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Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	
– normal	forms	
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Goal	

§  Design	‘good’	tables	
– sub-goal#1:	define	what	‘good’	means	
– sub-goal#2:	fix	‘bad’	tables	

§  in	short:	“we	want	tables	where	the	attributes	
depend	on	the	primary	key,	on	the	whole	key,	
and	nothing	but	the	key”	

§  Let’s	see	why,	and	how:	
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Pitfalls	

§  takes1	(ssn,	c-id,	grade,	name,	address)	

Ssn c-id Grade Name Address

123 413 A smith Main
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Pitfalls	

§  ‘Bad’	-	why?		because:	ssn->address,	name	

Ssn c-id Grade Name Address

123 413 A smith Main

123 415 B smith Main

123 211 A smith Main
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Pitfalls	

§  Redundancy	
– space	
–  (inconsistencies)	
–  insertion/deletion	anomalies:	
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Pitfalls	

§  insertion	anomaly:	
– “jones”	registers,	but	takes	no	class	-	no	place	to	
store	his	address!	

Ssn c-id Grade Name Address

123 413 A smith Main

… … … … …

234 null null jones Forbes
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Pitfalls	

§  deletion	anomaly:	
– delete	the	last	record	of	‘smith’	(we	lose	his	
address!)	

Ssn c-id Grade Name Address

123 413 A smith Main

123 415 B smith Main

123 211 A smith Main
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Solution:	decomposition	

§  split	offending	table	in	two	(or	more),	eg.:	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main
123 211 A smith Main

? ? 
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Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	

•  lossless	join	decomp.	
•  dependency	preserving	

– normal	forms	
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Decompositions	

§  There	are	‘bad’	decompositions.	Good	ones	
are:	

§  lossless	and	
§  dependency	preserving	
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Decompositions	-	lossy:	

– R1(ssn,	grade,	name,	address)				R2(c-id,	grade)	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn Grade Name Address
123 A smith Main
123 B smith Main

234 A jones Forbes

c-id Grade
413 A
415 B

211 A
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Decompositions	-	lossy:	

– can	not	recover	original	table	with	a	join!	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn Grade Name Address
123 A smith Main
123 B smith Main

234 A jones Forbes

c-id Grade
413 A
415 B

211 A
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Decompositions	

§  example	of	non-dependency	preserving	

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 

 

 

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address S# -> status 
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Decompositions	

§  (drill:	is	it	lossless?)	

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address
123 London
125 Paris

234 Pitts.

S# -> address S# -> status 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 
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Decompositions	-	lossless	

§  Definition:		
§  consider	schema	R,	with	FD	‘F’.		R1,	R2	is	a	
lossless	join	decomposition	of		R	if	we	always	
have:	

§  An	easier	criterion?	

rrr =21 ◃▹
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Decomposition	-	lossless	

§  Theorem:	lossless	join	decomposition	if	the	
joining	attribute	is	a	superkey	in	at	least	one	
of	the	new	tables	

§  Formally:	if	you	are	decomposing	R	into	R1	
and	R2	then	(so	R	=	R1	U	R2)	

221
121
RRR
orRRR

→∩

→∩
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Decomposition	-	lossless	

§  example:	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn c-id Grade
123 413 A
123 415 B

234 211 A

Ssn Name Address
123 smith Main
234 jones Forbes

ssn->name,	address	ssn,	c-id	->	grade	

R1 R2 
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Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	

•  lossless	join	decomp.	
•  dependency	preserving	

– normal	forms	
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Decomposition	-	depend.	pres.	

§  informally:	we	don’t	want	the	original	FDs	to	
span	two	tables	-	counter-example:	

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address S# -> status 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 
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Decomposition	-	depend.	pres.	

§  dependency	preserving	decomposition:	

S# -> address, status 
address -> status 

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

address status 
London E 
Paris E 
Blacks. A 

 

 

(but: S#->status ?) 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 
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Decomposition	-	depend.	pres.	

§  informally:	we	don’t	want	the	original	FDs	to	
span	two	tables.	

§  So	more	specifically:	…	the	FDs	of	the	
canonical	cover.	
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Decomposition	-	depend.	pres.	

§  why	is	dependency	preservation	good?	

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

address status 
London E 
Paris E 
Blacks. A 

 

 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address 
S# -> status 

(address->status: ‘lost’) 
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Decomposition	-	depend.	pres.	

§  A:	eg.,	record	that	‘Philly’	has	status	‘A’	

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

S# status
123 E
125 E

234 A

S# -> address 
S# -> status 

(address->status: ‘lost’) 

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

address status 
London E 
Paris E 
Blacks. A 
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Decomposition	-	conclusions	

§  decompositions	should	always	be	lossless	
–  	joining	attribute	->		superkey		

§  whenever	possible,	we	want	them	to	be	
dependency	preserving		(occasionally,	
impossible	-	see	‘STJ’	example	later…)	
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Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	(->	how	to	fix	the	problem)	
– normal	forms	(->	how	to	detect	the	problem)	

•  BCNF,		
•  3NF		
•  (1NF,	2NF)	
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Normal	forms	-	BCNF	

§ We	saw	how	to	fix	‘bad’	schemas	-	
§  but	what	is	a	‘good’	schema?	

§  Answer:	‘good’,	if	it	obeys	a	‘normal	form’,	
§  ie.,	a	set	of	rules.	

§  Typically:	Boyce-Codd	Normal	form	
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Normal	forms	-	BCNF	

§  Defn.:	Rel.	R	is	in	BCNF	wrt	F,	if	
§  informally:	everything	depends	on	the	full	key,	
and	nothing	but	the	key	

§  semi-formally:	every	determinant	i.e	the	left-
side	(of	the	cover)	is	a	candidate	key	
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Normal	forms	-	BCNF	

§  Example	and	counter-example:	

Ssn Name Address
123 smith Main
999 smith Shady

234 jones Forbes

ssn->name,	address	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Prakash	2018	 VT	CS	4604	 29	



Normal	forms	-	BCNF	

§  Formally:	for	every	FD		a->b	in	F	
– a->b	is	trivial	(a	superset	of	b)	or	
– a	is	a	superkey	
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Normal	forms	-	BCNF	

§  Theorem:	given	a	schema	R	and	a	set	of	FD	
‘F’,	we	can	always	decompose	it	to	schemas	
R1,	…	Rn,	so	that	
– R1,	…	Rn	are	in	BCNF	and	
–  the	decompositions	are	lossless.	

§  (but,	some	decomp.	might	lose	dependencies)	

Prakash	2018	 VT	CS	4604	 31	



Normal	forms	-	BCNF	

§  How?	algorithm	in	book:	for	a	relation	R	
-	for	every	FD	X->A	in	S	that	violates	BCNF,	
decompose	to	tables	(X,A)	and	(R-A)	
-  repeat	recursively	
Q:	how	to	get	the	FDs	for	the	new	relations	(X,	
A)	and	(R-A)?		
Ans:	just	project	the	FDs	into	them	i.e.	which	
FDs	are	in	S	and	involve	only	attrs.	of	(X-A)	
(similarly	for	R-A)	
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Normal	forms	-	BCNF	

§  How?	algorithm	in	book:	for	a	relation	R	
-	for	every	FD	X->A	that	violates	BCNF,	
decompose	to	tables	(X,A)	and	(R-A)	
-  repeat	recursively	
§  eg.	TAKES1(ssn,	c-id,	grade,	name,	address)	
– ssn	->	name,	address	
– ssn,	c-id	->	grade	
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Normal	forms	-	BCNF	

§  eg.	TAKES1(ssn,	c-id,	grade,	name,	address)	
– ssn	->	name,	address						ssn,	c-id	->	grade	

name 

address grade 
c-id 

ssn 
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Normal	forms	-	BCNF	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn c-id Grade
123 413 A
123 415 B

234 211 A

Ssn Name Address
123 smith Main
123 smith Main

234 jones Forbes

ssn->name,	address	ssn,	c-id	->	grade	
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Normal	forms	-	BCNF	

§  pictorially:	we	want	a	‘star’	shape	

name 

address grade 
c-id 

ssn 
:not in BCNF 
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Normal	forms	-	BCNF	

§  pictorially:	we	want	a	‘star’	shape	

B 

C 

A G 

E 

D 
or 

F 

H 
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Normal	forms	-	BCNF	

§  or	a	star-like:	(eg.,	2	cand.	keys):	
– STUDENT(ssn,	st#,	name,	address)	

name 

address 

ssn 

st# 

= 

name 

address 

ssn 

st# 
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Normal	forms	-	BCNF	

§  but	not:	

or 

B 

C 

A 

D 

G 

E 

D 

F 

H 
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BCNF	Decomposing	Courses	
§  Schema	is	Courses(Number,	DepartmentName,	CourseName,	

Classroom,	Enrollment,	StudentName,	Address)	
§  BCNF-violating	FD	is	
Number	DeparmentName	à	CourseName	Classroom	Enrollment		

§  Decompose	Courses	into	
Courses1(Number,	DepartmentName,	CourseName,	Classroom,	
Enrollment)		
and	
Courses2(Number,	DepartmentName,	StudentName,	Address)	

Are	there	any	BCNF	violations	in	the	
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Another	BCNF	Example…	
§  Schema	is	Students(ID,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§  What	are	the	FDs?		
–  ID	à	Name	FavouriteAdvisorId	
–  AdvisorId	à	AdvisorName	

§  What	is	the	key?		
–  {ID,	AdvisorId}	

§  Is	there	a	BCNF	violation?		
–  Yes	

§  Let’s	use	ID	à	Name	FavouriteAdvisorId	to	decompose	
§  New	relations?		
–  Students1(ID,	Name,	FavouriteAdvisorId)	
–  Students2(ID,	AdvisorId,	AdvisorName)	
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Another	Example	contd…	
§  What	are	the	FDs	in	Student1(ID,	Name,	
FavouriteAdvisorId)?		
–  None	that	violate	BCNF	

§  What	are	the	FDs	in	Students2(ID,	AdvisorID,	
AdvisorName)?	
–  AdvisorID	à	AdvisorName	

§  Does	it	violate	BCNF?	
–  Yes!		

§  Rinse---Repeat	the	decomposition	
§  Let’s	use	AdvisorID	à	AdvisorName	for	it	
§  New	Relations:	
–  Students2(ID,	AdvisorId)	
–  Students3(AdvisorId,	AdvisorName)	
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Normal	forms	-	3NF	

§  consider	the	‘classic’	case:	
§  STJ(	Student,	Teacher,	subJect)	
– T->	J	
– S,J	->	T	

§  is	it	BCNF?	 S 

T 
J 
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J					S,J	->	T	

§  How	to	decompose	it	to	BCNF?	

S 

T 
J 
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

§  1)	R1(T,J)			R2(S,J)		
–  (BCNF?									-	lossless?					-	dep.	pres.?				)	

§  2)	R1(T,J)			R2(S,T)		
–  (BCNF?									-	lossless?					-	dep.	pres.?				)	
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

§  1)	R1(T,J)			R2(S,J)		
–  (BCNF?		Y+Y	-	lossless?		N	-	dep.	pres.?		N		)	

§  2)	R1(T,J)			R2(S,T)		
–  (BCNF?		Y+Y	-	lossless?		Y	-	dep.	pres.?		N		)	
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

in	this	case:	impossible	to	have	both	
	BCNF	and		
dependency	preservation	
Welcome	3NF!		
(essentially	define	the	issue	away	J)	
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

S 

J 
T 

informally, 3NF 
‘forgives’ the red arrow 
in the can. cover 
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Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	
subJect)	
–  T->	J				S,J	->	T	

§  Formally,		a	rel.	R	with	
FDs	‘F’	is	in	3NF		if:	for	
every	a->b		in	F:	

•  	it	is	trivial	or	
•  	a	is	a	superkey	or	
•  	b:	part	of	a	candidate	
key	

S 

J 
T 
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Normal	forms	-	3NF	

how	to	bring	a	schema	to	3NF?	
two	algo’s	in	book:	First	one:	
§  start	from	ER	diagram	and	turn	to	tables	
§  then	we	have	a	set	of	tables	R1,	...	Rn	which	
are	in	3NF	

§  for	each	FD	(X->A)	in	the	cover	that	is	not	
preserved,	create	a	table	(X,A)	
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Normal	forms	-	3NF	

how	to	bring	a	schema	to	3NF?	
two	algo’s	in	book:	Second	one	(‘synthesis’)	
§  take	all	attributes	of	R	
§  for	each	FD	(X->A)	in	the	cover,	add	a	table	
(X,A)	

§  if	not	lossless,	add	a	table	with	appropriate	
key	

We	prefer	Synthesis	as	it	is	
clearer	and	does	not	need	ER	
diagrams	
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3NF	Synthesis	Algorithm:	Details	
§  Let	F	be	the	set	of	all	FDs	of	R	
§  We	will	compute	a	lossless-join,	dependency-
preserving	decomposition	of	R	into	S,	where	
every	relation	in	S	is	in	3NF	

1.  Find	a	canonical	cover	for	F,	say	G	
2.  For	every	FD	X	à	A	in	G,	use	X	U	A	as	the	

schema	for	one	of	the	relations	in	S	
3.  If	the	attributes	in	none	of	the	relations	in	S	

form	a	superkey	for	R,	add	another	relation	to	S	
whose	schema	is	a	key	for	R	(this	will	ensure	
that	the	decomp.	is	lossless)	
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3NF	Synthesis	Algorithm:	Details	
§  Let	F	be	the	set	of	all	FDs	of	R	
§  We	will	compute	a	lossless-join,	dependency-
preserving	decomposition	of	R	into	S,	where	
every	relation	in	S	is	in	3NF	

1.  Find	a	canonical	cover	for	F,	say	G	
2.  For	every	FD	X	à	A	in	G,	use	X	U	A	as	the	

schema	for	one	of	the	relations	in	S	
3.  If	the	attributes	in	none	of	the	relations	in	S	

form	a	superkey	for	R,	add	another	relation	to	S	
whose	schema	is	a	key	for	R	(this	will	ensure	
that	the	decomp.	is	lossless)	
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Normal	forms	-	3NF	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?	

§  Q2:	what	is	the	decomposition	to	3NF?	
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Normal	forms	-	3NF	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	
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Normal	forms	-	3NF:	Step	1	
Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	
A2:	one	table	each	for	the	FDs		
	R1(A,B),	R2(C,B),	...					
But	is	it	lossless??	Or	equivalently	do	any	of	the	
relations	in	S	form	a	superkey	for	R?	
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Normal	forms	-	3NF:	Step	2	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	
A2:	R1(A,B),	R2(C,B),	R3(A,C)	
(note	that	AC	is	a	key	for	R)	
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Normal	forms	-	3NF	vs	BCNF	

§  If		‘R’	is	in	BCNF,	it	is	always	in	3NF	(but	not	
the	reverse)	

§  In	practice,	aim	for	
– BCNF;	lossless	join;	and	dep.	preservation	

§  if	impossible,	we	accept	
– 3NF;	but	insist	on	lossless	join	and	dep.	
preservation	
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Normal	forms	-	more	details	

§  why	‘3’NF?	what	is	2NF?	1NF?	
§  1NF:	attributes	are	atomic	(ie.,	no	set-valued	
attr.,		a.k.a.	‘repeating	groups’)	

Ssn Name Dependents
123 Smith Peter

Mary
John

234 Jones Ann
Michael

not 1NF 
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Normal	forms	-	more	details	

§  2NF:	1NF	and	non-key	attr.	fully	depend	on	
the	key	

§  counter-example:	TAKES1(ssn,	c-id,	grade,	
name,	address)	

§  ssn	->	name,	address						ssn,	c-id	->	grade	
name 

address grade 
c-id 

ssn 
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Normal	forms	-	more	details	

§  3NF:	2NF	and	no	transitive	dependencies	
§  counter-example:	

B 

C 

A 

D 
in 2NF, but not in 3NF 
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Normal	forms	-	more	details	

§  4NF,		multivalued	dependencies	etc:	IGNORE	
§  Fifth	Normal	Form:	outside	the	scope	of	
CS4604	

§  Sixth	Normal	Form:	different	versions	exist.	
One	version	developed	for	temporal	
databases	

§  Seventh	Normal	Form	
–  just	kidding	J	
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Normal	forms	-	more	details	

§  in	practice,	E-R	diagrams	usually	lead	to	tables	
in		BCNF	
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Overview	-	conclusions	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decompositions	(lossless,	dep.	preserving)	
– normal	forms	(BCNF	or	3NF)	

§  Design	Mantra:		
“everything	should	depend	on	the	key,	the	
whole	key,	and	nothing	but	the	key”	
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