
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#16:	Transactions	2:	2PL	and	

Deadlocks	

Reminders	

§  On	Thursday	Nov	1	
– PA2	due		
– PA3	and	HW7	out	
– Recitation	for	PA3	by	Deepika	–	don’t	miss!	

§  On	Tuesday	Nov	6	
– No	lecture,	but	Deepika	will	be	in	the	classroom	
during	lecture	time	for	extra	office	hours.	

Prakash	2018	 VT	CS	4604	 2	

Review	(last	lecture)	

§  DBMSs	support	ACID	Transaction	semantics.	
§  Concurrency	control	and	Crash	Recovery	are	
key	components	

Prakash	2018	 VT	CS	4604	 3	

Review	

§  For	Isolation	property,	serial	execution	of	
transactions	is	safe	but	slow	
– Try	to	find	schedules	equivalent	to	serial	
execution	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)		

Prakash	2018	 VT	CS	4604	 4	

Outline	

§  2PL/2PLC		
§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		

Prakash	2018	 VT	CS	4604	 5	

Serializability	in	Practice	

§  DBMS	does	not	test	for	conflict	serializability	
of	a	given	schedule	
–  Impractical	as	interleaving	of	operations	from	
concurrent	Xacts	could	be	dictated	by	the	OS	

§  Approach:		
– Use	specific	protocols	that	are	known	to	produce	
conflict	serializable	schedules		

– But	may	reduce	concurrency	

Prakash	2018	 VT	CS	4604	 6	

Solution?	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)	

Prakash	2018	 VT	CS	4604	 7	

Answer	

§  (Full	answer:)	use	locks;	keep	them	until	
commit	(‘strict	2	phase	locking’)	

§  Let’s	see	the	details	

Prakash	2018	 VT	CS	4604	 8	

Lost	update	problem	-	no	locks	

T1	
Read(N)	
	
N	=	N	-1	
	
Write(N)	

Prakash	2018	 VT	CS	4604	 9	

T2	
	
Read(N)	
	
N	=	N	-1	
	
Write(N)	

Solution	–	part	1	

§  with	locks:	
§  lock	manager:	grants/denies	lock	requests	

Prakash	2018	 VT	CS	4604	 10	

Lost	update	problem	–	with	locks	

time	

T1	

lock(N)	

	

Read(N)	

N=N-1	

Write(N)	

Unlock(N)	

T2	

lock(N)	

lock	manager	

grants	lock	

denies	lock	

T2:	waits	

grants	lock	to	T2	
Read(N)	...	

Prakash	2018	 VT	CS	4604	 11	

Locks	

§  Q:	I	just	need	to	read	‘N’	-	should	I	still	get	a	
lock?	

Prakash	2018	 VT	CS	4604	 12	

Solution	–	part	1	

§  Locks	and	their	flavors	
– exclusive	(or	write-)	locks	
– shared	(or	read-)	locks	
– <and	more	...	>	

§  compatibility	matrix	

X	

S	

X	S			T2	wants	
T1	has	

Prakash	2018	 VT	CS	4604	 13	

Solution	–	part	1	

§  Locks	and	their	flavors	
– exclusive	(or	write-)	locks	
– shared	(or	read-)	locks	
– <and	more	...	>	

§  compatibility	matrix	

X	

S	

X	S			T2	wants	
T1	has	

Yes

Prakash	2018	 VT	CS	4604	 14	

Solution	–	part	1	

§  transactions	request	locks	(or	upgrades)	
§  lock	manager	grants	or	blocks	requests	
§  transactions	release	locks	
§  lock	manager	updates	lock-table	

Prakash	2018	 VT	CS	4604	 15	

Solution	–	part	2	

locks	are	not	enough	–	eg.,	the	‘inconsistent	
analysis’	problem	

Prakash	2018	 VT	CS	4604	 16	

‘Inconsistent	analysis’	

T1
Read(A)
A=A-10
Write(A)

T2

Read(A)
Sum = A

 Read(B)
Sum += B

Read(B)
B=B+10
Write(B)

time	

Prakash	2018	 VT	CS	4604	 17	

‘Inconsistent	analysis’	–	w/	locks	

time	 T1	

L(A)	

Read(A)	

...	

U(A)	

T2	

	

	

	

	

L(A)	

....	

L(B)	

....	

the	problem	
remains!	

T2	reads	an	
inconsistent	
DB	state	

Solution??	

Prakash	2018	 VT	CS	4604	 18	

General	solution:	

§  Protocol(s)	
§ Most	popular	protocol:	2	Phase	Locking	(2PL)	

Prakash	2018	 VT	CS	4604	 19	

2PL	

X-lock	version:	transactions	issue	no	lock	
requests,	after	the	first	‘unlock’	

	
THEOREM:	if	ALL	transactions	in	the	system	
obey	2PL	-->	all	schedules	are	serializable	

Prakash	2018	 VT	CS	4604	 20	

2PL	–	example	

§  ‘inconsistent	analysis’	–	how	does	2PL	help?	
§  how	would	it	be	under	2PL?	

Prakash	2018	 VT	CS	4604	 21	

2PL	–	X/S	lock	version	

transactions	issue	no	lock/upgrade	request,	
after	the	first	unlock/downgrade	

In	general:	‘growing’	and	‘shrinking’	phase	

time	

#	locks	

growing	phase	 shrinking	phase	

Prakash	2018	 VT	CS	4604	 22	

2PL	–	X/S	lock	version	

transactions	issue	no	lock/upgrade	request,	
after	the	first	unlock/downgrade	

In	general:	‘growing’	and	‘shrinking’	phase	

time	

#	locks	

violation	of	2PL	

Prakash	2018	 VT	CS	4604	 23	

Two-Phase	Locking	(2PL),	cont.	

§  2PL	on	its	own	is	sufficient	to	guarantee	
conflict	serializability	(i.e.,	schedules	whose	
precedence	graph	is	acyclic),	but,	it	is	subject	
to	Cascading	Aborts.	

time

locks held
release phase acquisition

phase

Prakash	2018	 VT	CS	4604	 24	

2PL	

§  Problem:		Cascading	Aborts	
§  Example:	rollback	of	T1	requires	rollback	of	
T2!	

§  Solution:	Strict	2PL,	i.e,	
§  keep	all	locks,	until	‘commit’	

T1:		R(A),	W(A),			 																						R(B),	W(B),	Abort	
T2:	 	 	R(A),	W(A)	

Prakash	2018	 VT	CS	4604	 25	

	Strict	2PL	

§  Allows	only	conflict	serializable	schedules,	but	
it	is	actually	stronger	than	needed	for	that	
purpose.	

locks held

acquisition
phase

time

release all locks
at end of xact

Prakash	2018	 VT	CS	4604	 26	

	Strict	2PL	==	2PLC	(2PL	till	Commit)	

§  In	effect,	“shrinking	phase”	is	delayed	until	
– Transaction	commits	(commit	log	record	on	disk),	
or	

– Aborts	(then	locks	can	be	released	after	rollback).	

locks held

acquisition
phase

time

release all locks
at end of xact

Prakash	2018	 VT	CS	4604	 27	

Prakash 2018 VT CS 4604 28

Lock_X(A)
Read(A)
A: = A-50
Write(A)
Unlock(A)

Lock_S(A)
Read(A)
Unlock(A)
Lock_S(B)
Read(B)
Unlock(B)
PRINT(A+B)

Lock_X(B)
Read(B)
B := B +50
Write(B)
Unlock(B)

Non-2PL, A= 1000, B=2000, Output =?

Prakash 2018 VT CS 4604 29

Lock_X(A)
Read(A)
A: = A-50
Write(A)

Lock_X(B)
Unlock(A)

Lock_S(A)
Read(A)

Read(B)
B := B +50
Write(B)
Unlock(B)

Lock_S(B)
Unlock(A)
Read(B)
Unlock(B)
PRINT(A+B)

2PL, A= 1000, B=2000, Output =?

Prakash 2018 VT CS 4604 30

Lock_X(A)
Read(A)
A: = A-50
Write(A)

Lock_X(B)
Read(B)
B := B +50
Write(B)
Unlock(A)
Unlock(B)

Lock_S(A)
Read(A)
Lock_S(B)
Read(B)
PRINT(A+B)
Unlock(A)
Unlock(B)

Strict 2PL, A= 1000, B=2000, Output =?

Venn	Diagram	for	Schedules	
All Schedules

Avoid
Cascading
Abort

Serial

Conflict Serializable

Prakash	2018	 VT	CS	4604	 31	

Q:	Which	schedules	does	Strict	2PL	
allow?	

All Schedules

Avoid
Cascading
Abort

Serial

Conflict Serializable

Prakash	2018	 VT	CS	4604	 32	

Q:	Which	schedules	does	Strict	2PL	
allow?	

All Schedules

Avoid
Cascading
Abort

Serial

Conflict Serializable

Prakash	2018	 VT	CS	4604	 33	

Another	Venn	diagram	

2PL	schedules	

serializable	
schedules	

serial	sch’s	2PLC	

Prakash	2018	 VT	CS	4604	 34	

Outline	

§  2PL/2PLC		
§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		

Prakash	2018	 VT	CS	4604	 35	

Lock	Management	

§  Lock	and	unlock	requests	handled	by	the	Lock	
Manager	(LM).	

§  LM	contains	an	entry	for	each	currently	held	
lock.	

§  Q:	structure	of	a	lock	table	entry?	

Prakash	2018	 VT	CS	4604	 36	

Lock	Management	

§  Lock	and	unlock	requests	handled	by	the	Lock	
Manager	(LM).	

§  LM	contains	an	entry	for	each	currently	held	
lock.	

§  Lock	table	entry:	
– Ptr.	to	list	of	transactions	currently	holding	the	
lock	

– Type	of	lock	held	(shared	or	exclusive)	
– Pointer	to	queue	of	lock	requests	

Prakash	2018	 VT	CS	4604	 37	

Lock	Management,	cont.	

§ When	lock	request	arrives	see	if	any	other	
xact	holds	a	conflicting	lock.	
–  If	not,	create	an	entry	and	grant	the	lock	
– Else,	put	the	requestor	on	the	wait	queue	

§  Lock	upgrade:	transaction	that	holds	a	shared	
lock	can	be	upgraded	to	hold	an	exclusive	lock	

Prakash	2018	 VT	CS	4604	 38	

Lock	Management,	cont.	

§  Two-phase	locking	is	simple	enough,	right?	
§ We’re	not	done.	There’s	an	important	
wrinkle	…	

Prakash	2018	 VT	CS	4604	 39	

Prakash	2018	 VT	CS	4604	 40	

Example: Output = ?

Lock_X(A)
Lock_S(B)
Read(B)
Lock_S(A)

Read(A)
A: = A-50
Write(A)
Lock_X(B)

Prakash	2018	 VT	CS	4604	 41	

Example: Output = ?

Lock_X(A)
Lock_S(B)
Read(B)
Lock_S(A)

Read(A)
A: = A-50
Write(A)
Lock_X(B)

lock mgr:
grant
grant

wait

wait

Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		

Prakash	2018	 VT	CS	4604	 42	

Deadlocks	

§  Deadlock:	Cycle	of	transactions	waiting	for	
locks	to	be	released	by	each	other.	

§  Two	ways	of	dealing	with	deadlocks:	
– Deadlock	prevention	
– Deadlock	detection	

§ Many	systems	just	punt	and	use	Timeouts	
– What	are	the	dangers	with	this	approach?	

Prakash	2018	 VT	CS	4604	 43	

Deadlock	Detection	

§  Create	a	waits-for	graph:	
– Nodes	are	transactions	
– Edge	from	Ti	to	Tj	if	Ti	is	waiting	for	Tj	to	release	a	
lock	

§  Periodically	check	for	cycles	in	waits-for	graph	

Prakash	2018	 VT	CS	4604	 44	

Deadlock	Detection	(Continued)	

Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1	 T2	

T4	 T3	
Prakash	2018	 VT	CS	4604	 45	

Another	example	

T1 T2

T3 T4

•  is there a deadlock?

•  if yes, which xacts are
involved?

Prakash	2018	 VT	CS	4604	 46	

Another	example	

T1 T2

T3 T4

•  now, is there a deadlock?

•  if yes, which xacts are
involved?

Prakash	2018	 VT	CS	4604	 47	

Deadlock	detection	

§  how	often	should	we	run	the	algo?	
§  how	many	transactions	are	typically	involved?	

Prakash	2018	 VT	CS	4604	 48	

Deadlock	handling	

T1 T2

T3 T4

•  Q: what to do?

Prakash	2018	 VT	CS	4604	 49	

Deadlock	handling	

T1 T2

T3 T4

•  Q0: what to do?

•  A: select a ‘victim’ &
‘rollback’

•  Q1: which/how to choose?

Prakash	2018	 VT	CS	4604	 50	

Deadlock	handling	

•  Q1: which/how to choose?

•  A1.1: by age

•  A1.2: by progress

•  A1.3: by # items locked already...

•  A1.4: by # xacts to rollback

•  Q2: How far to rollback?

T1 T2

T3 T4

Prakash	2018	 VT	CS	4604	 51	

Deadlock	handling	

•  Q2: How far to rollback?

• A2.1: completely

• A2.2: minimally

•  Q3: Starvation??

T1 T2

T3 T4

Prakash	2018	 VT	CS	4604	 52	

Deadlock	handling	

•  Q3: Starvation??

•  A3.1: include #rollbacks in victim
selection criterion.

T1 T2

T3 T4

Prakash	2018	 VT	CS	4604	 53	

Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		

Prakash	2018	 VT	CS	4604	 54	

Deadlock	Prevention	

§  Assign	priorities	based	on	timestamps	(older	->	
higher	priority)	

§  We	only	allow	‘old-wait-for-young’	
§  (or	only	allow	‘young-wait-for-old’)	
§  and	rollback	violators.	Specifically:	
§  Say	Ti	wants	a	lock	that	Tj	holds	-	two	policies:	
– Wait-Die:	If	Ti	has	higher	priority,	Ti	waits	for	Tj;									
otherwise	Ti	aborts	(ie.,	old	wait	for	young)	

– Wound-wait:	If	Ti	has	higher	priority,	Tj	aborts;													
otherwise	Ti	waits	(ie.,	young	wait	for	old)	

Prakash	2018	 VT	CS	4604	 55	

Deadlock	Prevention	

Wait-Die Wound-Wait
Ti wants Tj has Ti wants Tj has

Priorities	

Prakash	2018	 VT	CS	4604	 56	

Deadlock	Prevention	

§  Q:	Why	do	these	schemes	guarantee	no	
deadlocks?	

§  A:	
§  Q:	When	a	transaction	restarts,	what	is	its	
(new)	priority?	

§  A:	

Prakash	2018	 VT	CS	4604	 57	

Deadlock	Prevention	

§  Q:	Why	do	these	schemes	guarantee	no	
deadlocks?	

§  A:	only	one	‘type’	of	direction	allowed.	
§  Q:	When	a	transaction	restarts,	what	is	its	
(new)	priority?	

§  A:	its	original	timestamp.		--	Why?	

Prakash	2018	 VT	CS	4604	 58	

SQL	statement	

§  usually,	conc.	control	is	transparent	to	the	
user,	but	

§  LOCK	<table-name>	[EXCLUSIVE|SHARED]	

Prakash	2018	 VT	CS	4604	 59	

Quiz:	

§  is	there	a	serial	schedule	(=	interleaving)	that	
is	not	serializable?	

§  is	there	a	serializable	schedule	that	is	not	
serial?	

§  can	2PL	produce	a	non-serializable	schedule?	
(assume	no	deadlocks)	

Prakash	2018	 VT	CS	4604	 60	

Quiz	-	cont’d	

§  is	there	a	serializable	schedule	that	can	not	be	
produced	by	2PL?	

§  a	xact	obeys	2PL	-	can	it	be	involved	in	a	non-
serializable	schedule?	

§  all	xacts	obey	2PL	-	can	they	end	up	in	a	
deadlock?	

Prakash	2018	 VT	CS	4604	 61	

Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		

Prakash	2018	 VT	CS	4604	 62	

Things	we	will	not	study	
§  We	assumed	till	now	DB	objects	are	fixed		
						and	independent---not	true	in	many	cases!		
§  Multi-level	locking	

–  Lock	db	or	file	or	pages	or	record?		
§  What	about	locking	indexes?	

–  E.g.	B+-trees	
–  Crabbing	Algorithm		

§  What	about	dynamic	databases?	
–  ‘phantom’	problem	
–  Solution:	predicate	locking	

§  Non-locking	based	Techniques	
–  Timestamp	based	Concurrency	Control	

§  All	these	are	in	the	textbook	though	

SKIP	

Prakash	2018	 VT	CS	4604	 63	

Transaction	Support	in	SQL-92	

§  SERIALIZABLE	–	No	phantoms,	all	reads	
repeatable,	no	“dirty”	(uncommited)	reads.	

§  REPEATABLE	READS	–	phantoms	may	happen.	
§  READ	COMMITTED	–	phantoms	and	
unrepeatable	reads	may	happen	

§  READ	UNCOMMITTED	–	all	of	them	may	
happen.	

Prakash	2018	 VT	CS	4604	 64	

Transaction	Support	in	SQL-92	

§  SERIALIZABLE	:	obtains	all	locks	first;	plus	
index	locks,	plus	strict	2PL	

§  REPEATABLE	READS	–	as	above,	but	no	index	
locks	

§  READ	COMMITTED	–	as	above,	but	S-locks	are	
released	immediately	

§  READ	UNCOMMITTED	–	as	above,	but	
allowing	‘dirty	reads’	(no	S-locks)	

Prakash	2018	 VT	CS	4604	 65	

Transaction	Support	in	SQL-92	

§  SET	TRANSACTION	ISOLATION	LEVEL	
SERIALIZABLE	READ	ONLY	

§  Defaults:	
§ 	 SERIALIZABLE		
§ 	 READ	WRITE	

isolation level

access mode

Prakash	2018	 VT	CS	4604	 66	

Conclusions	

§  2PL/2PL-C	(=Strict	2PL):	extremely	popular		
§  Deadlock	may	still	happen	
– detection:	wait-for	graph	
– prevention:	abort	some	xacts,	defensively	

§  philosophically:	concurrency	control	uses:	
–  locks	
– and	aborts	

Prakash	2018	 VT	CS	4604	 67	

