123-45-6789',	4604);		
	
	

Works?	

Same	
Problem	
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Inserting	tuples	into	Views	

§  Include	DeptName	in	the	view's	schema	
§  CREATE	VIEW	CSStudents	AS	
			SELECT	StudentPID,	DeptName,	Number	
			FROM	Take	
			WHERE	(DeptName	=	'CS');	

§  INSERT	INTO	CSStudents	
				VALUES	('123-45-6789',	'CS',	4604)	
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Updatable	Views	

§  The	idea	is	that	there	must	be	a	one-one	
relationship	between	rows	in	the	view	and	the	
rows	in	the	underlying	table	

	
View		 Table	
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Updatable	Views	

SQL:92	standard:	
§  Defined	by	selecting/projecting	some	
attributes	from	one	relation	R	

§  R	may	itself	be	an	updatable	view.	
§  Use	SELECT	and	not	SELECT	DISTINCT.	
§  FROM	clause	can	contain	only	one	occurrence	
of	R	and	must	not	contain	any	other	relation.	

§  NO	aggregation	operations	
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Materialized	Views	

§  Two	kinds:	
1.   Virtual		=	not	stored	in	the	database;	just	a	query	for	

constructing	the	relation.	
2.  Materialized		=	actually	constructed	and	stored.	
	
WHY?		
–  Some	views	may	be	frequently	used	in	queries.		
–  It	may	be	efficient	to	materialize	such	a	view,	i.e.,	
maintain	its	value		at	all	times	as	a	physical	table	
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Declaring	Views	

§  Declare	by:	
	 	CREATE	[MATERIALIZED]	VIEW		<name>		AS		<query>;	

§  Default	is	virtual.	
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Maintaining	Materializing	Views	

§  Cost?	
– Re-computing	it	when	the	underlying	tables	
change	

– Materialized	view	may	be	much	larger	than	
original	relations,	e.g.,	in	the	case	of	joins	

EXTRA:	NOT	
IN	EXAM	
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Maintaining	Materialized	Views	
§  CREATE	MATERIALIZED	VIEW	CSStudents	AS		
				SELECT	StudentPID,	DeptName,	Number	
				FROM	Take	
				WHERE	(DeptName	=	'CS');	
§  When?	
–  Insertion/deletion/update	of	Take	

§  Cost?	
–  Insertion	of	tuple:	Insert	tuple	into	CSStudents	only	if	new	
tuple	has	DeptName	=	'CS’	

–  Same	for	Deletion	
–  Update?	Delete	followed	by	an	Insert…	

EXTRA:	NOT	
IN	EXAM	
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Maintaining	Materialized	Views	

§  Key	idea	is	that	many	materialized	views	can	
be	updated	incrementally.	

§ More	info:	Sections	25.9,	and	25.10.1	from	
the	textbook	(~3	pages	total)	

EXTRA:	NOT	
IN	EXAM	
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MODIFICATIONS,	JOINS,	DDL	
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Reminder: mini-U db 

STUDENT
Ssn Name Address

123 smith main str
234 jones forbes ave

CLASS
c-id c-name units

4602 s.e. 2
4603 o.s. 2

TAKES	
SSN c-id grade

123 4613 A
234 4613 B
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DML	-	insertions	etc	

insert	into	student	
values	(“123”,	“smith”,	“main”)	
	
insert	into	student(ssn,	name,	address)	
values	(“123”,	“smith”,	“main”)	
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DML	-	insertions	etc	

bulk	insertion:	how	to	insert,	say,	a	table	of	
‘foreign-student’s,	in	bulk?	
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DML	-	insertions	etc	

bulk	insertion:	
	
insert	into	student	
	select	ssn,	name,	address	

			from	foreign-student	
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DML	-	deletion	etc	

delete	the	record	of	‘smith’	
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DML	-	deletion	etc	

delete	the	record	of	‘smith’:	
	
delete	from	student	
	where	name=‘smith’	

	
(careful	-	it	deletes	ALL	the	‘smith’s!)	
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DML	-	update	etc	

record	the	grade	‘A’	for	ssn=123	and	course	4604	
	
update	takes	
set	grade=“A”	
where	ssn=“123”	and	c-id=“4604”	
	
(will	set	to	“A”		ALL	such	records)	
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DML	-	joins	

so	far:	‘INNER’	joins,	eg:	
	
select	ssn,	c-name	
from	takes,	class	
where	takes.c-id	=	class.c-id	
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DML	-	joins	

Equivalently:	
	
select	ssn,	c-name	
from	takes	join	class	on	takes.c-id	=	class.c-id	
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Joins		

select	[column	list]	
from		table_name	
			[inner	|	{left	|	right	|	full}	outer	]	join	
				table_name	
				on	qualification_list	
where…	

	

Prakash	2018	 VT	CS	4604	 33	



Inner	join	

SSN c-name
123 s.e
234 s.e o.s.:	gone!	

TAKES	
SSN c-id grade

123 4613 A
234 4613 B
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c-id c-name units

4613 s.e. 2
4609 o.s. 2



Outer	join	

TAKES	
SSN c-id grade

123 4613 A
234 4613 B

SSN c-name
123 s.e
234 s.e.
null o.s.
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Outer	join	

SSN c-name
123 s.e
234 s.e.
null o.s.

select	ssn,	c-name	
from	takes	right	outer	join	class	on	takes.c-
id=class.c-id	
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Outer	join	
§  left	outer	join	
§  right	outer	join	
§  full	outer	join	
§  natural	join	
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Null	Values	

§  null	->	unknown,	or	inapplicable,	(or	…)	
§  Complications:	
– 3-valued	logic		(true,	false	and	unknown).	
– null	=	null	:	false!!	
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Overview - detailed - SQL 

§  DML 
§  other parts:  
– views 
– modifications 
–  joins 
– DDL 
– constraints 
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Data	Definition	Language	

create	table	student	
(ssn	char(9)	not	null,	
		name	char(30),	
		address	char(50),	
primary	key	(ssn)	)	
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Data	Definition	Language	

create	table	r(	A1	D1,	…,	An	Dn,	
				integrity-constraint1,	
				…	
				integrity-constraint-n)	
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Data	Definition	Language	

Domains:	
§  char(n),	varchar(n)	
§  int,	numeric(p,d),	real,	double	precision	
§  float,	smallint	
§  date,	time	
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Data	Definition	Language	

delete	a	table:	difference	between	
			drop	table	student	
	
			delete	from	student	
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Data	Definition	Language	

modify		a	table:		
alter	table	student	drop	address	
	
alter	table	student	add	major	char(10)	
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CONSTRAINTS	
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Data	Definition	Language	

integrity	constraints:	
§  primary	key	
§  foreign	key	
§  check(P)	
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Data	Definition	Language	

create	table	takes	
(ssn	char(9)	not	null,	
		c-id	char(5)	not	null,	
		grade	char(1),	
primary	key	(ssn,	c-id),	
check		grade	in	(“A”,	“B”,	“C”,	“D”,	“F”))	
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Maintaining	Integrity	of	Data	
§  Data	is	dirty.	
§  How	does	an	application	ensure	that	a	database	modification	

does	not	corrupt	the	tables?	

§  Two	approaches:	
–  Application	programs	check	that	database	modifications	are	
consistent.	

–  Use	the	features	provided	by	SQL.	
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Maintaining	Integrity	of	Data	
§  Data	is	dirty.	
§  How	does	an	application	ensure	that	a	database	modification	

does	not	corrupt	the	tables?	

§  Two	approaches:	
–  Application	programs	check	that	database	modifications	are	
consistent.	

–  Use	the	features	provided	by	SQL.	
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Integrity	Checking	in	SQL	
§  PRIMARY	KEY	and	UNIQUE	constraints.	
§  FOREIGN	KEY	constraints.	
§  Constraints	on	attributes	and	tuples.	
§  Triggers	(schema-level	constraints).	

§  How	do	we	express	these	constraints?	
§  How	do	we	check	these	constraints?	
§  What	do	we	do	when	a	constraint	is	violated?	
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Keys	in	SQL	

§  A	set	of	attributes	S	is	a	key	for	a	relation	R	if	every	pair	of	
tuples	in	R	disagree	on	at	least	one	attribute	in	S.	

§  Select	one	key	to	be	the	PRIMARY	KEY;	declare	other	keys	
using	UNIQUE.	

Prakash	2018	 VT	CS	4604	 51	



Primary	Keys	in	SQL	
§  Modify	the	schema	of	Students	to	declare	PID	to	be	the	key.	

–  CREATE	TABLE	Students(	
	 	 	PID	VARCHAR(8)	PRIMARY	KEY,	
	 	 	Name	CHAR(20),	Address	VARCHAR(255));	

§  What	about	Courses,	which	has	two	attributes	in	its	key?	
–  CREATE	TABLE	Courses(Number	integer,	DeptName:	
	 	 	VARCHAR(8),	CourseName	VARCHAR(255),	Classroom	

	 	 	VARCHAR(30),	Enrollment	integer,		
	 	 	PRIMARY	KEY	(Number,	DeptName)	
	 	 	);	
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Effect	of	Declaring	PRIMARY	KEYs	

§  Two	tuples	in	a	relation	cannot	agree	on	all	the	attributes	in	
the	key.	DBMS	will	reject	any	action	that	inserts	or	updates	a	
tuple	in	violation	of	this	rule.	

§  A	tuple	cannot	have	a	NULL	value	in	a	key	attribute.	
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Other	Keys	in	SQL	
§  If	a	relation	has	other	keys,	declare	them	using	the	UNIQUE	

keyword.	
§  Use	UNIQUE	in	exactly	the	same	places	as	PRIMARY	KEY.	

§  There	are	two	differences	between	PRIMARY	KEY	and	
UNIQUE:	
–  A	table	may	have	only	one	PRIMARY	KEY	but	more	than	one	set	
of	attributes	declared	UNIQUE.	

–  A	tuple	may	have	NULL	values	in	UNIQUE	attributes.	
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Enforcing	Key	Constraints	
§  Upon	which	actions	should	an	RDBMS	enforce	a	key	

constraint?	
§  Only	tuple	update	and	insertion.	
§  RDMBS	searches	the	tuples	in	the	table	to	find	if	any	tuple	

exists	that	agrees	with	the	new	tuple	on	all	attributes	in	the	
primary	key.	

§  To	speed	this	process,	an	RDBMS	automatically	creates	an	
efficient	search	index	on	the	primary	key.	

§  User	can	instruct	the	RDBMS	to	create	an	index	on	one	or	
more	attributes	
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Foreign	Key	Constraints	
§  Referential	integrity	constraint:	in	the	relation	Teach	(that	
“connects”	Courses	and	Professors),	if	Teach	relates	a	course	
to	a	professor,	then	a	tuple	corresponding	to	the	professor	
must	exist	in	Professors.	

§  How	do	we	express	such	constraints	in	Relational	Algebra?	
§  Consider	the	Teach(ProfessorPID,	Number,	DeptName)	

relation.	
	every	non-NULL	value	of	ProfessorPID	inTeach	must	be	a	valid	
ProfessorPID	in	Professors.	

§  RA		πProfessorPID(Teach)								π	PID(Professors).	⊆
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Referential	Integrity	constraints	

‘foreign	keys’	-	eg:	
create	table	takes(	
	ssn	char(9)	not	null,	

			c-id	char(5)	not	null,	
			grade	integer,	
			primary	key(ssn,	c-id),	
			foreign	key	ssn	references	student,	
			foreign	key	c-id	references	class)	
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Referential	Integrity	constraints	

				…	
foreign	key	ssn	references	student,	
	foreign	key	c-id	references	class)	

Effect:		
– expects	that	ssn	to	exist	in	‘student’	table	
– blocks	ops	that	violate	that	-	how??	

•  insertion?	
•  deletion/update?	
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Requirements	for	FOREIGN	KEYs	

§  If	a	relation	R	declares	that	some	of	its	attributes	refer	to	
foreign	keys	in	another	relation	S,	then	these	attributes	must	
be	declared	UNIQUE	or	PRIMARY	KEY	in	S.	

§  Values	of	the	foreign	key	in	R	must	appear	in	the	referenced	
	attributes	of	some	tuple	in	S.	
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Enforcing	Referential	Integrity	
§  Three	policies	for	maintaining	referential	integrity.	

§  Default	policy:	reject	violating	modifications.	

§  Cascade	policy:	mimic	changes	to	the	referenced	attributes	
at	the	foreign	key.	

§  Set-NULL	policy:	set	appropriate	attributes	to	NULL.	
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Default	Policy	for	Enforcing	
Referential	Integrity	

§  Reject	violating	modifications.	There	are	four	cases.	

§  Insert	a	new	Teach	tuple	whose	ProfessorPID	is	not	NULL	and	
is	not	the	PID	of	any	tuple	in	Professors.	

§  Update	the	ProfessorPID	attribute	in	a	tuple	in	Teach	to	a	
value	that	is	not	the	PID	value	of	any	tuple	in	Professors.	

§  Delete	a	tuple	in	Professors	whose	PID	value	is	the	
ProfessorPID	value	for	one	or	more	tuples	in	Teach.	

§  Update	the	PID	value	of	a	tuple	in	Professors	when	the	old	
PID	value	is	the	value	of	ProfessorPID	in	one	or	more	tuples	
of	Teach.	
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Cascade	Policy	for	Enforcing	
Referential	Integrity	

§  Only	applies	to	deletions	of	or	updates	to	tuples	in	the	
referenced	relation	(e.g.,	Professors).	

§  If	we	delete	a	tuple	in	Professors,	delete	all	tuples	in	Teach	
that	refer	to	that	tuple.	

§  If	we	update	the	PID	value	of	a	tuple	in	Professors	from	p1	to	
p2,	update	all	value	of	ProfessorPID	in	Teach	that	are	p1	to	
p2.	
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Set-NULL	Policy	for	Enforcing	
Referential	Integrity	

§  Also	applies	only	to	deletions	of	or	updates	to	tuples	in	the	
referenced	relation	(e.g.,	Professors).	

§  If	we	delete	a	tuple	in	Professors,	set	the	ProfessorPID	
attributes	of	all	tuples	in	Teach	that	refer	to	the	deleted	tuple	
to	NULL.	

§  If	we	update	the	PID	value	of	a	tuple	in	Professors	from	p1	to	
p2,	set	all	values	of	ProfessorPID	in	Teach	that	are	p1	to	NULL	
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Referential	Integrity	constraints	in	
SQL	

				…	
foreign	key	ssn	references	student	
				on	delete	cascade	
				on	update	cascade,	
...	

§  ->	eliminate	all	student	enrollments	
§  other	options	(set	to	null,	to	default	etc)	
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Constraining	Attributes	and	
Tuples	

§  SQL	also	allows	us	to	specify	constraints	on	attributes	in	a	
relation	and	on	tuples	in	a	relation.	
–  Disallow	courses	with	a	maximum	enrollment	greater	than	100.	
–  A	chairperson	of	a	department	must	teach	at	most	one	course	
every	semester.	

§  How	do	we	express	such	constraints	in	SQL?	
§  How	can	we	change	our	minds	about	constraints?	
§  A	simple	constraint:	NOT	NULL	

–  Declare	an	attribute	to	be	NOT	NULL	after	its	type	in	a	CREATE	
TABLE	statement.	

–  Effect	is	to	disallow	tuples	in	which	this	attribute	is	NULL.	
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Attribute-Based	CHECK	Constraints	
§  Disallow	courses	with	a	maximum	enrollment	greater	than	

100.	

§  CREATE	TABLE	Courses(...	
	 	 	Enrollment	INT	CHECK	(Enrollment	<=	100)	...);	

§  The	condition	can	be	any	condition	that	can	appear	in	a	
WHERE	clause.	

§  CHECK	statement	may	use	a	subquery	to	mention	other	
attributes	of	the	same	or	other	relations.	

§  An	attribute-based	CHECK	constraint	is	checked	only	when	
the	value	of	that	attribute	changes.	
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Tuple-Based	CHECK	Constraints	
§  Tuple-based	CHECK	constraints	are	checked	whenever	a	

tuple	is	inserted	into	or	updated	in	a	relation.	

§  A	chairperson	of	a	department	teaches	at	most	one	course	in	
any	semester.	
	CREATE	TABLE	Teach(...	
	 	 	CHECK	ProfessorPID	NOT	IN	
	 	 	 	((SELECT	ProfessorPID	FROM	Teach)	
	 	 	 	INTERSECT	
	 	 	 	(SELECT	ChairmanPID	FROM	Departments)	
	 	 	 	)	
	 	 	 	);	
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Weapons	for	IC:	

§  assertions	
– create	assertion	<assertion-name>	check	
<predicate>	

§  triggers	(~	assertions	with	‘teeth’)	
– on	operation,	if	condition,	then	action	
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Assertions:	Example	

§  Can’t	have	more	courses	than	students	
(‘Pigeonhole	Principle’)		

	
CREATE	ASSERTION	FewStudents	CHECK	(		
		(SELECT	COUNT(*)	FROM	Students)	<=		
		(SELECT	COUNT(*)	FROM	Courses)		
);	

Prakash	2018	 VT	CS	4604	 69	



Triggers:	Motivation	

§  triggers	(~	assertions	with	‘teeth’)	
– on	operation,	if	condition,	then	action	
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Triggers	-	example	

define	trigger	zerograde	on	update	takes	
(if	new	takes.grade	<	0	
		then	takes.grade	=	0)	
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Triggers	-	discussion	

§  more	complicated:	“managers	have	higher		
salaries	than	their	subordinates”	-	a	trigger	
can		automatically	boost	mgrs	salaries	

§  triggers:	tricky	(infinite	loops…)	
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OK,	what	could	have	been	done?	

Prakash	2018	 VT	CS	4604	 73	


