VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #16: Transactions 2: 2PL and
Deadlocks

MVirginiaTech
Reminders

" On Thursday Nov 1
— PA2 due
— PA3 and HW7 out
— Recitation for PA3 by Deepika — don’t miss!

" On Tuesday Nov 6

— No lecture, but Deepika will be in the classroom
during lecture time for extra office hours.

Prakash 2018 VT CS 4604

MVirginiaTech
Review (last lecture)

= DBMSs support ACID Transaction semantics.

" Concurrency control and Crash Recovery are
key components

Prakash 2018 VT CS 4604

MVirginiaTech

Review

" For Isolation property, serial execution of
transactions is safe but slow

— Try to find schedules equivalent to serial
execution
= One solution for “conflict serializable”
schedules is Two Phase Locking (2PL)

MVirginiaTech

Outline
= 2PL/2PLC
" Lock Management
= Deadlocks
— detection
— Prevention

= Specialized Locking

Prakash 2018 VT CS 4604

MVirginiaTech
Serializability in Practice

= DBMS does not test for conflict serializability
of a given schedule

— Impractical as interleaving of operations from
concurrent Xacts could be dictated by the OS

= Approach:

— Use specific protocols that are known to produce
conflict serializable schedules

— But may reduce concurrency

Prakash 2018 VT CS 4604

MVirginiaTech
Solution?

= One solution for “conflict serializable”
schedules is Two Phase Locking (2PL)

Prakash 2018 VT CS 4604

MVirginiaTech
Answer

" (Full answer:) use locks; keep them until
commit (‘strict 2 phase locking’)

= | et’s see the details

Prakash 2018 VT CS 4604

MVirginiaTech

Lost update problem - no locks

T1 T2
Read(N)

Read(N)
N=N-1

N=N-1
Write(N)

Write(N)

Prakash 2018 VT CS 4604

MVirginiaTech
Solution — part 1

= with locks:
* lock manager: grants/denies lock requests

Prakash 2018 VT CS 4604

10

MVirginiaTech
Lost update problem — with locks

Tl T2 lock manager

JOCK(N) ~ rrerersrmmsmmsmnenenennnanne. grants lock

lock(N) - denies lock
time | Read(N) T
N=N-1 T2: waits
Write(N)
! Unlock(N) -eeeeeeemmnnnnnnnn, | PR grants lock to T2

Read(N)

Prakash 2018 VT CS 4604 11

[MVirginiaTech
Locks

= Q: ljust needtoread ‘N’ -should | still get a
lock?

Prakash 2018 VT CS 4604

12

MVirginiaTech

Solution — part 1

= | ocks and their flavors

— exclusive (or write-) locks

— shared (or read-) locks

— <and more ... >

= compatibility matrix

Prakash 2018

VT CS 4604

\‘[w
T1 has

S

X

13

MVirginiaTech

Solution — part 1

= | ocks and their flavors

— exclusive (or write-) locks

— shared (or read-) locks

— <and more ... >

= compatibility matrix

Prakash 2018

VT CS 4604

\‘[%nts S
T1 has
S Yes

X

14

MVirginiaTech
Solution — part 1
" transactions request locks (or upgrades)
" lock manager grants or blocks requests

" transactions release locks
" Jock manager updates lock-table

Prakash 2018 VT CS 4604 15

MVirginiaTech
Solution — part 2

locks are not enough — eg., the ‘inconsistent
analysis’ problem

Prakash 2018 VT CS 4604

16

MVirginiaTech

time

\4

Prakash 2018

1 o « J
Inconsistent analysis

T1 T2

Read(A)

A=A-10

Write(A)
Read(A)
Sum = A
Read(B)
Sum += B

Read(B)

B=B+10

Write(B)

VT CS 4604

17

W VirginiaTech

6 o .
Inconsistent analysis
time T1 T2
L(A)
Read(A)
U(A)
L(A)
L(B)

\4

Prakash 2018 VT CS 4604

— w/ locks

the problem
remains!

T2 reads an
inconsistent
DB state

Solution??

18

MVirginiaTech
General solution:

= Protocol(s)
= Most popular protocol: 2 Phase Locking (2PL)

Prakash 2018 VT CS 4604

19

IVirginiaTech
2PL

X-lock version: transactions issue no lock
requests, after the first ‘unlock’

THEOREM: if ALL transactions in the system
obey 2PL --> all schedules are serializable

MVirginiaTech
2PL — example

= ‘inconsistent analysis’ —how does 2PL help?
" how would it be under 2PL?

Prakash 2018 VT CS 4604

21

MVirginiaTech
2PL — X/S lock version

transactions issue no lock/upgrade request,
after the first unlock/downgrade

In general: ‘growing’ and ‘shrinking’ phase

locks

arowing phase* . shrinking phase

time
Prakash 2018 VT CS 4604 22

MVirginiaTech
2PL — X/S lock version

transactions issue no lock/upgrade request,
after the first unlock/downgrade

In general: ‘growing’ and ‘shrinking’ phase

locks

T

violation of 2PL

time
Prakash 2018 VT CS 4604

23

MVirginiaTech
Two-Phase Locking (2PL), cont.

= 2PL on its own is sufficient to guarantee
conflict serializability (i.e., schedules whose
precedence graph is acyclic), but, it is subject
to Cascading A;borts.

acquisition
phase

release phase

locks held

Prakash 2018 VT CS 4604 24

MVirginiaTech

2PL

" Problem: Cascading Aborts
= Example: rollback of T1 requires rollback of

T2!
T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A)

= Solution: Strict 2PL, i.e,
= keep all locks, until ‘commit’

MVirginiaTech

Strict 2PL

= Allows only conflict serializable schedules, but
it is actually stronger than needed for that

purpose.

locks held

Prakash 2018

A
acquisition

phase

release all locks
at end of xact

time

VT CS 4604 26

MVirginiaTech
Strict 2PL == 2PLC (2PL till Commit)

= |n effect, “shrinking phase” is delayed until

— Transaction commits (commit log record on disk),
or

— Aborts (then locks can be released after rollback).
A

acquisition
phase

locks held release all locks

at end of xact

time

Prakash 2018 VT CS 4604

PVirginiafghn 2 PL, A= 1000, B=2000, Output =?

Lock X(A)

Read(A)

A:=A-50

Write(A)

Unlock(A)
Lock S(A)
Read(A)
Unlock(A)
Lock S(B)
Read(B)
Unlock(B)
PRINT(A+B)

Lock X(B)

Read(B)

B :=B +50

Write(B)

Unlock(B)

BViginiaTespy - A= 1000, B=2000, Output =?

Lock X(A)

Read(A)

A:=A-50

Write(A)

Lock X(B)

Unlock(A)
Lock S(A)
Read(A)

Read(B)

B :=B +50

Write(B)

Unlock(B)
Lock S(B)
Unlock(A)
Read(B)
Unlock(B)
DPRINT A L)

@VirginiaTechrict 2PL, A= 1000, B=2000, Output =?

Lock X(A)

Read(A)

A:=A-50

Write(A)

Lock X(B)

Read(B)

B :=B +50

Write(B)

Unlock(A)

Unlock(B)
Lock S(A)
Read(A)
Lock S(B)
Read(B)
PRINT(A+B)
Unlock(A)

Unlock(B)

MVirginiaTech

Venn Diagram for Schedules

ﬁll Schedules

éonﬂict SerializabD

~

a0)
Avoid
Cascading [Serial J
Abort

\- /

_

/

Prakash 2018

VT CS 4604

31

M VirginiaTech . .
e 3: Which schedules does Strict 2PL

allow?

ﬁll Schedules \

éonﬂict SerializabD

a0)
Avoid
Cascading [Serial J
Abort

\- /

_ /

Prakash 2018 VT CS 4604 32

MW VirginiaTe

8: Which schedules does Strict 2PL
allow?

All Schedules \

Gonﬂict SerializabD

NN)
Avoid
Cascading
Abort

\- /

_ /

Prakash 2018 VT CS 4604 33

WVirginiaTech

Another Venn diagram

2PL schedules

serializable 2PLC serial sch’ s
schedules

Prakash 2018 VT CS 4604 34

MVirginiaTech

Outline
= 2PL/2PLC
=" Lock Management
= Deadlocks
— detection
— Prevention

= Specialized Locking

Prakash 2018 VT CS 4604

35

MVirginiaTech
Lock Management

= Lock and unlock requests handled by the Lock
Manager (LM).

" | M contains an entry for each currently held
lock.

= Q: structure of a lock table entry?

Prakash 2018 VT CS 4604

36

MVirginiaTech
Lock Management

" Lock and unlock requests handled by the Lock
Manager (LM).

" LM contains an entry for each currently held

ock.

" Lock table entry:

— Ptr. to list of transactions currently holding the
lock

— Type of lock held (shared or exclusive)
— Pointer to queue of lock requests

Prakash 2018 VT CS 4604

37

MVirginiaTech
Lock Management, cont.

* When lock request arrives see if any other
xact holds a conflicting lock.

— If not, create an entry and grant the lock

— Else, put the requestor on the wait queue

" Lock upgrade: transaction that holds a shared
lock can be upgraded to hold an exclusive lock

Prakash 2018 VT CS 4604 38

MVirginiaTech
Lock Management, cont.

= Two-phase locking is simple enough, right?

= We' re not done. There' s an important
wrinkle ...

Prakash 2018 VT CS 4604

39

giniaTech
Example: Output =7

Lock X(A)

Lock S(B)

Read(B)

Lock S(A)

Read(A)

A:=A-50

Write(A)

Lock X(B)

MVirginiaTech

Example: Output = ?

Lock X(A)

Lock S(B)

Read(B)

Lock S(A)

Read(A)

A:=A-50

Write(A)

Lock X(B)

lock mgr:
grant

grant

wait

wait

MVirginiaTech
Outline

" Lock Management

= Deadlocks
— detection
— Prevention

" Specialized Locking

Prakash 2018 VT CS 4604

42

MVirginiaTech

Deadlocks

= Deadlock: Cycle of transactions waiting for
locks to be released by each other.

= Two ways of dealing with deadlocks:
— Deadlock prevention

— Deadlock detection

= Many systems just punt and use Timeouts
— What are the dangers with this approach?

MVirginiaTech
Deadlock Detection

" Create a waits-for graph:
— Nodes are transactions

— Edge from Ti to Tj if Ti is waiting for Tj to release a
lock

" Periodically check for cycles in waits-for graph

Prakash 2018 VT CS 4604 44

WVirginiaTech
Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)

T2: X(B) X(C)
T3: (D), S(O), X(A)
T4: X(B)

Prakash 2018 VT CS 4604

MVirginiaTech

Prakash 2018

Another example

* is there a deadlock?

* if yes, which xacts are
involved?

VT CS 4604

46

MVirginiaTech

Another example

* now, is there a deadlock?

* if yes, which xacts are
involved?

Prakash 2018

VT CS 4604

47

MVirginiaTech
Deadlock detection

= how often should we run the algo?
" how many transactions are typically involved?

Prakash 2018 VT CS 4604 48

MVirginiaTech

Deadlock handling

* Q: what to do?

Prakash 2018

VT CS 4604

49

[MVirginiaTech

Deadlock handling

* Q0: what to do?

e A: select a ‘victim' &
‘rollback’

* Q1: which/how to choose?

Prakash 2018

VT CS 4604

50

MVirginiaTech

Prakash 2018

Deadlock handling

* Q1: which/how to choose?
* Al.1: by age
* A1.2: by progress

* Al1.4: by # xacts to rollback
* Q2: How far to rollback?

VT CS 4604

* A1.3: by # items locked already...

51

MVirginiaTech

Prakash 2018

Deadlock handling

* Q2: How far to rollback?
*A2.1: completely
*A2.2: minimally

* Q3: Starvation??

VT CS 4604

52

[MVirginiaTech

Prakash 2018

Deadlock handling

e Q3: Starvation??

* A3.1: include #rollbacks in victim
selection criterion.

VT CS 4604

53

MVirginiaTech
Outline

" Lock Management

= Deadlocks
— detection
— Prevention

" Specialized Locking

Prakash 2018 VT CS 4604

54

MVirginiaTech

Deadlock Prevention

" Assign priorities based on timestamps (older ->
higher priority)

= We only allow ‘old-wait-for-young’
= (or only allow ‘young-wait-for-old’)
" and rollback violators. Specifically:

= Say Ti wants a lock that Tj holds - two policies:

— Wait-Die: If Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts (ie., old wait for young)

— Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits (ie., young wait for old)

Prakash 2018 VT CS 4604 55

MVirginiaTech
Deadlock Prevention

Wait-Die Wound-Wait

Tiwants Tjhas Tiwants Tjhas

= Priorities —= I '

Prakash 2018 VT CS 4604 56

[MVirginiaTech
Deadlock Prevention

" Q: Why do these schemes guarantee no
deadlocks?

= A:
= Q: When a transaction restarts, what is its
(new) priority?

= A:

Prakash 2018 VT CS 4604

57

MVirginiaTech
Deadlock Prevention

" Q: Why do these schemes guarantee no
deadlocks?

= A: only one ‘type’ of direction allowed.

= Q: When a transaction restarts, what is its
(new) priority?

= A:its original timestamp. -- Why?

Prakash 2018 VT CS 4604

58

[MVirginiaTech
SQL statement

= usually, conc. control is transparent to the
user, but

= LOCK <table-name> [EXCLUSIVE |SHARED]

Prakash 2018 VT CS 4604

59

IVirginiaTech
Quiz:

" js there a serial schedule (= interleaving) that
is not serializable?

= is there a serializable schedule that is not
serial?

= can 2PL produce a non-serializable schedule?
(assume no deadlocks)

MVirginiaTech

Quiz - cont’ d

" is there a serializable schedule that can not be
produced by 2PL?

" 3 xact obeys 2PL - can it be involved in a non-
serializable schedule?

= all xacts obey 2PL - can they end up in a
deadlock?

Prakash 2018 VT CS 4604 61

MVirginiaTech
Outline

" Lock Management

= Deadlocks
— detection
— Prevention

= Specialized Locking

Prakash 2018 VT CS 4604

62

MVirginiaTech

Things we will not stud

We assumed till now DB objects are fixed
and independent---not true in many cases!
Multi-level locking

— Lock db or file or pages or record?

What about locking indexes?
— E.g. B+-trees
— Crabbing Algorithm

What about dynamic databases?
— ‘phantom’ problem
— Solution: predicate locking

Non-locking based Techniques
— Timestamp based Concurrency Control
All these are in the textbook though

Prakash 2018 VT CS 4604

63

[MVirginiaTech
Traénsaction Support in SQL-92
oo
«"“SERIALIZABLE — No phantoms, all reads
repeatable, no “dirty” (uncommited) reads.
= REPEATABLE READS — phantoms may happen.

= READ COMMITTED - phantoms and
unrepeatable reads may happen

= READ UNCOMMITTED - all of them may
happen.

Prakash 2018 VT CS 4604 64

MVirginiaTech
Transaction Support in SQL-92

= SERIALIZABLE : obtains all locks first; plus
index locks, plus strict 2PL

= REPEATABLE READS — as above, but no index
ocks

= READ COMMITTED - as above, but S-locks are
released immediately

= READ UNCOMMITTED — as above, but
allowing ‘dirty reads’ (no S-locks)

Prakash 2018 VT CS 4604 65

MVirginiaTech
Transaction Support in SQL-92

= SET TRANSACTION ISOLATION LEVEL
SERIALIZABLE READ ONLY

= Defaults:
= SERIALIZABLE < isolation level

- READ WRITE «— access mode

Prakash 2018 VT CS 4604 66

MVirginiaTech

Conclusions

= 2PL/2PL-C (=Strict 2PL): extremely popular
= Deadlock may still happen

— detection: wait-for graph
— prevention: abort some xacts, defensively
= philosophically: concurrency control uses:

— locks
— and aborts

Prakash 2018 VT CS 4604

67

