
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#16:	Transactions	2:	2PL	and	

Deadlocks	



Reminders	

§  On	Thursday	Nov	1	
– PA2	due		
– PA3	and	HW7	out	
– Recitation	for	PA3	by	Deepika	–	don’t	miss!	

§  On	Tuesday	Nov	6	
– No	lecture,	but	Deepika	will	be	in	the	classroom	
during	lecture	time	for	extra	office	hours.	
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Review	(last	lecture)	

§  DBMSs	support	ACID	Transaction	semantics.	
§  Concurrency	control	and	Crash	Recovery	are	
key	components	
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Review	

§  For	Isolation	property,	serial	execution	of	
transactions	is	safe	but	slow	
– Try	to	find	schedules	equivalent	to	serial	
execution	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)		
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Outline	

§  2PL/2PLC		
§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		
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Serializability	in	Practice	

§  DBMS	does	not	test	for	conflict	serializability	
of	a	given	schedule	
–  Impractical	as	interleaving	of	operations	from	
concurrent	Xacts	could	be	dictated	by	the	OS	

§  Approach:		
– Use	specific	protocols	that	are	known	to	produce	
conflict	serializable	schedules		

– But	may	reduce	concurrency	
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Solution?	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)	
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Answer	

§  (Full	answer:)	use	locks;	keep	them	until	
commit	(‘strict	2	phase	locking’)	

§  Let’s	see	the	details	
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Lost	update	problem	-	no	locks	

T1	
Read(N)	
	
N	=	N	-1	
	
Write(N)	
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T2	
	
Read(N)	
	
N	=	N	-1	
	
Write(N)	



Solution	–	part	1	

§  with	locks:	
§  lock	manager:	grants/denies	lock	requests	
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Lost	update	problem	–	with	locks	

time	

T1	

lock(N)	

	

Read(N)	

N=N-1	

Write(N)	

Unlock(N)	

T2	

lock(N)	

lock	manager	

grants	lock	

denies	lock	

T2:	waits	

grants	lock	to	T2	
Read(N)	...	
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Locks	

§  Q:	I	just	need	to	read	‘N’	-	should	I	still	get	a	
lock?	
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Solution	–	part	1	

§  Locks	and	their	flavors	
– exclusive	(or	write-)	locks	
– shared	(or	read-)	locks	
– <and	more	...	>	

§  compatibility	matrix	

X	

S	

X	S			T2	wants	
T1	has	
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Solution	–	part	1	

§  Locks	and	their	flavors	
– exclusive	(or	write-)	locks	
– shared	(or	read-)	locks	
– <and	more	...	>	

§  compatibility	matrix	

X	

S	

X	S			T2	wants	
T1	has	

Yes 
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Solution	–	part	1	

§  transactions	request	locks	(or	upgrades)	
§  lock	manager	grants	or	blocks	requests	
§  transactions	release	locks	
§  lock	manager	updates	lock-table	
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Solution	–	part	2	

locks	are	not	enough	–	eg.,	the	‘inconsistent	
analysis’	problem	
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‘Inconsistent	analysis’	

T1 
Read(A) 
A=A-10 
Write(A) 
 

T2 
 
 
 
Read(A) 
Sum = A 

 Read(B) 
Sum += B 

Read(B) 
B=B+10 
Write(B) 

 

 
 

time	
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‘Inconsistent	analysis’	–	w/	locks	

time	 T1	

L(A)	

Read(A)	

...	

U(A)	

T2	

	

	

	

	

L(A)	

....	

L(B)	

....	

the	problem	
remains!	

T2	reads	an	
inconsistent	
DB	state	

Solution??	
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General	solution:	

§  Protocol(s)	
§ Most	popular	protocol:	2	Phase	Locking	(2PL)	
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2PL	

X-lock	version:	transactions	issue	no	lock	
requests,	after	the	first	‘unlock’	

	
THEOREM:	if	ALL	transactions	in	the	system	
obey	2PL	-->	all	schedules	are	serializable	
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2PL	–	example	

§  ‘inconsistent	analysis’	–	how	does	2PL	help?	
§  how	would	it	be	under	2PL?	
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2PL	–	X/S	lock	version	

transactions	issue	no	lock/upgrade	request,	
after	the	first	unlock/downgrade	

In	general:	‘growing’	and	‘shrinking’	phase	

time	

#	locks	

growing	phase	 shrinking	phase	
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2PL	–	X/S	lock	version	

transactions	issue	no	lock/upgrade	request,	
after	the	first	unlock/downgrade	

In	general:	‘growing’	and	‘shrinking’	phase	

time	

#	locks	

violation	of	2PL	
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Two-Phase	Locking	(2PL),	cont.	

§  2PL	on	its	own	is	sufficient	to	guarantee	
conflict	serializability	(i.e.,	schedules	whose	
precedence	graph	is	acyclic),	but,	it	is	subject	
to	Cascading	Aborts.	

time 

# locks held 
release phase acquisition 

phase 
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2PL	

§  Problem:		Cascading	Aborts	
§  Example:	rollback	of	T1	requires	rollback	of	
T2!	

§  Solution:	Strict	2PL,	i.e,	
§  keep	all	locks,	until	‘commit’	

T1:		R(A),	W(A),			 																						R(B),	W(B),	Abort	
T2:	 	 	R(A),	W(A)	

Prakash	2018	 VT	CS	4604	 25	



	Strict	2PL	

§  Allows	only	conflict	serializable	schedules,	but	
it	is	actually	stronger	than	needed	for	that	
purpose.	

# locks held 

acquisition 
phase 

time 

release all locks 
at end of xact 
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	Strict	2PL	==	2PLC	(2PL	till	Commit)	

§  In	effect,	“shrinking	phase”	is	delayed	until	
– Transaction	commits	(commit	log	record	on	disk),	
or	

– Aborts	(then	locks	can	be	released	after	rollback).	

# locks held 

acquisition 
phase 

time 

release all locks 
at end of xact 
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Lock_X(A) 
Read(A) 
A: = A-50 
Write(A) 
Unlock(A) 

Lock_S(A) 
Read(A) 
Unlock(A) 
Lock_S(B) 
Read(B) 
Unlock(B) 
PRINT(A+B) 

Lock_X(B) 
Read(B) 
B := B +50 
Write(B) 
Unlock(B) 

Non-2PL, A= 1000, B=2000, Output =? 
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Lock_X(A) 
Read(A) 
A: = A-50 
Write(A) 

Lock_X(B) 
Unlock(A) 

Lock_S(A) 
Read(A) 

Read(B) 
B := B +50 
Write(B) 
Unlock(B) 

Lock_S(B) 
Unlock(A) 
Read(B) 
Unlock(B) 
PRINT(A+B) 

2PL, A= 1000, B=2000, Output =? 
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Lock_X(A) 
Read(A) 
A: = A-50 
Write(A) 

Lock_X(B) 
Read(B) 
B := B +50 
Write(B) 
Unlock(A) 
Unlock(B) 

Lock_S(A) 
Read(A) 
Lock_S(B) 
Read(B) 
PRINT(A+B) 
Unlock(A) 
Unlock(B) 

Strict 2PL, A= 1000, B=2000, Output =? 



Venn	Diagram	for	Schedules	
All Schedules 

Avoid 
Cascading 
Abort 

Serial 

Conflict Serializable 
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Q:	Which	schedules	does	Strict	2PL	
allow?	

All Schedules 

Avoid 
Cascading 
Abort 

Serial 

Conflict Serializable 
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Q:	Which	schedules	does	Strict	2PL	
allow?	

All Schedules 

Avoid 
Cascading 
Abort 

Serial 

Conflict Serializable 
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Another	Venn	diagram	

2PL	schedules	

serializable	
schedules	

serial	sch’s	2PLC	
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Outline	

§  2PL/2PLC		
§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		
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Lock	Management	

§  Lock	and	unlock	requests	handled	by	the	Lock	
Manager	(LM).	

§  LM	contains	an	entry	for	each	currently	held	
lock.	

§  Q:	structure	of	a	lock	table	entry?	
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Lock	Management	

§  Lock	and	unlock	requests	handled	by	the	Lock	
Manager	(LM).	

§  LM	contains	an	entry	for	each	currently	held	
lock.	

§  Lock	table	entry:	
– Ptr.	to	list	of	transactions	currently	holding	the	
lock	

– Type	of	lock	held	(shared	or	exclusive)	
– Pointer	to	queue	of	lock	requests	
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Lock	Management,	cont.	

§ When	lock	request	arrives	see	if	any	other	
xact	holds	a	conflicting	lock.	
–  If	not,	create	an	entry	and	grant	the	lock	
– Else,	put	the	requestor	on	the	wait	queue	

§  Lock	upgrade:	transaction	that	holds	a	shared	
lock	can	be	upgraded	to	hold	an	exclusive	lock	
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Lock	Management,	cont.	

§  Two-phase	locking	is	simple	enough,	right?	
§ We’re	not	done.	There’s	an	important	
wrinkle	…	

Prakash	2018	 VT	CS	4604	 39	



Prakash	2018	 VT	CS	4604	 40	

Example: Output = ? 

Lock_X(A) 
Lock_S(B) 
Read(B) 
Lock_S(A) 

Read(A) 
A: = A-50 
Write(A) 
Lock_X(B) 
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Example: Output = ? 

Lock_X(A) 
Lock_S(B) 
Read(B) 
Lock_S(A) 

Read(A) 
A: = A-50 
Write(A) 
Lock_X(B) 

lock mgr: 
grant 
grant 

wait 

wait 



Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		
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Deadlocks	

§  Deadlock:	Cycle	of	transactions	waiting	for	
locks	to	be	released	by	each	other.	

§  Two	ways	of	dealing	with	deadlocks:	
– Deadlock	prevention	
– Deadlock	detection	

§ Many	systems	just	punt	and	use	Timeouts	
– What	are	the	dangers	with	this	approach?	
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Deadlock	Detection	

§  Create	a	waits-for	graph:	
– Nodes	are	transactions	
– Edge	from	Ti	to	Tj	if	Ti	is	waiting	for	Tj	to	release	a	
lock	

§  Periodically	check	for	cycles	in	waits-for	graph	
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Deadlock	Detection	(Continued)	

Example: 
 
T1:  S(A), S(D),         S(B) 
T2:           X(B)                X(C) 
T3:         S(D), S(C),       X(A) 
T4:                 X(B) 
 
 

T1	 T2	

T4	 T3	
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Another	example	

T1 T2 

T3 T4 

•  is there a deadlock? 

•  if yes, which xacts are 
involved? 
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Another	example	

T1 T2 

T3 T4 

•  now, is there a deadlock? 

•  if yes, which xacts are 
involved? 
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Deadlock	detection	

§  how	often	should	we	run	the	algo?	
§  how	many	transactions	are	typically	involved?	
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Deadlock	handling	

T1 T2 

T3 T4 

•  Q: what to do? 

Prakash	2018	 VT	CS	4604	 49	



Deadlock	handling	

T1 T2 

T3 T4 

•  Q0: what to do? 

•  A: select a ‘victim’ & 
‘rollback’ 

•  Q1: which/how to choose? 
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Deadlock	handling	

•  Q1: which/how to choose? 

•  A1.1: by age 

•  A1.2: by progress 

•  A1.3: by # items locked already... 

•  A1.4: by # xacts to rollback 

•  Q2: How far to rollback? 

T1 T2 

T3 T4 
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Deadlock	handling	

•  Q2: How far to rollback? 

• A2.1: completely 

• A2.2: minimally 

•  Q3: Starvation?? 

T1 T2 

T3 T4 
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Deadlock	handling	

•  Q3: Starvation?? 

•  A3.1: include #rollbacks in victim 
selection criterion. 

T1 T2 

T3 T4 
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Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		
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Deadlock	Prevention	

§  Assign	priorities	based	on	timestamps	(older	->	
higher	priority)	

§  We	only	allow	‘old-wait-for-young’	
§  (or	only	allow	‘young-wait-for-old’)	
§  and	rollback	violators.	Specifically:	
§  Say	Ti	wants	a	lock	that	Tj	holds	-	two	policies:	
– Wait-Die:	If	Ti	has	higher	priority,	Ti	waits	for	Tj;									
otherwise	Ti	aborts	(ie.,	old	wait	for	young)	

– Wound-wait:	If	Ti	has	higher	priority,	Tj	aborts;													
otherwise	Ti	waits	(ie.,	young	wait	for	old)	
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Deadlock	Prevention	

Wait-Die Wound-Wait 
Ti wants Tj has Ti wants Tj has 

Priorities	
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Deadlock	Prevention	

§  Q:	Why	do	these	schemes	guarantee	no	
deadlocks?	

§  A:	
§  Q:	When	a	transaction	restarts,	what	is	its	
(new)	priority?	

§  A:	
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Deadlock	Prevention	

§  Q:	Why	do	these	schemes	guarantee	no	
deadlocks?	

§  A:	only	one	‘type’	of	direction	allowed.	
§  Q:	When	a	transaction	restarts,	what	is	its	
(new)	priority?	

§  A:	its	original	timestamp.		--	Why?	
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SQL	statement	

§  usually,	conc.	control	is	transparent	to	the	
user,	but	

§  LOCK	<table-name>	[EXCLUSIVE|SHARED]	
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Quiz:	

§  is	there	a	serial	schedule	(=	interleaving)	that	
is	not	serializable?	

§  is	there	a	serializable	schedule	that	is	not	
serial?	

§  can	2PL	produce	a	non-serializable	schedule?	
(assume	no	deadlocks)	
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Quiz	-	cont’d	

§  is	there	a	serializable	schedule	that	can	not	be	
produced	by	2PL?	

§  a	xact	obeys	2PL	-	can	it	be	involved	in	a	non-
serializable	schedule?	

§  all	xacts	obey	2PL	-	can	they	end	up	in	a	
deadlock?	
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Outline	

§  Lock	Management	
§  Deadlocks	
– detection	
– Prevention	

§  Specialized	Locking		
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Things	we	will	not	study	
§  We	assumed	till	now	DB	objects	are	fixed		
						and	independent---not	true	in	many	cases!		
§  Multi-level	locking	

–  Lock	db	or	file	or	pages	or	record?		
§  What	about	locking	indexes?	

–  E.g.	B+-trees	
–  Crabbing	Algorithm		

§  What	about	dynamic	databases?	
–  ‘phantom’	problem	
–  Solution:	predicate	locking	

§  Non-locking	based	Techniques	
–  Timestamp	based	Concurrency	Control	

§  All	these	are	in	the	textbook	though	

SKIP	
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Transaction	Support	in	SQL-92	

§  SERIALIZABLE	–	No	phantoms,	all	reads	
repeatable,	no	“dirty”	(uncommited)	reads.	

§  REPEATABLE	READS	–	phantoms	may	happen.	
§  READ	COMMITTED	–	phantoms	and	
unrepeatable	reads	may	happen	

§  READ	UNCOMMITTED	–	all	of	them	may	
happen.	
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Transaction	Support	in	SQL-92	

§  SERIALIZABLE	:	obtains	all	locks	first;	plus	
index	locks,	plus	strict	2PL	

§  REPEATABLE	READS	–	as	above,	but	no	index	
locks	

§  READ	COMMITTED	–	as	above,	but	S-locks	are	
released	immediately	

§  READ	UNCOMMITTED	–	as	above,	but	
allowing	‘dirty	reads’	(no	S-locks)	
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Transaction	Support	in	SQL-92	

§  SET	TRANSACTION	ISOLATION	LEVEL	
SERIALIZABLE	READ	ONLY	

§  Defaults:	
§ 	 SERIALIZABLE		
§ 	 READ	WRITE	

isolation level 

access mode 
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Conclusions	

§  2PL/2PL-C	(=Strict	2PL):	extremely	popular		
§  Deadlock	may	still	happen	
– detection:	wait-for	graph	
– prevention:	abort	some	xacts,	defensively	

§  philosophically:	concurrency	control	uses:	
–  locks	
– and	aborts	
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