
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#14:	BCNF,	3NF	and	

Normalization	



Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	
– normal	forms	

Prakash	2018	 VT	CS	4604	 2	



Goal	

§  Design	‘good’	tables	
– sub-goal#1:	define	what	‘good’	means	
– sub-goal#2:	fix	‘bad’	tables	

§  in	short:	“we	want	tables	where	the	attributes	
depend	on	the	primary	key,	on	the	whole	key,	
and	nothing	but	the	key”	

§  Let’s	see	why,	and	how:	

Prakash	2018	 VT	CS	4604	 3	



Pitfalls	

§  takes1	(ssn,	c-id,	grade,	name,	address)	

Ssn c-id Grade Name Address

123 413 A smith Main

Prakash	2018	 VT	CS	4604	 4	



Pitfalls	

§  ‘Bad’	-	why?		because:	ssn->address,	name	

Ssn c-id Grade Name Address

123 413 A smith Main

123 415 B smith Main

123 211 A smith Main

Prakash	2018	 VT	CS	4604	 5	



Pitfalls	

§  Redundancy	
– space	
–  (inconsistencies)	
–  insertion/deletion	anomalies:	

Prakash	2018	 VT	CS	4604	 6	



Pitfalls	

§  insertion	anomaly:	
– “jones”	registers,	but	takes	no	class	-	no	place	to	
store	his	address!	

Ssn c-id Grade Name Address

123 413 A smith Main

… … … … …

234 null null jones Forbes

Prakash	2018	 VT	CS	4604	 7	



Pitfalls	

§  deletion	anomaly:	
– delete	the	last	record	of	‘smith’	(we	lose	his	
address!)	

Ssn c-id Grade Name Address

123 413 A smith Main

123 415 B smith Main

123 211 A smith Main

Prakash	2018	 VT	CS	4604	 8	



Solution:	decomposition	

§  split	offending	table	in	two	(or	more),	eg.:	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main
123 211 A smith Main

? ? 

Prakash	2018	 VT	CS	4604	 9	



Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	

•  lossless	join	decomp.	
•  dependency	preserving	

– normal	forms	

Prakash	2018	 VT	CS	4604	 10	



Decompositions	

§  There	are	‘bad’	decompositions.	Good	ones	
are:	

§  lossless	and	
§  dependency	preserving	

Prakash	2018	 VT	CS	4604	 11	



Decompositions	-	lossy:	

– R1(ssn,	grade,	name,	address)				R2(c-id,	grade)	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn Grade Name Address
123 A smith Main
123 B smith Main

234 A jones Forbes

c-id Grade
413 A
415 B

211 A

Prakash	2018	 VT	CS	4604	 12	



Decompositions	-	lossy:	

– can	not	recover	original	table	with	a	join!	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn Grade Name Address
123 A smith Main
123 B smith Main

234 A jones Forbes

c-id Grade
413 A
415 B

211 A

Prakash	2018	 VT	CS	4604	 13	



Decompositions	

§  example	of	non-dependency	preserving	

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 

 

 

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address S# -> status 

Prakash	2018	 VT	CS	4604	 14	



Decompositions	

§  (drill:	is	it	lossless?)	

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address
123 London
125 Paris

234 Pitts.

S# -> address S# -> status 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 

 

 

Prakash	2018	 VT	CS	4604	 15	



Decompositions	-	lossless	

§  Definition:		
§  consider	schema	R,	with	FD	‘F’.		R1,	R2	is	a	
lossless	join	decomposition	of		R	if	we	always	
have:	

§  An	easier	criterion?	

rrr =21 ◃▹

Prakash	2018	 VT	CS	4604	 16	



Decomposition	-	lossless	

§  Theorem:	lossless	join	decomposition	if	the	
joining	attribute	is	a	superkey	in	at	least	one	
of	the	new	tables	

§  Formally:	if	you	are	decomposing	R	into	R1	
and	R2	then	(so	R	=	R1	U	R2)	

221
121
RRR
orRRR

→∩

→∩

Prakash	2018	 VT	CS	4604	 17	



Decomposition	-	lossless	

§  example:	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn c-id Grade
123 413 A
123 415 B

234 211 A

Ssn Name Address
123 smith Main
234 jones Forbes

ssn->name,	address	ssn,	c-id	->	grade	

R1 R2 

Prakash	2018	 VT	CS	4604	 18	



Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	

•  lossless	join	decomp.	
•  dependency	preserving	

– normal	forms	

Prakash	2018	 VT	CS	4604	 19	



Decomposition	-	depend.	pres.	

§  informally:	we	don’t	want	the	original	FDs	to	
span	two	tables	-	counter-example:	

S# -> address, status 
address -> status 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address S# -> status 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 

 

 

Prakash	2018	 VT	CS	4604	 20	



Decomposition	-	depend.	pres.	

§  dependency	preserving	decomposition:	

S# -> address, status 
address -> status 

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

address status 
London E 
Paris E 
Blacks. A 

 

 

(but: S#->status ?) 

S# address status 
123 London E 
125 Paris E 
234 Blacks. A 

 

 

Prakash	2018	 VT	CS	4604	 21	



Decomposition	-	depend.	pres.	

§  informally:	we	don’t	want	the	original	FDs	to	
span	two	tables.	

§  So	more	specifically:	…	the	FDs	of	the	
canonical	cover.	

Prakash	2018	 VT	CS	4604	 22	



Decomposition	-	depend.	pres.	

§  why	is	dependency	preservation	good?	

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

address status 
London E 
Paris E 
Blacks. A 

 

 

S# status
123 E
125 E

234 A

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address 
S# -> status 

(address->status: ‘lost’) 

Prakash	2018	 VT	CS	4604	 23	



Decomposition	-	depend.	pres.	

§  A:	eg.,	record	that	‘Philly’	has	status	‘A’	

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

S# -> address address -> status 

S# status
123 E
125 E

234 A

S# -> address 
S# -> status 

(address->status: ‘lost’) 

S# address 
123 London 
125 Paris 
234 Blacks. 

 

 

address status 
London E 
Paris E 
Blacks. A 

 

 

Prakash	2018	 VT	CS	4604	 24	



Decomposition	-	conclusions	

§  decompositions	should	always	be	lossless	
–  	joining	attribute	->		superkey		

§  whenever	possible,	we	want	them	to	be	
dependency	preserving		(occasionally,	
impossible	-	see	‘STJ’	example	later…)	

Prakash	2018	 VT	CS	4604	 25	



Overview	-	detailed	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decomposition	(->	how	to	fix	the	problem)	
– normal	forms	(->	how	to	detect	the	problem)	

•  BCNF,		
•  3NF		
•  (1NF,	2NF)	

Prakash	2018	 VT	CS	4604	 26	



Normal	forms	-	BCNF	

§ We	saw	how	to	fix	‘bad’	schemas	-	
§  but	what	is	a	‘good’	schema?	

§  Answer:	‘good’,	if	it	obeys	a	‘normal	form’,	
§  ie.,	a	set	of	rules.	

§  Typically:	Boyce-Codd	Normal	form	

Prakash	2018	 VT	CS	4604	 27	



Normal	forms	-	BCNF	

§  Defn.:	Rel.	R	is	in	BCNF	wrt	F,	if	
§  informally:	everything	depends	on	the	full	key,	
and	nothing	but	the	key	

§  semi-formally:	every	determinant	i.e	the	left-
side	(of	the	cover)	is	a	candidate	key	

Prakash	2018	 VT	CS	4604	 28	



Normal	forms	-	BCNF	

§  Example	and	counter-example:	

Ssn Name Address
123 smith Main
999 smith Shady

234 jones Forbes

ssn->name,	address	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Prakash	2018	 VT	CS	4604	 29	



Normal	forms	-	BCNF	

§  Formally:	for	every	FD		a->b	in	F	
– a->b	is	trivial	(a	superset	of	b)	or	
– a	is	a	superkey	

Prakash	2018	 VT	CS	4604	 30	



Normal	forms	-	BCNF	

§  Theorem:	given	a	schema	R	and	a	set	of	FD	
‘F’,	we	can	always	decompose	it	to	schemas	
R1,	…	Rn,	so	that	
– R1,	…	Rn	are	in	BCNF	and	
–  the	decompositions	are	lossless.	

§  (but,	some	decomp.	might	lose	dependencies)	

Prakash	2018	 VT	CS	4604	 31	



Normal	forms	-	BCNF	

§  How?	algorithm	in	book:	for	a	relation	R	
-	for	every	FD	X->A	in	S	that	violates	BCNF,	
decompose	to	tables	(X,A)	and	(R-A)	
-  repeat	recursively	
Q:	how	to	get	the	FDs	for	the	new	relations	(X,	
A)	and	(R-A)?		
Ans:	just	project	the	FDs	into	them	i.e.	which	
FDs	are	in	S	and	involve	only	attrs.	of	(X-A)	
(similarly	for	R-A)	

Prakash	2018	 VT	CS	4604	 32	



Normal	forms	-	BCNF	

§  How?	algorithm	in	book:	for	a	relation	R	
-	for	every	FD	X->A	that	violates	BCNF,	
decompose	to	tables	(X,A)	and	(R-A)	
-  repeat	recursively	
§  eg.	TAKES1(ssn,	c-id,	grade,	name,	address)	
– ssn	->	name,	address	
– ssn,	c-id	->	grade	

Prakash	2018	 VT	CS	4604	 33	



Normal	forms	-	BCNF	

§  eg.	TAKES1(ssn,	c-id,	grade,	name,	address)	
– ssn	->	name,	address						ssn,	c-id	->	grade	

name 

address grade 
c-id 

ssn 

Prakash	2018	 VT	CS	4604	 34	



Normal	forms	-	BCNF	

Ssn c-id Grade Name Address
123 413 A smith Main
123 415 B smith Main

234 211 A jones Forbes

ssn->name, address 
ssn, c-id -> grade 

Ssn c-id Grade
123 413 A
123 415 B

234 211 A

Ssn Name Address
123 smith Main
123 smith Main

234 jones Forbes

ssn->name,	address	ssn,	c-id	->	grade	

Prakash	2018	 VT	CS	4604	 35	



Normal	forms	-	BCNF	

§  pictorially:	we	want	a	‘star’	shape	

name 

address grade 
c-id 

ssn 
:not in BCNF 

Prakash	2018	 VT	CS	4604	 36	



Normal	forms	-	BCNF	

§  pictorially:	we	want	a	‘star’	shape	

B 

C 

A G 

E 

D 
or 

F 

H 

Prakash	2018	 VT	CS	4604	 37	



Normal	forms	-	BCNF	

§  or	a	star-like:	(eg.,	2	cand.	keys):	
– STUDENT(ssn,	st#,	name,	address)	

name 

address 

ssn 

st# 

= 

name 

address 

ssn 

st# 

Prakash	2018	 VT	CS	4604	 38	



Normal	forms	-	BCNF	

§  but	not:	

or 

B 

C 

A 

D 

G 

E 

D 

F 

H 

Prakash	2018	 VT	CS	4604	 39	



BCNF	Decomposing	Courses	
§  Schema	is	Courses(Number,	DepartmentName,	CourseName,	

Classroom,	Enrollment,	StudentName,	Address)	
§  BCNF-violating	FD	is	
Number	DeparmentName	à	CourseName	Classroom	Enrollment		

§  Decompose	Courses	into	
Courses1(Number,	DepartmentName,	CourseName,	Classroom,	
Enrollment)		
and	
Courses2(Number,	DepartmentName,	StudentName,	Address)	

Are	there	any	BCNF	violations	in	the	
two	new	relations?	Prakash	2018	 VT	CS	4604	 40	



Another	BCNF	Example…	
§  Schema	is	Students(ID,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§  What	are	the	FDs?		
–  ID	à	Name	FavouriteAdvisorId	
–  AdvisorId	à	AdvisorName	

§  What	is	the	key?		
–  {ID,	AdvisorId}	

§  Is	there	a	BCNF	violation?		
–  Yes	

§  Let’s	use	ID	à	Name	FavouriteAdvisorId	to	decompose	
§  New	relations?		
–  Students1(ID,	Name,	FavouriteAdvisorId)	
–  Students2(ID,	AdvisorId,	AdvisorName)	

Prakash	2018	 VT	CS	4604	 41	



Another	Example	contd…	
§  What	are	the	FDs	in	Student1(ID,	Name,	
FavouriteAdvisorId)?		
–  None	that	violate	BCNF	

§  What	are	the	FDs	in	Students2(ID,	AdvisorID,	
AdvisorName)?	
–  AdvisorID	à	AdvisorName	

§  Does	it	violate	BCNF?	
–  Yes!		

§  Rinse---Repeat	the	decomposition	
§  Let’s	use	AdvisorID	à	AdvisorName	for	it	
§  New	Relations:	
–  Students2(ID,	AdvisorId)	
–  Students3(AdvisorId,	AdvisorName)	

Prakash	2018	 VT	CS	4604	 42	



Normal	forms	-	3NF	

§  consider	the	‘classic’	case:	
§  STJ(	Student,	Teacher,	subJect)	
– T->	J	
– S,J	->	T	

§  is	it	BCNF?	 S 

T 
J 

Prakash	2018	 VT	CS	4604	 43	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J					S,J	->	T	

§  How	to	decompose	it	to	BCNF?	

S 

T 
J 

Prakash	2018	 VT	CS	4604	 44	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

§  1)	R1(T,J)			R2(S,J)		
–  (BCNF?									-	lossless?					-	dep.	pres.?				)	

§  2)	R1(T,J)			R2(S,T)		
–  (BCNF?									-	lossless?					-	dep.	pres.?				)	

Prakash	2018	 VT	CS	4604	 45	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

§  1)	R1(T,J)			R2(S,J)		
–  (BCNF?		Y+Y	-	lossless?		N	-	dep.	pres.?		N		)	

§  2)	R1(T,J)			R2(S,T)		
–  (BCNF?		Y+Y	-	lossless?		Y	-	dep.	pres.?		N		)	

Prakash	2018	 VT	CS	4604	 46	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

in	this	case:	impossible	to	have	both	
	BCNF	and		
dependency	preservation	
Welcome	3NF!		
(essentially	define	the	issue	away	J)	

Prakash	2018	 VT	CS	4604	 47	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	subJect)	
– T->	J				S,J	->	T	

S 

J 
T 

informally, 3NF 
‘forgives’ the red arrow 
in the can. cover 

Prakash	2018	 VT	CS	4604	 48	



Normal	forms	-	3NF	

§  STJ(	Student,	Teacher,	
subJect)	
–  T->	J				S,J	->	T	

§  Formally,		a	rel.	R	with	
FDs	‘F’	is	in	3NF		if:	for	
every	a->b		in	F:	

•  	it	is	trivial	or	
•  	a	is	a	superkey	or	
•  	b:	part	of	a	candidate	
key	

S 

J 
T 

Prakash	2018	 VT	CS	4604	 49	



Normal	forms	-	3NF	

how	to	bring	a	schema	to	3NF?	
two	algo’s	in	book:	First	one:	
§  start	from	ER	diagram	and	turn	to	tables	
§  then	we	have	a	set	of	tables	R1,	...	Rn	which	
are	in	3NF	

§  for	each	FD	(X->A)	in	the	cover	that	is	not	
preserved,	create	a	table	(X,A)	

Prakash	2018	 VT	CS	4604	 50	



Normal	forms	-	3NF	

how	to	bring	a	schema	to	3NF?	
two	algo’s	in	book:	Second	one	(‘synthesis’)	
§  take	all	attributes	of	R	
§  for	each	FD	(X->A)	in	the	cover,	add	a	table	
(X,A)	

§  if	not	lossless,	add	a	table	with	appropriate	
key	

We	prefer	Synthesis	as	it	is	
clearer	and	does	not	need	ER	
diagrams	

Prakash	2018	 VT	CS	4604	 51	



3NF	Synthesis	Algorithm:	Details	
§  Let	F	be	the	set	of	all	FDs	of	R	
§  We	will	compute	a	lossless-join,	dependency-
preserving	decomposition	of	R	into	S,	where	
every	relation	in	S	is	in	3NF	

1.  Find	a	canonical	cover	for	F,	say	G	
2.  For	every	FD	X	à	A	in	G,	use	X	U	A	as	the	

schema	for	one	of	the	relations	in	S	
3.  If	the	attributes	in	none	of	the	relations	in	S	

form	a	superkey	for	R,	add	another	relation	to	S	
whose	schema	is	a	key	for	R	(this	will	ensure	
that	the	decomp.	is	lossless)	

Prakash	2018	 VT	CS	4604	 52	

Surprisingly	
Polynomial!	



3NF	Synthesis	Algorithm:	Details	
§  Let	F	be	the	set	of	all	FDs	of	R	
§  We	will	compute	a	lossless-join,	dependency-
preserving	decomposition	of	R	into	S,	where	
every	relation	in	S	is	in	3NF	

1.  Find	a	canonical	cover	for	F,	say	G	
2.  For	every	FD	X	à	A	in	G,	use	X	U	A	as	the	

schema	for	one	of	the	relations	in	S	
3.  If	the	attributes	in	none	of	the	relations	in	S	

form	a	superkey	for	R,	add	another	relation	to	S	
whose	schema	is	a	key	for	R	(this	will	ensure	
that	the	decomp.	is	lossless)	

Prakash	2018	 VT	CS	4604	 53	

Correctness?		
Tricky	proof	



Normal	forms	-	3NF	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?	

§  Q2:	what	is	the	decomposition	to	3NF?	

Prakash	2018	 VT	CS	4604	 54	



Normal	forms	-	3NF	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	

Prakash	2018	 VT	CS	4604	 55	



Normal	forms	-	3NF:	Step	1	
Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	
A2:	one	table	each	for	the	FDs		
	R1(A,B),	R2(C,B),	...					
But	is	it	lossless??	Or	equivalently	do	any	of	the	
relations	in	S	form	a	superkey	for	R?	

Prakash	2018	 VT	CS	4604	 56	



Normal	forms	-	3NF:	Step	2	

Example:	
	R:	ABC	
	F:	A->B,	C->B	

§  Q1:	what	is	the	cover?		
A1:	‘F’	is	the	cover	
§  Q2:	what	is	the	decomposition	to	3NF?	
A2:	R1(A,B),	R2(C,B),	R3(A,C)	
(note	that	AC	is	a	key	for	R)	

Prakash	2018	 VT	CS	4604	 57	



Normal	forms	-	3NF	vs	BCNF	

§  If		‘R’	is	in	BCNF,	it	is	always	in	3NF	(but	not	
the	reverse)	

§  In	practice,	aim	for	
– BCNF;	lossless	join;	and	dep.	preservation	

§  if	impossible,	we	accept	
– 3NF;	but	insist	on	lossless	join	and	dep.	
preservation	

Prakash	2018	 VT	CS	4604	 58	



Normal	forms	-	more	details	

§  why	‘3’NF?	what	is	2NF?	1NF?	
§  1NF:	attributes	are	atomic	(ie.,	no	set-valued	
attr.,		a.k.a.	‘repeating	groups’)	

Ssn Name Dependents
123 Smith Peter

Mary
John

234 Jones Ann
Michael

not 1NF 

Prakash	2018	 VT	CS	4604	 59	



Normal	forms	-	more	details	

§  2NF:	1NF	and	non-key	attr.	fully	depend	on	
the	key	

§  counter-example:	TAKES1(ssn,	c-id,	grade,	
name,	address)	

§  ssn	->	name,	address						ssn,	c-id	->	grade	
name 

address grade 
c-id 

ssn 

Prakash	2018	 VT	CS	4604	 60	



Normal	forms	-	more	details	

§  3NF:	2NF	and	no	transitive	dependencies	
§  counter-example:	

B 

C 

A 

D 
in 2NF, but not in 3NF 

Prakash	2018	 VT	CS	4604	 61	



Normal	forms	-	more	details	

§  4NF,		multivalued	dependencies	etc:	IGNORE	
§  Fifth	Normal	Form:	outside	the	scope	of	
CS4604	

§  Sixth	Normal	Form:	different	versions	exist.	
One	version	developed	for	temporal	
databases	

§  Seventh	Normal	Form	
–  just	kidding	J	

Prakash	2018	 VT	CS	4604	 62	



Normal	forms	-	more	details	

§  in	practice,	E-R	diagrams	usually	lead	to	tables	
in		BCNF	

Prakash	2018	 VT	CS	4604	 63	



Overview	-	conclusions	

§  DB	design	and	normalization	
– pitfalls	of	bad	design	
– decompositions	(lossless,	dep.	preserving)	
– normal	forms	(BCNF	or	3NF)	

§  Design	Mantra:		
“everything	should	depend	on	the	key,	the	
whole	key,	and	nothing	but	the	key”	
	
Prakash	2018	 VT	CS	4604	 64	


