
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#15:	Transactions	1:	Intro.	to	

ACID	



Why	Transactions?	

§  Database	systems	are	normally	being	
accessed	by	many	users	or	processes	at	the	
same	time.	
– Both	queries	and	modifications.	

§  Unlike	operating	systems,	which	support		
interaction	of	processes,	a	DMBS	needs	to	
keep	processes	from	troublesome	
interactions.	

Prakash	2018	 VT	CS	4604	 2	



Transactions	-	dfn	

§  =	unit	of	work,	eg.	
– move	$10	from	savings	to	checking	

Prakash	2018	 VT	CS	4604	 3	



Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	(why	do	we	want	that?)	

Prakash	2018	 VT	CS	4604	 4	



Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	
– utilization/throughput	(“hide”	waiting	for	I/Os.)	
–  response	time	

Prakash	2018	 VT	CS	4604	 5	



Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	
– utilization/throughput	(“hide”	waiting	for	I/Os.)	
–  response	time	

§  would	also	like:	
– correctness	&	
–  fairness	

§  Example:	Book	an	airplane	seat	

Prakash	2018	 VT	CS	4604	 6	



§  database	-	a	fixed	set	of	named	data	
objects	(A,	B,	C,	…)	

§  transaction	-	a	sequence	of	read	and	write	
operations	(read(A),	write(B),	…)	
– DBMS’s	abstract	view	of	a	user	program	

Definitions	

Prakash	2018	 VT	CS	4604	 7	



Example:	‘Lost-update’	problem	

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

time 

Prakash	2018	 VT	CS	4604	 8	



Statement	of	problem	(cont.)	

§  Arbitrary	interleaving	can	lead	to		
– Temporary	inconsistency	(ok,	unavoidable)	
– “Permanent”	inconsistency	(bad!)	

§  Need	formal	correctness	criteria.	

Prakash	2018	 VT	CS	4604	 9	



Example:	Bad	Interaction	

§  You	and	friend	each	take	$100	from	different	
ATMs	at	about	the	same	time.	
– The	DBMS	better	make	sure	one	account	
deduction	doesn’t	get	lost.	

§  Compare:	An	OS	allows	two	people	to	edit	a	
document	at	the	same	time.		If	both	write,	
one’s	changes	get	lost.	

Prakash	2018	 VT	CS	4604	 10	



ACID	Transactions	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	
§  Optional:	weaker	forms	of	transactions	are	
often	supported	as	well	(like	Google,	Amazon	
system	etc.):	Recall	NoSQL	systems	

Prakash	2018	 VT	CS	4604	 11	



COMMIT	

§  The	SQL	statement	COMMIT	causes	a	
transaction	to	complete.	
–  It’s	database	modifications	are	now	permanent	in	
the	database.	

Prakash	2018	 VT	CS	4604	 12	



ROLLBACK	

§  The	SQL	statement	ROLLBACK	also	causes	the	
transaction	to	end,	but	by	aborting.	
– No	effects	on	the	database.	

§  Failures	like	division	by	0	or	a	constraint	
violation	can	also	cause	rollback,	even	if	the	
programmer	does	not	request	it.	

Prakash	2018	 VT	CS	4604	 13	



Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	

Prakash	2018	 VT	CS	4604	 14	



Atomicity	of	Transactions	

§  Two	possible	outcomes	of	executing	a	
transaction:	
– Xact	might	commit	after	completing	all	its	actions	
– or	it	could	abort	(or	be	aborted	by	the	DBMS)	
after	executing	some	actions.	

§  DBMS	guarantees	that	Xacts	are	atomic.			
– From	user’s	point	of	view:	Xact	always	either	
executes	all	its	actions,	or	executes	no	actions	at	
all.	

A 

Prakash	2018	 VT	CS	4604	 15	



Transaction	states	

active	

partially	

	committed	
commited	

failed	 aborted	

Prakash	2018	 VT	CS	4604	 16	



Mechanisms	for	Ensuring	Atomicity	

§  What	would	you	do?	

A 

Prakash	2018	 VT	CS	4604	 17	



Mechanisms	for	Ensuring	Atomicity	

§  One	approach:	LOGGING	
– DBMS	logs	all	actions	so	that	it	can	undo	the	
actions	of	aborted	transactions.	

§  ~	like	black	box	in	airplanes	…	

A 

Prakash	2018	 VT	CS	4604	 18	



Mechanisms	for	Ensuring	Atomicity	

§  Logging	used	by	all	modern	systems.		
§  Q:	why?	

A 

Prakash	2018	 VT	CS	4604	 19	



Mechanisms	for	Ensuring	Atomicity	

§  Logging	used	by	all	modern	systems.		
§  Q:	why?	
§  A:		

– audit	trail	&	
– efficiency	reasons	

§ What	other	mechanism	can	you	think	of?	

A 

Prakash	2018	 VT	CS	4604	 20	



Mechanisms	for	Ensuring	Atomicity	

§  Another	approach:	SHADOW	PAGES	
–  (not	as	popular)	

A 

Prakash	2018	 VT	CS	4604	 21	



Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	

Prakash	2018	 VT	CS	4604	 22	



Transaction	Consistency	

§  “Database	consistency”	-	data	in	DBMS	is	
accurate	in	modeling	real	world	and	follows	
integrity	constraints	

C 

Prakash	2018	 VT	CS	4604	 23	



Transaction	Consistency	

§  “Transaction	Consistency”:	if	DBMS	consistent	
before	Xact	(running	alone),	it	will	be	after	
also	

§  Transaction	consistency:	User’s	responsibility	
– DBMS	just	checks	IC	

consistent 
database 

S1 

consistent 
database 

S2 

transaction T 

C 

Prakash	2018	 VT	CS	4604	 24	



Transaction	Consistency	(cont.)	

§  Recall:	Integrity	constraints	
– must	be	true	for	DB	to	be	considered	consistent	
Examples:	
1.  FOREIGN	KEY	R.sid	REFERENCES	S	
2.  ACCT-BAL	>=	0	

C 

Prakash	2018	 VT	CS	4604	 25	



Transaction	Consistency	(cont.)	

§  System	checks	ICs	and	if	they	fail,	the	
transaction	rolls	back	(i.e.,	is	aborted).	
– Beyond	this,	DBMS	does	not	understand	the	
semantics	of	the	data.	

– e.g.,	it	does	not	understand	how	interest	on	a	
bank	account	is	computed	

§  Since	it	is	the	user’s	responsibility,	we	don’t	
discuss	it	further	

C 

Prakash	2018	 VT	CS	4604	 26	



Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	

Prakash	2018	 VT	CS	4604	 27	



Isolation	of	Transactions	

§  Users	submit	transactions,	and		
§  Each	transaction	executes	as	if	it	was	running	
by	itself.	
– Concurrency	is	achieved	by	DBMS,	which	
interleaves	actions	(reads/writes	of	DB	objects)	of	
various	transactions.	

§  Q:	How	would	you	achieve	that?	
– Tough	problem!		

I 

Prakash	2018	 VT	CS	4604	 28	



Isolation	of	Transactions	

§  A:	Many	methods	-	two	main	categories:	
§  Pessimistic	–	don’t	let	problems	arise	in	the	
first	place	

§  Optimistic	–	assume	conflicts	are	rare,	deal	
with	them	after	they	happen.	

I 

Prakash	2018	 VT	CS	4604	 29	



Example	

§  Consider	two	transactions	(Xacts):	
T1:  BEGIN   A=A+100,   B=B-100   END 
T2:  BEGIN   A=1.06*A,   B=1.06*B   END 

•  1st	xact	transfers	$100	from	B’s	account	to	A’s	
•  2nd	credits	both	accounts	with	6%	interest.	
•  Assume	at	first	A	and	B	each	have	$1000.		What	are	
the	legal	outcomes	of	running	T1	and	T2?	

I 

Prakash	2018	 VT	CS	4604	 30	



Example	

T1:  BEGIN   A=A+100,   B=B-100   END 
T2:  BEGIN   A=1.06*A,   B=1.06*B   END 

•  many	-	but	A+B	should	be:	$2000	*1.06	=	$2120	
•  There	is	no	guarantee	that	T1	will	execute	before	T2	
or	vice-versa,	if	both	are	submitted	together.		But,	the	
net	effect	must	be	equivalent	to	these	two	
transactions	running	serially	in	some	order.	

I 

Prakash	2018	 VT	CS	4604	 31	



Example	(Contd.)	
§  Legal	outcomes:	A=1166,B=954	or	A=1160,B=960	
§  Consider	a	possible	interleaved	schedule:	

T1:   A=A+100,          B=B-100    
T2:               A=1.06*A,     B=1.06*B 

•  This	is	OK	(same	as	T1;T2).		But	what	about:	
T1:   A=A+100,            B=B-100    
T2:               A=1.06*A, B=1.06*B 

I 

Prakash	2018	 VT	CS	4604	 32	



Example	(Contd.)	
§  Legal	outcomes:	A=1166,B=954	or	A=1160,B=960	
§  Consider	a	possible	interleaved	schedule:	

T1:   A=A+100,          B=B-100    
T2:               A=1.06*A,     B=1.06*B 

•  This	is	OK	(same	as	T1;T2).		But	what	about:	
T1:   A=A+100,            B=B-100    
T2:               A=1.06*A, B=1.06*B 

•  Result:	A=1166,	B=960;	A+B	=	2126,	bank	loses	$6	
•  The	DBMS’s	view	of	the	second	schedule:	

T1:   R(A), W(A),                  R(B), W(B) 
T2:       R(A), W(A), R(B), W(B) 

I 

Prakash	2018	 VT	CS	4604	 33	



‘Correctness’?	

§  Q:	How	would	you	judge	that	a	schedule	is	
‘correct’?	

(‘schedule’	=	‘interleaved	execution’)	

Prakash	2018	 VT	CS	4604	 34	



‘Correctness’?	

§  Q:	How	would	you	judge	that	a	schedule	is	
‘correct’?	

§  A:	if	it	is	equivalent	to	some	serial	execution	

Prakash	2018	 VT	CS	4604	 35	



Formal	Properties	of	Schedules	

§  Serial	schedule:	Schedule	that	does	not	interleave	the	
actions	of	different	transactions.	

§  Equivalent	schedules:		For	any	database	state,	the	
effect	of	executing	the	first	schedule	is	identical	to	the	
effect	of	executing	the	second	schedule.	(*)	

(*)	no	matter	what	the	arithmetic	etc.	operations	are!	

I 

Prakash	2018	 VT	CS	4604	 36	



Formal	Properties	of	Schedules	

§  Serializable	schedule:		A	schedule	that	is	
equivalent	to	some	serial	execution	of	the	
transactions.	

(Note:	If	each	transaction	preserves	consistency,	
every	serializable	schedule	preserves	
consistency.	)	

I 

Prakash	2018	 VT	CS	4604	 37	



Anomalies	with	interleaved	
execution:	

§  R-W	conflicts	
§ W-R	conflicts	
§ W-W	conflicts	
(why	not	R-R	conflicts?)	

Prakash	2018	 VT	CS	4604	 38	



Anomalies	with	Interleaved	
Execution	

§  Reading	Uncommitted	Data	(WR	Conflicts,	“dirty	
reads”):	
 
 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:             R(A), W(A), C 

I 

Prakash	2018	 VT	CS	4604	 39	



Anomalies	with	Interleaved	
Execution	

§  Reading	Uncommitted	Data	(WR	Conflicts,	“dirty	
reads”):	
 
 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:             R(A), W(A), C 

I 

Prakash	2018	 VT	CS	4604	 40	



Anomalies	with	Interleaved	
Execution	

§  Unrepeatable	Reads	(RW	Conflicts):	

T1:  R(A),                            R(A), W(A), C 
T2:                        R(A), W(A), C 

I 

Prakash	2018	 VT	CS	4604	 41	



Anomalies	with	Interleaved	
Execution	

§  Unrepeatable	Reads	(RW	Conflicts):	

T1:  R(A),                            R(A), W(A), C 
T2:              R(A), W(A), C 

I 

Prakash	2018	 VT	CS	4604	 42	



Anomalies	(Continued)	

§  Overwriting	Uncommitted	Data	(WW	
Conflicts):	

T1:  W(A),             W(B), C 
T2:   W(A),                W(B), C 

I 

Prakash	2018	 VT	CS	4604	 43	



Anomalies	(Continued)	

§  Overwriting	Uncommitted	Data	(WW	
Conflicts):	

T1:  W(A),             W(B), C 
T2:   W(A),                W(B), C 

I 

Prakash	2018	 VT	CS	4604	 44	



Serializability	

§  Objective:	find	non-serial	schedules,	which	
allow	transactions	to	execute	concurrently	
without	interfering,	thereby	producing	a	DB	
state	that	could	be	produced	by	a	serial	
execution	

§  BUT	
– Trying	to	find	schedules	equivalent	to	serial	
execution	is	too	slow!	 		

Prakash	2018	 VT	CS	4604	 45	



Conflict	Serializability	

§ We	need	a	formal	notion	of	equivalence	that	
can	be	implemented	efficiently…		
– Base	it	on	the	notion	of	“conflicting”	operations	

§  Definition:	Two	operations	conflict	if:	
– They	are	by	different	transactions,		
–  they	are	on	the	same	object,		
– and	at	least	one	of	them	is	a	write.		

Prakash	2018	 VT	CS	4604	 46	



Conflict	Serializable	Schedules	

§  Definition:	Two	schedules	are	conflict	equivalent	
iff:		
–  They	involve	the	same	actions	of	the	same	
transactions,	and		

–  every	pair	of	conflicting	actions	is	ordered	the	same	
way		

§  Definition:	Schedule	S	is	conflict	serializable	if:		
–  S	is	conflict	equivalent	to	some	serial	schedule.		

§  Note,	some	“serializable”	schedules	are	NOT	
conflict	serializable	(See	Example	4	later)	

Prakash	2018	 VT	CS	4604	 47	



CS---Intuition	
§  A	schedule	S	is	conflict	serializable	if:		

–  You	are	able	to	transform	S	into	a	serial	schedule	by	
swapping	consecutive	non-conflicting	operations	of	
different	transactions	

R(A)	W(A)	 	 	 	 	 	 	 	R(B)	W(B)	
	 	 	 	 	R(A)	W(A)	 	 	 	 	 				R(B)	W(B)	

====		
	
R(A)	W(A)	R(B)	W(B)		

	 	 	 	 	 	 		 	 	 		R(A)	W(A)	R(B)	W(B)		

Prakash	2018	 VT	CS	4604	 48	



CS---Intuition	

§  A	schedule	S	is	conflict	serializable	if:		
– You	are	able	to	transform	S	into	a	serial	schedule	
by	swapping	consecutive	non-conflicting	
operations	of	different	transactions	

R(A)		 	 	 	 	W(A)		
	 	R(A)	W(A)																				IS	NOT	SERIALIZABLE!	

Prakash	2018	 VT	CS	4604	 49	



Serializability	

§  Q:	any	faster	algorithm?	(faster	than	
transposing	operations?)	

Prakash	2018	 VT	CS	4604	 50	



Dependency	Graph	

§  One	node	per	Xact	
§  Edge	from	Ti	to	Tj	if:	

– An	operation	Oi	of	Ti	conflicts	with	an	operation	
Oj	of	Tj	and	

– Oi	appears	earlier	in	the	schedule	than	Oj.	

Ti	 Tj	

Prakash	2018	 VT	CS	4604	 51	



Dependency	Graph:	Theorem	

§  THEOREM:	Schedule	is	conflict	serializable	iff	
the	dependency	graph	is	acyclic		

§  Dependency	graph	is	also	called	the	
precedence	graph		
– different	than	the	waits-for	graph	we	will	see	later	

Prakash	2018	 VT	CS	4604	 52	



Example	

§  T1:		R(A),	W(A)	 	 	 	 	 								R(B),	W(B)	
§  T2:		 	 	 	 		R(A)	W(A)	R(B)	W(B)	

§  D.	Graph:		

§  NOT	Conflict	serializable	
–  Cycle	is	the	problem---output	of	T1	depends	on	T2	
and	vice	versa	

T1	 Tw	

Prakash	2018	 VT	CS	4604	 53	



Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
 
 
Prakash	2018	 VT	CS	4604	 54	

T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 



Example	#2	(Lost	update)	

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
 
 
Prakash	2018	 VT	CS	4604	 55	

T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 



Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
 
 
Prakash	2018	 VT	CS	4604	 56	

T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 



Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
 
 
Prakash	2018	 VT	CS	4604	 57	

T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 

T1	

T2	



Example	#3	
T1
Read(A)
…
write(A)

T2 T3

Read(A)
…
Write(A)

Read(B)
…
Write(B)

Read(B)
…
Write(B)

Prakash	2018	 VT	CS	4604	 58	



Example	#3	
T1
Read(A)
…
write(A)

T2 T3

Read(A)
…
Write(A)

Read(B)
…
Write(B)

Read(B)
…
Write(B)

T1 

T2 

T3 

A 

B 

equivalent serial 
execution? 

Prakash	2018	 VT	CS	4604	 59	



Example	#3	

§  A:	T2,	T1,	T3	
(Notice	that	T3	should	go	after	T2	in	the	
equivalent	serial	order,	although	it	starts	before	
it!)	

§  Q:	algo	for	generating	serial	execution	from	
(acyclic)	dependency	graph?	

Prakash	2018	 VT	CS	4604	 60	



Example	#3	

§  A:	T2,	T1,	T3	
(Notice	that	T3	should	go	after	T2	in	the	
equivalent	serial	order,	although	it	starts	before	
it!)	

§  Q:	algo	for	generating	serial	execution	from	
(acyclic)	dependency	graph?	

§  A:	Topological	sorting	

Prakash	2018	 VT	CS	4604	 61	



Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

dependency 
graph? 

Prakash	2018	 VT	CS	4604	 62	



Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

dependency 
graph? 

Prakash	2018	 VT	CS	4604	 63	

T1	

T2	

So	NOT	Conflict	
Serializable	(and	not	
serializable)	



Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

Q: create a 
‘correct’ 
Schedule based on  
this one that is not  
conflict-serializable 

Prakash	2018	 VT	CS	4604	 64	



Example #4’ (Inconsistent Analysis) 

T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
if (A>0), count=1 
R (B) 
if (B>0), count++ 

A: T2 asks for 
 the count 
of my active  
Accounts  
(assuming A>10, 
 B>0) 

Prakash	2018	 VT	CS	4604	 65	

NOTES:	
1.  This	schedule	is	still	not	CS	
2.  BUT	it	is	serializable!	It	is	equivalent	to	

either	of	[T1	T2]	or	[T2	T1]	(both	are	OK)	



Serializability	in	Practice	

§  DBMS	does	not	test	for	conflict	serializability	
of	a	given	schedule	
–  Impractical	as	interleaving	of	operations	from	
concurrent	Xacts	could	be	dictated	by	the	OS	

§  Approach:		
– Use	specific	protocols	that	are	known	to	produce	
conflict	serializable	schedules		

– But	may	reduce	concurrency	

Prakash	2018	 VT	CS	4604	 66	



Solution?	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)	

Prakash	2018	 VT	CS	4604	 67	



Answer	

§  (Full	answer:)	use	locks;	keep	them	until	
commit	(‘strict	2	phase	locking’)	

§ We’ll	see	the	details	later	(in	next	class!)	

Prakash	2018	 VT	CS	4604	 68	



(Review)	Goal:	ACID	Properties	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	

What	happens	if	system	crashes	between	commit	
and	flushing	modified	data	to	disk	?	

Prakash	2018	 VT	CS	4604	 69	



Durability	

§  ==	Recovery	
§ We’ll	see	it	later	(after	concurrency	control)	

D	

Prakash	2018	 VT	CS	4604	 70	



Summary	
§  Concurrency	control	and	recovery	are	among	
the	most	important	functions	provided	by	a	
DBMS.	

§  Concurrency	control	is	automatic	
–  System	automatically	inserts	lock/unlock	requests	
and	schedules	actions	of	different	Xacts	

–  Property	ensured:	resulting	execution	is	equivalent	
to	executing	the	Xacts	one	after	the	other	in	some	
order. 

Prakash	2018	 VT	CS	4604	 71	



ACID	properties	

Atomicity	(all	or	none)	
Consistency	
Isolation	(as	if	alone)	
Durability	

recovery	

concurrency	
control	

Prakash	2018	 VT	CS	4604	 72	


