CS 4604: Introduction to
 Database Management Systems

B. Aditya Prakash

Lecture \#19: Data Mining and Warehousing
[IWVirginiaTech

Just FY , and not for exam!

Overview

- Traditional database systems are tuned to many, small, simple queries.
- New applications use fewer, more timeconsuming, analytic queries.
- New architectures have been developed to handle analytic queries efficiently.

Problem

Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)
BBURG
NY

sales(p-id, c-id, date, \$price)

customers(c-id, age, income, ...)

SF

Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How?
How often?
How about discrepancies / nonhomegeneities?

Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How? A: Triggers/Materialized views
How often? A: [Art!]
How about discrepancies / nonhomegeneities? A: Wrappers/Mediators
[IWVirginiaTech

Data Ware-housing

Step 2: collect counts. (DataCubes/OLAP)

The Data Warehouse

- The most common form of data integration.
- Copy sources into a single DB (warehouse) and try to keep it up-to-date.
- Usual method: periodic reconstruction of the warehouse, perhaps overnight.
- Frequently essential for analytic queries.

OLTP

- Most database operations involve On-Line Transaction Processing (OTLP).
- Short, simple, frequent queries and/or modifications, each involving a small number of tuples.
- Examples: Answering queries from a Web interface, sales at cash registers, selling airline tickets.

OLAP

- On-Line Application Processing (OLAP, or "analytic") queries are, typically:
- Few, but complex queries --- may run for hours.
- Queries do not depend on having an absolutely up-to-date database.

OLAP Examples

1. Amazon analyzes purchases by its customers to come up with an individual screen with products of likely interest to the customer.
2. Analysts at Wal-Mart look for items with increasing sales in some region.

- Use empty trucks to move merchandise between stores.

Common Architecture

- Databases at store branches handle OLTP.
- Local store databases copied to a central warehouse overnight.
- Analysts use the warehouse for OLAP.

Star Schemas

- A star schema is a common organization for data at a warehouse. It consists of:

1. Fact table : a very large accumulation of facts such as sales.
2. Often "insert-only."
3. Dimension tables: smaller, generally static information about the entities involved in the facts.

Example: Star Schema

- Suppose we want to record in a warehouse information about every beer sale: the bar, the brand of beer, the drinker who bought the beer, the day, the time, and the price charged.
- The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

Example -- Continued

- The dimension tables include information about the bar, beer, and drinker "dimensions":

Bars(bar, addr, license)
Beers(beer, manf)
Drinkers(drinker, addr, phone)

Visualization - Star Schema

Dimension Table (Bars)

Dimension Table (Drinkers)

Dimension Attrs.

Dimensions and Dependent

Attributes

- Two classes of fact-table attributes:

1. Dimension attributes: the key of a dimension table.
2. Dependent attributes: a value determined by the dimension attributes of the tuple.

Example: Dependent Attribute

- price is the dependent attribute of our example Sales relation.
- It is determined by the combination of dimension attributes: bar, beer, drinker, and the time (combination of day and time-of-day attributes).

Approaches to Building Warehouses

1. ROLAP = "relational OLAP": Tune a relational DBMS to support star schemas.
2. MOLAP = "multidimensional OLAP": Use a specialized DBMS with a model such as the "data cube."

ROLAP Techniques

1. Bitmap indexes: For each key value of a dimension table (e.g., each beer for relation Beers) create a bit-vector telling which tuples of the fact table have that value.
2. Materialized views: Store the answers to several useful queries (views) in the warehouse itself.

Typical OLAP Queries

- Often, OLAP queries begin with a "star join": the natural join of the fact table with all or most of the dimension tables.
- Example:

SELECT *
FROM Sales, Bars, Beers, Drinkers
WHERE Sales.bar = Bars.bar AND

$$
\begin{aligned}
& \text { Sales.beer = Beers.beer AND } \\
& \text { Sales.drinker = Drinkers.drinker; }
\end{aligned}
$$

Typical OLAP Queries --- (2)

- The typical OLAP query will:

1. Start with a star join.
2. Select for interesting tuples, based on dimension data.
3. Group by one or more dimensions.
4. Aggregate certain attributes of the result.

Example: OLAP Query

- For each bar in Blacksburg, find the total sale of each beer manufactured by AnheuserBusch.
- Filter: addr = "Blacksburg" and manf = "Anheuser-Busch".
- Grouping: by bar and beer.
- Aggregation: Sum of price.

Example: In SQL

SELECT bar, beer, SUM(price) FROM Sales NATURAL JOIN Bars

NATURAL JOIN Beers
WHERE addr = 'Blacksburg' AND
manf $=$ 'Anheuser-Busch'
GROUP BY bar, beer;

Using Materialized Views

- A direct execution of this query from Sales and the dimension tables could take too long.
- If we create a materialized view that contains enough information, we may be able to answer our query much faster.

Example: Materialized View

- Which views could help with our query?
- Key issues:

1. It must join Sales, Bars, and Beers, at least.
2. It must group by at least bar and beer.
3. It must not select out Blacksburg bars or Anheuser-Busch beers.
4. It must not project out addr or manf.

Example --- Continued

- Here is a materialized view that could help:

CREATE VIEW BABMS (bar, addr, beer, manf, sales) AS
SELECT bar, addr, beer, manf, SUM(price) sales
FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers
GROUP BY bar, addr, beer, manf;
Since bar -> addr and beer -> manf, there is no real grouping. We need addr and manf in the SELECT.

Example --- Concluded

- Here' s our query using the materialized view BABMS:
SELECT bar, beer, sales
FROM BABMS
WHERE addr = 'Blacksburg' AND

$$
\operatorname{man} f=\text { 'Anheuser-Busch'; }
$$

MOLAP and Data Cubes

- Keys of dimension tables are the dimensions of a hypercube.
- Example:

Sales(bar, beer, drinker, time, price)

- for the Sales data, the four dimensions are bar, beer, drinker, and time.
- Dependent attributes (e.g., price) appear at the points of the cube.

Visualization -- Data Cubes

Marginals

- The data cube also includes aggregation (typically SUM) along the margins of the cube.
- The marginals include aggregations over one dimension, two dimensions,...

Visualization --- Data Cube w/Aggregation

Example: Marginals

- Our 4-dimensional Sales cube includes the sum of price over each bar, each beer, each drinker, and each time unit (perhaps days).
- It would also have the sum of price over all bar-beer pairs, all bar-drinker-day triples,...

Marginals

- Think of each dimension as having an additional value *.
- A point with one or more *'s in its coordinates aggregates over the dimensions with the *' s.
- Example: ("Joe' s Bar", "Bud", *, *) holds the sum, over all drinkers and all time, of the Bud consumed at Joe' s.

Drill-Down

- Drill-down = "de-aggregate" = break an aggregate into its constituents.
- Example: having determined that Joe’s Bar sells very few Anheuser-Busch beers, break down his sales by particular A.-B. beer.

Roll-Up

- Roll-up = aggregate along one or more dimensions.
- Example: given a table of how much Bud each drinker consumes at each bar, roll it up into a table giving total amount of Bud consumed by each drinker.

Example: Roll Up and Drill Down

\$ of Anheuser-Busch by drinker/bar

	Jim	Bob	Mary
Joe's s Bar	45	33	30
 Bones	50	36	42
Blue Chalk	38	31	40

\$ of A-B / drinker

Jim	Bob	Mary
133	100	112

Drill down
by Beer
\$ of A-B Beers / drinker

	Jim	Bob	Mary
Bud	40	29	40
M' lob	45	31	37
Bud Light	48	40	35

Structure of the Data Cube

- CUBE(F) of fact table F is roughly === the Fact table (F) + aggregations across all dimensions
(i.e. marginals)
- Note CUBE(F) is a relation itself!

CUBE in SQL: Example

- For our Sales example:

Sales(bar, beer, drinker, time, price)
CREATE MATERIALIZED VIEW SalesCube AS
SELECT bar, beer, drinker, time, SUM (price)
FROM Sales
GROUP BY bar, beer, drinker, time WITH CUBE;

Tuples in SalesCube

- Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)
- And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL $=={ }^{*}$). E.g:
(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Tuples in SalesCube

- Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)
- And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL $=={ }^{*}$). E.g:
(Joes, NULL, John, 4/19/13, 10.00) \longleftarrow Total spent by (Joes, NULL, John, NULL, 200.00) John at Joes (Joes, NULL, NULL, NULL, 200000.00) on Apr 19.
(NULL, NULL, NULL, NULL, 2000000.00)

Tuples in SalesCube

- Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)
- And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:
(Joes, NULL, John, 4/19/13
(Joes, NULL, John, NULL, 200.00) ↔John at Joes
(Joes, NULL, NULL, NULL, 200000.00) ever.
(NULL, NULL, NULL, NULL, 2000000.00)

Tuples in SalesCube

- Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)
- And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:
(Joes, NULL, John, 4/19/13, 10.00) (Joes, NULL, John, NULL, 200.00) (Joes, NULL, NULL, NULL, 200000.00) Joes ever. (NULL, NULL, NULL, NULL, 2000000.00)

Total spent by everyone at

Tuples in SalesCube

- Tuples implied by the standard GROUP-BY: (Joes, Bud, John, 4/19/13, 3.00)
- And those tuples of that are constructed by rolling-up the dimensions in GROUP-BY (== marginals, NULL == *). E.g:
(Joes, NULL, John, 4/19/13, 10.00)
(Joes, NULL, John, NULL, 200.00)
(Joes, NULL, NULL, NULL, 200000.00)
(NULL, NULL, NULL, NULL, 2000000.00)

Total spent by everyone at every bar ever.

Compare ROLAP vs MOLAP

ROLAP Solution

```
CREATE VIEW BABMS (bar, addr,
    beer, manf, sales) AS
SELECT bar, addr, beer, manf,
        SUM(price) sales
FROM Sales NATURAL JOIN Bars
    NATURAL JOIN Beers
```

GROUP BY bar, addr, beer, manf;

MOLAP (Data Cube) Solution

CREATE MATERIALIZED VIEW SalesCube AS
SELECT bar, beer, drinker, time, SUM (price)
FROM Sales
GROUP BY bar, beer, drinker, time WITH CUBE;

- A specific view for a specific type of query (note the join)
- A generalized view which stores marginals as well (no join)

How to answer queries using Cube?

- Essentially similar to ROLAP using materialized views, but now use the SalesCube
- How to do CUBE(F) efficiently?
-Skip....
[IWVirginiaTech

DATA MINING

Data Mining

- Data mining is a popular term for techniques to summarize big data sets in useful ways.
- Examples:

1. Clustering all Web pages by topic.
2. Finding characteristics of fraudulent credit-card use.

VirginiaTech
Supervised Learning: Decision Trees: Problem

Age	Chol-level	Gender	\ldots	CLASS-ID	
30	150	M			Has heart
				\cdots	
				-	

[ivirginiaTech
Supervised Learning: Decision Trees: Problem

Age	Chol-level	Gender	\ldots	CLASS-ID
30	150	M		+

What is the label for this new patient?

IWirginiaTech
Supervised Learning: Decision Trees: Problem

Decision trees

- Pictorially, we have

num. attr\#1 (eg., 'age’)

Decision trees

- and we want to label'?’

num. attr\#1 (eg., 'age’)

Decision trees

- so we build a decision tree:

IINVirginiaTech

Decision trees

- so we build a decision tree:

Decision trees: Approach

- Typically, two steps:
- tree building
- tree pruning (for over-training/over-fitting)

IINVirginiaTech

Tree building

- How?

num. attr\#1 (eg., 'age’)

Tree building

- How?
- A: Partition, recursively - pseudocode:

Partition (Dataset S)
if all points in S have same label
then return
evaluate splits along each attribute A pick best split, to divide S into S1 and S2
Partition(S1); Partition(S2)

IINVirginiaTech

Tree building

- Q1: how to introduce splits along attribute A_{i}
- Q2: how to evaluate a split?

Tree building

- Q1: how to introduce splits along attribute A_{i}
- A1:
- for num. attributes:
- binary split, or
- multiple split
- for categorical attributes:
- compute all subsets (expensive!), or
- use a greedy algo
[ivVirginiaTech

Tree building

- Q1: how to introduce splits along attribute A_{i}
- Q2: how to evaluate a split?

Tree building

- Q1: how to introduce splits along attribute A_{i}
- Q2: how to evaluate a split?
- A: by how close to uniform each subset is - ie., we need a measure of uniformity:

Tree building

entropy: $\mathrm{H}\left(\mathrm{p}_{+}, \mathrm{p}_{-}\right)$

$$
H=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)
$$

IINVirginiaTech

Tree building

entropy: $\mathrm{H}\left(\mathrm{p}_{+}, \mathrm{p}_{-}\right)$
$H=-p_{+} \log \left(p_{+}\right)-p_{-} \log \left(p_{-}\right)$
'gini' index: $1-p_{+}{ }^{2}-p_{-}{ }^{2}$

$0 \quad 0.5 \quad 1$
[ivVirginiaTech

Tree building

'gini' index: $1-p_{+}{ }^{2}-p_{-}{ }^{2}$
(How about multiple labels?)

Tree building

Intuition:

- entropy: \#bits to encode the class label
- gini: classification error, if we randomly guess ‘+' with prob. p_{+}

Tree building

Thus, we choose the split that reduces entropy/ classification-error the most: Eg.:

Tree building

- Before split: we need

$$
\left(n_{+}+n_{-}\right) * H\left(p_{+}, p_{-}\right)=(7+6) * H(7 / 13,6 / 13)
$$

bits total, to encode all the class labels

- After the split we need:

0 bits
for the first half and
$(2+6) * H(2 / 8,6 / 8)$ bits for the second half

IINVirginiaTech

Tree pruning

- What for?

Summary: classifiers

- Classification through trees
- Building phase - splitting policies
- Pruning phase (to avoid over-fitting)

Unsupervised Learning: MarketBasket Data

- An important form of mining from relational data involves market baskets = sets of "items" that are purchased together as a customer leaves a store.
- Summary of basket data is frequent itemsets = sets of items that often appear together in baskets.

Example: Market Baskets

- If people often buy hamburger and ketchup together, the store can:

1. Put hamburger and ketchup near each other and put potato chips between.
2. Run a sale on hamburger and raise the price of ketchup.

Finding Frequent Pairs

- The simplest case is when we only want to find "frequent pairs" of items.
- Assume data is in a relation Baskets(basket, item).
- The support threshold s is the minimum number of baskets in which a pair appears before we are interested.

Frequent Pairs in SQL

(Famous!) A-Priori Trick - (1)

- Straightforward implementation involves a join of a huge Baskets relation with itself.
- Anti-Monotonicity Property: The a-priori algorithm speeds the query by recognizing that a pair of items $\{i, j\}$ cannot have support s unless both $\{i\}$ and $\{j\}$ do.

R. Agrawal, T. Imielinski, A. Swami
'Mining Association Rules between Sets of Items in Large Databases', SIGMOD 1993.

A-Priori Trick - (2)

- Use a materialized view to hold only information about frequent items.

INSERT INTO Basketsl(basket, item) SELECT * FROM Baskets

Items that
WHERE item IN (appear in at SELECT item FROM Baskets least s baskets.

GROUP BY item

HAVING COUNT (*) >= s

A-Priori Algorithm

1. Materialize the view Baskets1.
2. Run the obvious query, but on Baskets1 instead of Baskets.

- Computing Baskets1 is cheap, since it doesn' t involve a join.
- Baskets1 probably has many fewer tuples than Baskets.
- Running time shrinks with the square of the number of tuples involved in the join.

Example: A-Priori

- Suppose:

1. A supermarket sells 10,000 items.
2. The average basket has 10 items.
3. The support threshold is 1% of the baskets.

- At most $1 / 10$ of the items can be frequent.
- Probably, the minority of items in one basket are frequent -> factor 4 speedup.

Conclusions

- Data Mining: of high commercial interest (think BIG data)
- DM = DB + Machine Learning + Stats.
- Data Warehousing/OLAP: to get the data
- Tree Classifiers
- Association Rules
..... (like clustering etc.)

