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Why	Transactions?	

§  Database	systems	are	normally	being	
accessed	by	many	users	or	processes	at	the	
same	time.	
– Both	queries	and	modifications.	

§  Unlike	operating	systems,	which	support		
interaction	of	processes,	a	DMBS	needs	to	
keep	processes	from	troublesome	
interactions.	
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Transactions	-	dfn	

§  =	unit	of	work,	eg.	
– move	$10	from	savings	to	checking	
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Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	(why	do	we	want	that?)	
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Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	
– utilization/throughput	(“hide”	waiting	for	I/Os.)	
–  response	time	
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Statement	of	Problem	

§  Concurrent	execution	of	independent	
transactions	
– utilization/throughput	(“hide”	waiting	for	I/Os.)	
–  response	time	

§  would	also	like:	
– correctness	&	
–  fairness	

§  Example:	Book	an	airplane	seat	
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§  database	-	a	fixed	set	of	named	data	
objects	(A,	B,	C,	…)	

§  transaction	-	a	sequence	of	read	and	write	
operations	(read(A),	write(B),	…)	
– DBMS’s	abstract	view	of	a	user	program	

Definitions	
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Example:	‘Lost-update’	problem	

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

time 
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Statement	of	problem	(cont.)	

§  Arbitrary	interleaving	can	lead	to		
– Temporary	inconsistency	(ok,	unavoidable)	
– “Permanent”	inconsistency	(bad!)	

§  Need	formal	correctness	criteria.	
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Example:	Bad	Interaction	

§  You	and	friend	each	take	$100	from	different	
ATMs	at	about	the	same	time.	
– The	DBMS	better	make	sure	one	account	
deduction	doesn’t	get	lost.	

§  Compare:	An	OS	allows	two	people	to	edit	a	
document	at	the	same	time.		If	both	write,	
one’s	changes	get	lost.	
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ACID	Transactions	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	
§  Optional:	weaker	forms	of	transactions	are	
often	supported	as	well	(like	Google,	Amazon	
system	etc.):	Recall	NoSQL	systems	

Prakash	2018	 VT	CS	4604	 11	



COMMIT	

§  The	SQL	statement	COMMIT	causes	a	
transaction	to	complete.	
–  It’s	database	modifications	are	now	permanent	in	
the	database.	
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ROLLBACK	

§  The	SQL	statement	ROLLBACK	also	causes	the	
transaction	to	end,	but	by	aborting.	
– No	effects	on	the	database.	

§  Failures	like	division	by	0	or	a	constraint	
violation	can	also	cause	rollback,	even	if	the	
programmer	does	not	request	it.	
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Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	
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Atomicity	of	Transactions	

§  Two	possible	outcomes	of	executing	a	
transaction:	
– Xact	might	commit	after	completing	all	its	actions	
– or	it	could	abort	(or	be	aborted	by	the	DBMS)	
after	executing	some	actions.	

§  DBMS	guarantees	that	Xacts	are	atomic.			
– From	user’s	point	of	view:	Xact	always	either	
executes	all	its	actions,	or	executes	no	actions	at	
all.	

A 
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Transaction	states	

active	

partially	

	committed	
commited	

failed	 aborted	
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Mechanisms	for	Ensuring	Atomicity	

§  What	would	you	do?	

A 
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Mechanisms	for	Ensuring	Atomicity	

§  One	approach:	LOGGING	
– DBMS	logs	all	actions	so	that	it	can	undo	the	
actions	of	aborted	transactions.	

§  ~	like	black	box	in	airplanes	…	

A 
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Mechanisms	for	Ensuring	Atomicity	

§  Logging	used	by	all	modern	systems.		
§  Q:	why?	

A 
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Mechanisms	for	Ensuring	Atomicity	

§  Logging	used	by	all	modern	systems.		
§  Q:	why?	
§  A:		

– audit	trail	&	
– efficiency	reasons	

§ What	other	mechanism	can	you	think	of?	

A 
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Mechanisms	for	Ensuring	Atomicity	

§  Another	approach:	SHADOW	PAGES	
–  (not	as	popular)	

A 
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Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	
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Transaction	Consistency	

§  “Database	consistency”	-	data	in	DBMS	is	
accurate	in	modeling	real	world	and	follows	
integrity	constraints	

C 
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Transaction	Consistency	

§  “Transaction	Consistency”:	if	DBMS	consistent	
before	Xact	(running	alone),	it	will	be	after	
also	

§  Transaction	consistency:	User’s	responsibility	
– DBMS	just	checks	IC	

consistent 
database 

S1 

consistent 
database 

S2 

transaction T 

C 
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Transaction	Consistency	(cont.)	

§  Recall:	Integrity	constraints	
– must	be	true	for	DB	to	be	considered	consistent	
Examples:	
1.  FOREIGN	KEY	R.sid	REFERENCES	S	
2.  ACCT-BAL	>=	0	

C 
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Transaction	Consistency	(cont.)	

§  System	checks	ICs	and	if	they	fail,	the	
transaction	rolls	back	(i.e.,	is	aborted).	
– Beyond	this,	DBMS	does	not	understand	the	
semantics	of	the	data.	

– e.g.,	it	does	not	understand	how	interest	on	a	
bank	account	is	computed	

§  Since	it	is	the	user’s	responsibility,	we	don’t	
discuss	it	further	

C 
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Overview	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	
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Isolation	of	Transactions	

§  Users	submit	transactions,	and		
§  Each	transaction	executes	as	if	it	was	running	
by	itself.	
– Concurrency	is	achieved	by	DBMS,	which	
interleaves	actions	(reads/writes	of	DB	objects)	of	
various	transactions.	

§  Q:	How	would	you	achieve	that?	
– Tough	problem!		

I 
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Isolation	of	Transactions	

§  A:	Many	methods	-	two	main	categories:	
§  Pessimistic	–	don’t	let	problems	arise	in	the	
first	place	

§  Optimistic	–	assume	conflicts	are	rare,	deal	
with	them	after	they	happen.	

I 
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Example	

§  Consider	two	transactions	(Xacts):	
T1:  BEGIN   A=A+100,   B=B-100   END 
T2:  BEGIN   A=1.06*A,   B=1.06*B   END 

•  1st	xact	transfers	$100	from	B’s	account	to	A’s	
•  2nd	credits	both	accounts	with	6%	interest.	
•  Assume	at	first	A	and	B	each	have	$1000.		What	are	
the	legal	outcomes	of	running	T1	and	T2?	

I 
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Example	

T1:  BEGIN   A=A+100,   B=B-100   END 
T2:  BEGIN   A=1.06*A,   B=1.06*B   END 

•  many	-	but	A+B	should	be:	$2000	*1.06	=	$2120	
•  There	is	no	guarantee	that	T1	will	execute	before	T2	
or	vice-versa,	if	both	are	submitted	together.		But,	the	
net	effect	must	be	equivalent	to	these	two	
transactions	running	serially	in	some	order.	

I 
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Example	(Contd.)	
§  Legal	outcomes:	A=1166,B=954	or	A=1160,B=960	
§  Consider	a	possible	interleaved	schedule:	

T1:   A=A+100,          B=B-100    
T2:               A=1.06*A,     B=1.06*B 

•  This	is	OK	(same	as	T1;T2).		But	what	about:	
T1:   A=A+100,            B=B-100    
T2:               A=1.06*A, B=1.06*B 

I 
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Example	(Contd.)	
§  Legal	outcomes:	A=1166,B=954	or	A=1160,B=960	
§  Consider	a	possible	interleaved	schedule:	

T1:   A=A+100,          B=B-100    
T2:               A=1.06*A,     B=1.06*B 

•  This	is	OK	(same	as	T1;T2).		But	what	about:	
T1:   A=A+100,            B=B-100    
T2:               A=1.06*A, B=1.06*B 

•  Result:	A=1166,	B=960;	A+B	=	2126,	bank	loses	$6	
•  The	DBMS’s	view	of	the	second	schedule:	

T1:   R(A), W(A),                  R(B), W(B) 
T2:       R(A), W(A), R(B), W(B) 

I 
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‘Correctness’?	

§  Q:	How	would	you	judge	that	a	schedule	is	
‘correct’?	

(‘schedule’	=	‘interleaved	execution’)	
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‘Correctness’?	

§  Q:	How	would	you	judge	that	a	schedule	is	
‘correct’?	

§  A:	if	it	is	equivalent	to	some	serial	execution	
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Formal	Properties	of	Schedules	

§  Serial	schedule:	Schedule	that	does	not	interleave	the	
actions	of	different	transactions.	

§  Equivalent	schedules:		For	any	database	state,	the	
effect	of	executing	the	first	schedule	is	identical	to	the	
effect	of	executing	the	second	schedule.	(*)	

(*)	no	matter	what	the	arithmetic	etc.	operations	are!	

I 
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Formal	Properties	of	Schedules	

§  Serializable	schedule:		A	schedule	that	is	
equivalent	to	some	serial	execution	of	the	
transactions.	

(Note:	If	each	transaction	preserves	consistency,	
every	serializable	schedule	preserves	
consistency.	)	

I 
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Anomalies	with	interleaved	
execution:	

§  R-W	conflicts	
§ W-R	conflicts	
§ W-W	conflicts	
(why	not	R-R	conflicts?)	
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Anomalies	with	Interleaved	
Execution	

§  Reading	Uncommitted	Data	(WR	Conflicts,	“dirty	
reads”):	
 
 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:             R(A), W(A), C 

I 
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Anomalies	with	Interleaved	
Execution	

§  Reading	Uncommitted	Data	(WR	Conflicts,	“dirty	
reads”):	
 
 

T1:  R(A), W(A),                   R(B), W(B), Abort 
T2:             R(A), W(A), C 

I 
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Anomalies	with	Interleaved	
Execution	

§  Unrepeatable	Reads	(RW	Conflicts):	

T1:  R(A),                            R(A), W(A), C 
T2:                        R(A), W(A), C 

I 
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Anomalies	with	Interleaved	
Execution	

§  Unrepeatable	Reads	(RW	Conflicts):	

T1:  R(A),                            R(A), W(A), C 
T2:              R(A), W(A), C 

I 
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Anomalies	(Continued)	

§  Overwriting	Uncommitted	Data	(WW	
Conflicts):	

T1:  W(A),             W(B), C 
T2:   W(A),                W(B), C 

I 
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Anomalies	(Continued)	

§  Overwriting	Uncommitted	Data	(WW	
Conflicts):	

T1:  W(A),             W(B), C 
T2:   W(A),                W(B), C 

I 
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Serializability	

§  Objective:	find	non-serial	schedules,	which	
allow	transactions	to	execute	concurrently	
without	interfering,	thereby	producing	a	DB	
state	that	could	be	produced	by	a	serial	
execution	

§  BUT	
– Trying	to	find	schedules	equivalent	to	serial	
execution	is	too	slow!	 		
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Conflict	Serializability	

§ We	need	a	formal	notion	of	equivalence	that	
can	be	implemented	efficiently…		
– Base	it	on	the	notion	of	“conflicting”	operations	

§  Definition:	Two	operations	conflict	if:	
– They	are	by	different	transactions,		
–  they	are	on	the	same	object,		
– and	at	least	one	of	them	is	a	write.		
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Conflict	Serializable	Schedules	

§  Definition:	Two	schedules	are	conflict	equivalent	
iff:		
–  They	involve	the	same	actions	of	the	same	
transactions,	and		

–  every	pair	of	conflicting	actions	is	ordered	the	same	
way		

§  Definition:	Schedule	S	is	conflict	serializable	if:		
–  S	is	conflict	equivalent	to	some	serial	schedule.		

§  Note,	some	“serializable”	schedules	are	NOT	
conflict	serializable	(See	Example	4	later)	
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CS---Intuition	
§  A	schedule	S	is	conflict	serializable	if:		

–  You	are	able	to	transform	S	into	a	serial	schedule	by	
swapping	consecutive	non-conflicting	operations	of	
different	transactions	

R(A)	W(A)	 	 	 	 	 	 	 	R(B)	W(B)	
	 	 	 	 	R(A)	W(A)	 	 	 	 	 				R(B)	W(B)	

====		
	
R(A)	W(A)	R(B)	W(B)		

	 	 	 	 	 	 		 	 	 		R(A)	W(A)	R(B)	W(B)		
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CS---Intuition	

§  A	schedule	S	is	conflict	serializable	if:		
– You	are	able	to	transform	S	into	a	serial	schedule	
by	swapping	consecutive	non-conflicting	
operations	of	different	transactions	

R(A)		 	 	 	 	W(A)		
	 	R(A)	W(A)																				IS	NOT	SERIALIZABLE!	
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Serializability	

§  Q:	any	faster	algorithm?	(faster	than	
transposing	operations?)	
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Dependency	Graph	

§  One	node	per	Xact	
§  Edge	from	Ti	to	Tj	if:	

– An	operation	Oi	of	Ti	conflicts	with	an	operation	
Oj	of	Tj	and	

– Oi	appears	earlier	in	the	schedule	than	Oj.	

Ti	 Tj	
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Dependency	Graph:	Theorem	

§  THEOREM:	Schedule	is	conflict	serializable	iff	
the	dependency	graph	is	acyclic		

§  Dependency	graph	is	also	called	the	
precedence	graph		
– different	than	the	waits-for	graph	we	will	see	later	
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Example	

§  T1:		R(A),	W(A)	 	 	 	 	 								R(B),	W(B)	
§  T2:		 	 	 	 		R(A)	W(A)	R(B)	W(B)	

§  D.	Graph:		

§  NOT	Conflict	serializable	
–  Cycle	is	the	problem---output	of	T1	depends	on	T2	
and	vice	versa	

T1	 Tw	
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Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
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T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 



Example	#2	(Lost	update)	

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
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T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 



Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
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T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 



Example	#2	(Lost	update) 

T1 
Read(N) 
 
N = N -1 
 
Write(N) 
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T2 
 
Read(N) 
 
N = N -1 
 
Write(N) 

R/W 

T1	

T2	



Example	#3	
T1
Read(A)
…
write(A)

T2 T3

Read(A)
…
Write(A)

Read(B)
…
Write(B)

Read(B)
…
Write(B)
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Example	#3	
T1
Read(A)
…
write(A)

T2 T3

Read(A)
…
Write(A)

Read(B)
…
Write(B)

Read(B)
…
Write(B)

T1 

T2 

T3 

A 

B 

equivalent serial 
execution? 
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Example	#3	

§  A:	T2,	T1,	T3	
(Notice	that	T3	should	go	after	T2	in	the	
equivalent	serial	order,	although	it	starts	before	
it!)	

§  Q:	algo	for	generating	serial	execution	from	
(acyclic)	dependency	graph?	
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Example	#3	

§  A:	T2,	T1,	T3	
(Notice	that	T3	should	go	after	T2	in	the	
equivalent	serial	order,	although	it	starts	before	
it!)	

§  Q:	algo	for	generating	serial	execution	from	
(acyclic)	dependency	graph?	

§  A:	Topological	sorting	
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Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

dependency 
graph? 
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Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

dependency 
graph? 
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T1	

T2	

So	NOT	Conflict	
Serializable	(and	not	
serializable)	



Example #4 (Inconsistent Analysis) 
T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
Sum = A 
R (B) 
Sum += B 

Q: create a 
‘correct’ 
Schedule based on  
this one that is not  
conflict-serializable 
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Example #4’ (Inconsistent Analysis) 

T1 
R (A) 
A = A-10 
W (A) 
 
 
 
 
R(B) 
B = B+10 
W(B) 

T2 
 
 
 
R(A) 
if (A>0), count=1 
R (B) 
if (B>0), count++ 

A: T2 asks for 
 the count 
of my active  
Accounts  
(assuming A>10, 
 B>0) 
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NOTES:	
1.  This	schedule	is	still	not	CS	
2.  BUT	it	is	serializable!	It	is	equivalent	to	

either	of	[T1	T2]	or	[T2	T1]	(both	are	OK)	



Serializability	in	Practice	

§  DBMS	does	not	test	for	conflict	serializability	
of	a	given	schedule	
–  Impractical	as	interleaving	of	operations	from	
concurrent	Xacts	could	be	dictated	by	the	OS	

§  Approach:		
– Use	specific	protocols	that	are	known	to	produce	
conflict	serializable	schedules		

– But	may	reduce	concurrency	
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Solution?	

§  One	solution	for	“conflict	serializable”	
schedules	is	Two	Phase	Locking	(2PL)	

Prakash	2018	 VT	CS	4604	 67	



Answer	

§  (Full	answer:)	use	locks;	keep	them	until	
commit	(‘strict	2	phase	locking’)	

§ We’ll	see	the	details	later	(in	next	class!)	
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(Review)	Goal:	ACID	Properties	

§  ACID	transactions		are:	
– Atomic	:	Whole	transaction	or	none	is	done.	
– Consistent	:	Database	constraints	preserved.	
–  Isolated	:	It	appears	to	the	user	as	if	only	one	
process	executes	at	a	time.	

– Durable	:	Effects	of	a	process	survive	a	crash.	

What	happens	if	system	crashes	between	commit	
and	flushing	modified	data	to	disk	?	
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Durability	

§  ==	Recovery	
§ We’ll	see	it	later	(after	concurrency	control)	

D	
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Summary	
§  Concurrency	control	and	recovery	are	among	
the	most	important	functions	provided	by	a	
DBMS.	

§  Concurrency	control	is	automatic	
–  System	automatically	inserts	lock/unlock	requests	
and	schedules	actions	of	different	Xacts	

–  Property	ensured:	resulting	execution	is	equivalent	
to	executing	the	Xacts	one	after	the	other	in	some	
order. 
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ACID	properties	

Atomicity	(all	or	none)	
Consistency	
Isolation	(as	if	alone)	
Durability	

recovery	

concurrency	
control	
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