VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #15: Transactions 1: Intro. to
ACID

MVirginiaTech

Why Transactions?

= Database systems are normally being
accessed by many users or processes at the
same time.

— Both queries and modifications.
" Unlike operating systems, which support
interaction of processes, a DMBS needs to

keep processes from troublesome
Interactions.

Prakash 2018 VT CS 4604

MVirginiaTech

Transactions - dfn

" = unit of work, eg.
— move $10 from savings to checking

Prakash 2018 VT CS 4604

MVirginiaTech
Statement of Problem

= Concurrent execution of independent
transactions (why do we want that?)

Prakash 2018 VT CS 4604

MVirginiaTech
Statement of Problem

= Concurrent execution of independent
transactions

— utilization/throughput (“hide” waiting for 1/0s.)

— response time

Prakash 2018 VT CS 4604

MVirginiaTech
Statement of Problem

= Concurrent execution of independent
transactions

— utilization/throughput (“hide” waiting for 1/0s.)
— response time
= would also like:

— correctness &
— fairness

= Example: Book an airplane seat

Prakash 2018 VT CS 4604

MVirginiaTech
Definitions

= database - a fixed set of named data
objects (A, B, C, ...)

" transaction - a sequence of read and write
operations (read(A), write(B), ...)

— DBMS’ s abstract view of a user program

Prakash 2018 VT CS 4604

WVirginiaTech
1)
Example: Lost-update problem

Tl T2
Read(N)
time Read(N)
N=N-1
N=N-1
Write(N)
Write(N)

Prakash 2018 VT CS 4604

MVirginiaTech
Statement of problem (cont.)

= Arbitrary interleaving can lead to
— Temporary inconsistency (ok, unavoidable)
— “Permanent” inconsistency (bad!)

» Need formal correctness criteria.

Prakash 2018 VT CS 4604

MVirginiaTech

Example: Bad Interaction

® You and friend each take $100 from different
ATMs at about the same time.

— The DBMS better make sure one account
deduction doesn’t get lost.

= Compare: An OS allows two people to edit a
document at the same time. If both write,
one’s changes get lost.

Prakash 2018 VT CS 4604 10

MVirginiaTech
ACID Transactions

» ACID transactions are:
— : Whole transaction or none is done.
— : Database constraints preserved.

— . It appears to the user as if only one
process executes at a time.

— . Effects of a process survive a crash.

= Optional: weaker forms of transactions are
often supported as well (like Google, Amazon
system etc.): Recall NoSQL systems

Prakash 2018 VT CS 4604

MVirginiaTech
COMMIT

» The SQL statement COMMIT causes a
transaction to complete.

— It’ s database modifications are now permanent in
the database.

Prakash 2018 VT CS 4604 12

MVirginiaTech
ROLLBACK

= The SQL statement ROLLBACK also causes the
transaction to end, but by aborting.

— No effects on the database.

" Failures like division by 0 or a constraint
violation can also cause rollback, even if the
programmer does not request it.

Prakash 2018 VT CS 4604 13

MVirginiaTech
Overview

» ACID transactions are:
— Atomic : Whole transaction or none is done.
— Consistent : Database constraints preserved.

— |solated : It appears to the user as if only one
process executes at a time.

— Durable : Effects of a process survive a crash.

Prakash 2018 VT CS 4604

14

MVirginiaTech

A Atomicity of Transactions

" Two possible outcomes of executing a
transaction:

— Xact might commit after completing all its actions

— or it could abort (or be aborted by the DBMS)
after executing some actions.

= DBMS guarantees that Xacts are atomic.

— From user’ s point of view: Xact always either
executes all its actions, or executes no actions at
all.

Prakash 2018 VT CS 4604 15

[MVirginiaTech
Transaction states

partially)
@ _ commited
mltted

Prakash 2018 VT CS 4604

16

MVirginiaTech

A Mechanisms for Ensuring Atomicity

= What would you do?

Prakash 2018 VT CS 4604

17

MVirginiaTech
A Mechanisms for Ensuring Atomicity

" One approach: LOGGING

— DBMS logs all actions so that it can undo the
actions of aborted transactions.

= ~ |ike black box in airplanes ...

Prakash 2018 VT CS 4604

18

MVirginiaTech

A Mechanisms for Ensuring Atomicity

= Logging used by all modern systemes.
= Q: why?

Prakash 2018 VT CS 4604 19

MVirginiaTech
A Mechanisms for Ensuring Atomicity

= Logging used by all modern systemes.
= Q: why?
= A

— audit trail &

— efficiency reasons

" What other mechanism can you think of?

Prakash 2018 VT CS 4604 20

MVirginiaTech

A Mechanisms for Ensuring Atomicity

= Another approach: SHADOW PAGES
— (not as popular)

Prakash 2018 VT CS 4604 21

MVirginiaTech
Overview

» ACID transactions are:
— Atomic : Whole transaction or none is done.

— Consistent : Database constraints preserved.

— |solated : It appears to the user as if only one
process executes at a time.

— Durable : Effects of a process survive a crash.

Prakash 2018 VT CS 4604

22

MVirginiaTech

C Transaction Consistency

= “Database consistency’ - data in DBMS is
accurate in modeling real world and follows
Integrity constraints

Prakash 2018 VT CS 4604

23

MVirginiaTech

C Transaction Consistency

= “Transaction Consistency : if DBMS consistent
before Xact (running alone), it will be after
also

" Transaction consistency: User’s responsibility
— DBMS just checks IC

consistent t fon T consistent
database ransaclion 1, | yatabase

S1 S2

Prakash 2018 VT CS 4604 24

MVirginiaTech
C Transaction Consistency (cont.)

= Recall: Integrity constraints
— must be true for DB to be considered consistent
Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. ACCT-BAL>=0

Prakash 2018 VT CS 4604

25

MVirginiaTech
C Transaction Consistency (cont.)

= System checks ICs and if they fail, the
transaction rolls back (i.e., is aborted).

— Beyond this, DBMS does not understand the
semantics of the data.

— e.g., it does not understand how interest on a
bank account is computed

" Since it is the user’s responsibility, we don’t
discuss it further

Prakash 2018 VT CS 4604 26

MVirginiaTech
Overview

» ACID transactions are:
— Atomic : Whole transaction or none is done.
— Consistent : Database constraints preserved.

— Isolated : It appears to the user as if only one
process executes at a time.

— Durable : Effects of a process survive a crash.

Prakash 2018 VT CS 4604

27

MVirginiaTech

I Isolation of Transactions

= Users submit transactions, and

" Fach transaction executes as if it was running
by itself.

— Concurrency is achieved by DBMS, which
interleaves actions (reads/writes of DB objects) of
various transactions.

= Q: How would you achieve that?
— Tough problem!

Prakash 2018 VT CS 4604 28

MVirginiaTech

I Isolation of Transactions

= A: Many methods - two main categories:

= Pessimistic —don’t let problems arise in the
first place

= Optimistic — assume conflicts are rare, deal
with them after they happen.

Prakash 2018 VT CS 4604

29

MVirginiaTech
1 Example

= Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06"B END

« 1st xact transfers $100 from B’ s accountto A’ s
e 2nd credits both accounts with 6% interest.

« Assume at first A and B each have $1000. What are
the legal outcomes of running T1 and T2?

Prakash 2018 VT CS 4604

30

MVirginiaTech

1 Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06"B END

« many - but A+B should be: $2000 *1.06 = $2120

« There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together. But, the
net effect must be equivalent to these two
transactions running serially in some order.

Prakash 2018 VT CS 4604 31

MVirginiaTech
I Example (Contd.)

" |egal outcomes: A=1166,B=954 or A=1160,B=960
= Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

e This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06"B

Prakash 2018 VT CS 4604

MVirginiaTech
I Example (Contd.)

" |egal outcomes: A=1166,B=954 or A=1160,B=960

= Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

e This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06"B

« Result: A=1166, B=960; A+B = 2126, bank loses $6
« The DBMS’ s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Prakash 2018 VT CS 4604

[MVirginiaTech
‘Correctness’ ?

= Q: How would you judge that a schedule is
‘correct’ ?

(‘schedule’ = ‘interleaved execution’)

Prakash 2018 VT CS 4604

34

MVirginiaTech
‘Correctness’ ?

= Q: How would you judge that a schedule is
‘correct’ ?

= A:if it is equivalent to some serial execution

Prakash 2018 VT CS 4604

35

MVirginiaTech
I' Formal Properties of Schedules

= Serial schedule: Schedule that does not interleave the
actions of different transactions.

= Equivalent schedules: For any database state, the
effect of executing the first schedule is identical to the

effect of executing the second schedule. (*)

(*) no matter what the arithmetic etc. operations are!

Prakash 2018 VT CS 4604

36

MVirginiaTech
I' Formal Properties of Schedules

= Serializable schedule: A schedule that is
equivalent to some serial execution of the
transactions.

(Note: If each transaction preserves consistency,
every serializable schedule preserves
consistency.)

Prakash 2018 VT CS 4604 37

MVirginiaTech . o
Anomalies with interleaved

execution:

= R-W conflicts
= W-R conflicts
= W-W conflicts
(why not R-R conflicts?)

Prakash 2018 VT CS 4604

38

MVirginiaTech . .
I Anomalies with Interleaved

Execution

= Reading Uncommitted Data (WR Conflicts, “dirty
reads’):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Prakash 2018 VT CS 4604 39

MVirginiaTech
I Anomalies with Interleaved

Execution

= Reading Uncommitted Data (WR Conflicts, “dirty
reads’):

T1 R(A S\\W), Abort

Prakash 2018 VT CS 4604 40

MVirginiaTech
I Anomalies with Interleaved
Execution

* Unrepeatable Reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Prakash 2018 VT CS 4604

41

MVirginiaTech

* Unrepeatable Reads (RW Conflicts):

Anomalies with Interleaved

N

Execution

T1:
T2:

(R(\A),/N7 R(A), W(A), C
R(ARW(A),/C

Prakash 2018

7

VT CS 4604

42

MVirginiaTech

Anomalies (Continued)

" OQverwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Prakash 2018 VT CS 4604 43

MVirginiaTech

Anomalies (Continued)

" OQverwriting Uncommitted Data (WW
Conflicts):

T1: W(A), (B)\C
T2: (A), W(B)€

Prakash 2018 VT CS 4604

MVirginiaTech

Serializability

" Objective: find non-serial schedules, which
allow transactions to execute concurrently
without interfering, thereby producing a DB
state that could be produced by a serial
execution

= BUT

— Trying to find schedules equivalent to serial
execution is too slow!

Prakash 2018 VT CS 4604

45

MVirginiaTech
Conflict Serializability

" We need a formal notion of equivalence that
can be implemented efficiently...

— Base it on the notion of “conflicting” operations

= Definition: Two operations conflict if:
— They are by different transactions,
— they are on the same object,

— and at least one of them is a write.

Prakash 2018 VT CS 4604

46

MVirginiaTech
Conflict Serializable Schedules

" Definition: Two schedules are conflict equivalent
iff:

— They involve the same actions of the same
transactions, and

— every pair of conflicting actions is ordered the same
way

= Definition: Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.

= Note, some “serializable” schedules are NOT
conflict serializable (See Example 4 later)

Prakash 2018 VT CS 4604 47

MVirginiaTech
CS---Intuition

= A schedule S is conflict serializable if:

— You are able to transform S into a serial schedule by
swapping consecutive non-conflicting operations of
different transactions

R(A) W(A) R(B) W(B)
R(A) W(A) R(B) W(B)

R(A) W(A) R(B) W(B)
R(A) W(A) R(B) W(B)

Prakash 2018 VT CS 4604

48

MVirginiaTech
CS---Intuition

= A schedule S is conflict serializable if:

— You are able to transform S into a serial schedule
by swapping consecutive non-conflicting
operations of different transactions

R(A) W(A)
R(A) W(A) IS NOT SERIALIZABLE!

Prakash 2018 VT CS 4604 49

MVirginiaTech
Serializability

= Q: any faster algorithm? (faster than
transposing operations?)

Prakash 2018 VT CS 4604

50

[MVirginiaTech
Dependency Graph

= One node per Xact @ @

= Edge from Ti to Tj if:

— An operation Oi of Ti conflicts with an operation
Oj of Tj and

— Oi appears earlier in the schedule than O;.

Prakash 2018 VT CS 4604

51

MVirginiaTech
Dependency Graph: Theorem

= THEOREM: Schedule is conflict serializable iff
the dependency graph is acyclic

" Dependency graph is also called the
precedence graph
— different than the waits-for graph we will see later

Prakash 2018 VT CS 4604 52

MVirginiaTech
Example

= T1: R(A), W(A) R(B), W(B)
. T2: R(A) W(A) R(B) W(B)

O ()

= NOT Conflict serializable

— Cycle is the problem---output of T1 depends on T2
and vice versa

" D. Graph:

Prakash 2018 VT CS 4604

MVirginiaTech

Example #2 (Lost update)

T1 T2
Read(N)

Read(N)
N=N-1

N=N-1
Write(N)

Prakash 2018

Write(N)

VT CS 4604

54

MVirginiaTech

Example #2 (Lost update)

Tl T2

Write(N)

Prakash 2018 VT CS 4604 55

WVirginiaTech

Example #2 (Lost update)

T1 12
Read(N
(Read(N)>
N=N-1 R/W
N =N -1
(Write(N)>

Prakash 2018 VT CS 4604

56

WVirginiaTech

Example #2 (Lost update)

T1 T2
Read(N

Read(N
N=N-1 R/

N=N-1

Prakash 2018

Write(N D

VT CS 4604

57

MVirginiaTech

Prakash 2018

Example #3
T1 T2 T3
Read(A)
\.7\./.rite(A)
Read(A)
.V.V.rite(A)
Read(B)
.V.V.rite(B)
Read(B)

Write(B)

VT CS 4604

58

MVirginiaTech

Prakash 2018

Example #3
T1 T2 T3
Read(A)
write(A) A
Read(A) @
.V.V.rite(A)
Read(B) @
v.V.rite(B) B @
Read(B)

Write(B)

VT CS 4604

equivalent serial
execution?

59

MVirginiaTech
Example #3

= A:T2,T1, T3

(Notice that T3 should go after T2 in the
equivalent serial order, although it starts before
it!)

" Q: algo for generating serial execution from
(acyclic) dependency graph?

Prakash 2018 VT CS 4604

60

MVirginiaTech

Example #3

= A:T2,T1, T3

(Notice that T3 should go after T2 in the
equivalent serial order, although it starts before
it!)

" Q: algo for generating serial execution from
(acyclic) dependency graph?

" A: Topological sorting

Prakash 2018 VT CS 4604 61

Example #4 (Inconsistent Analysis)

T1 T2
R (A)
A=A-10 dependency
W.(A) graph?
R(A)
Sum = A
R (B)
Sum += B
R(B)
B =B+10

W(B)

Prakash 2018 VT CS 4604 62

Example #4 (Inconsistent Analysis)

T1 T2
R (A)
A=A-10 dependency
W.(A) graph?
R(A)
Sum = A
R (B) @
Sum += B
R(B)

B =B+10 @
W(B)
So NOT Conflict

Serializable (and not
Prakash 2018 VT CS 4604 Serlallzable) 63

Example #4 (Inconsistent Analysis)

T1 T2

R (A) Q: create a

A=A-10 ‘correct’

W (A) Schedule based on

R(A) this one that is not
_ 5 conflict-serializable

Sum
R (B)
Sum += B
R(B)
B =B+10

W(B)

Prakash 2018 VT CS 4604 64

Example #4° (Inconsistent Analysis)

Tl 12 A: T2 asks for
R (A) the count
A=A-10 of my active
W (A) Accougts
(assuming A>10,
R(A) B>0)
if (A>0), count=1
R (B)
if (B>0), count++
REB) OTES
_ NOTES:
B =B+10 1. This schedule is still not CS
W(B) 2. BUT it is serializable! It is equivalent to

either of [T1 T2] or [T2 T1] (both are OK)

Prakash 2018 VT CS 4604 65

MVirginiaTech
Serializability in Practice

= DBMS does not test for conflict serializability
of a given schedule

— Impractical as interleaving of operations from
concurrent Xacts could be dictated by the OS

= Approach:

— Use specific protocols that are known to produce
conflict serializable schedules

— But may reduce concurrency

Prakash 2018 VT CS 4604 66

MVirginiaTech
Solution?

= One solution for “conflict serializable”
schedules is Two Phase Locking (2PL)

Prakash 2018 VT CS 4604

67

MVirginiaTech
Answer

" (Full answer:) use locks; keep them until
commit (‘strict 2 phase locking’)

= We'll see the details later (in next class!)

Prakash 2018 VT CS 4604

68

M VirginiaTech

(Review) Goal: ACID Properties

" ACID transactions are:
— Atomic : Whole transaction or none is done.
— Consistent : Database constraints preserved.

— |solated : It appears to the user as if only one
process executes at a time.

— Durable : Effects of a process survive a crash.

What happens if system crashes between commit

and flushing modified data to disk ?

Prakash 2018 VT CS 4604 69

MVirginiaTech

D Durability

= == Recovery
= We'll see it later (after concurrency control)

Prakash 2018 VT CS 4604

70

MVirginiaTech
Summary

= Concurrency control and recovery are among
the most important functions provided by a
DBMS.

" Concurrency control is automatic

— System automatically inserts lock/unlock requests
and schedules actions of different Xacts

— Property ensured: resulting execution is equivalent
to executing the Xacts one after the other in some
order.

Prakash 2018 VT CS 4604 71

MVirginiaTech
ACID properties

Atomicity (all or none) + recovery

Consistency

Isolation (as if alone) concurrency
. trol
Durability FONEo

Prakash 2018 VT CS 4604 72

