VirginiaTech

CS 4604: Introduction to
Database Management Systems

B. Aditya Prakash

Lecture #14: BCNF, 3NF and
Normalization

WVirginiaTech
Overview - detailed

= DB desigh and normalization
— pitfalls of bad design
— decomposition

— normal forms

Prakash 2018 VT CS 4604

IVirginiaTech
Goal

= Design ‘good’ tables
— sub-goal#1: define what ‘good’ means
— sub-goal#2: fix ‘bad’ tables

= in short: “we want tables where the attributes
depend on the primary key, on the whole key,
and nothing but the key”

» Let’ s see why, and how:

MVirginiaTech
Pitfalls

= takesl (ssn, c-id, grade, name, address)

Ssn |c—1d|Grade |[Name |Address

1231413 |A smith |[Main

Prakash 2018 VT CS 4604

MVirginiaTech
Pitfalls

= ‘Bad’ - why? because: ssn->address, name

Ssn |c—id|Grade |Name Address

123 1413 A smith Main

123 1415 B smith Main

123 (211 A smith Main

Prakash 2018 VT CS 4604

MVirginiaTech
Pitfalls

= Redundancy
— space
— (inconsistencies)

— insertion/deletion anomalies:

Prakash 2018 VT CS 4604

MVirginiaTech
Pitfalls

" insertion anomaly:

— “jones” registers, but takes no class - no place to
store his address!

Ssn |c—1d|Grade Name |Address

1231413 |A smith Main

234 null)null jones |Forbes

Prakash 2018 VT CS 4604

MVirginiaTech
Pitfalls

= deletion anomaly:

— delete the last record of ‘smith’ (we lose his
address!)

Ssn |c—id|Grade |Name Address

123 1413 A smith Main

123 1415 B smith Main

123 (211 A smith Main

Prakash 2018 VT CS 4604

MVirginiaTech
Solution: decomposition

= split offending table in two (or more), eg.:

Ssn |[c—1d|Grade |[Name |Address
1231413 |A smith |[Main
1231415 |B smith |Main
1231211 |A smith Main

T

Prakash 2018 VT CS 4604

MVirginiaTech
Overview - detailed

= DB desigh and normalization
— pitfalls of bad design
— decomposition

* lossless join decomp.
* dependency preserving

— normal forms

Prakash 2018 VT CS 4604

10

MVirginiaTech
Decompositions

* There are ‘bad’ decompositions. Good ones
are:

= |ossless and
= dependency preserving

Prakash 2018 VT CS 4604

11

— R1(ssn, grade, name, address)

[MVirginiaTech

Decompositions - lossy:

R2(c-id, grade)

Prakash 2018

VT CS 4604

Ssn |Grade Name |Address c—id|Grade

123 A smith [Main 413 A

123 |B smith |[Main 41> |B

211 A

234 |A jones |Forbes
Ssn |c—-1d|Grade |Name |Address
1231413 |A smith |[Main ssn->name, address
123415 B smith Main ssn, c-id -> grade
2341211 |A Jjones |[Forbes

12

MVirginiaTech

Decompositions - lossy:

— can not recover original table with a join!

Prakash 2018

VT CS 4604

Ssn |Grade |[Name |Address c—id|Grade
123 A smith [Main 413 1A
123 |B smith [Main 41> |B

, 211 A
234 |A Jjones |[Forbes
Ssn |c-1id Grade |[Name |Address
123413 A smith Main ssn->name, address
1231415 B smith [Main ssn, c-id -> grade
2341211 |A Jjones |Forbes

13

MVirginiaTech

Decompositions

= example of non-dependency preserving

S# |address |status

123 |London |E

125 |Paris E

234 |Blacks. |A

S# -> address, status
address -> status

Prakash 2018

S#

address

S# |status

123

London

123 |E

125

Paris

125 |E

234

Blacks.

234 |A

S# -> address

VT CS 4604

S# -> status

14

[MVirginiaTech
Decompositions

" (drill: is it lossless?)

S# |address S# |status

S# |address |status 123 |London 123 |E

123 |London |E 125 |Paris 125 |E

125 |Paris E 234 |Pitts. 234 |A

234 |Blacks. |A

- r us

S# -> address, stat S# -> address S# -> status
address -> status

Prakash 2018 VT CS 4604

MVirginiaTech
Decompositions - lossless

= Definition:
= consider schema R, with FD ‘F'. R1, R2is a

lossless join decomposition of R if we always

have:
rib<r2=r

= An easier criterion?

Prakash 2018 VT CS 4604

16

MVirginiaTech
Decomposition - lossless

" Theorem: lossless join decomposition if the
joining attribute is a superkey in at least one
of the new tables

" Formally: if you are decomposing R into R1

and R2 then (so R =R1 U R2)
RINR2 — Rlor

RINR2 — R2

Prakash 2018 VT CS 4604 17

MVirginiaTech

Decomposition - lossless

= example:

R1 Ssn |[c-i1d|Grade R2 Ssn [Name |Address
1231413 |A 123 |smith Main
1231415 |R 234 |Jones |Forbes
234 1211 |A
ssn, c-id -> grade ssn->name, address

Ssn |c—1d|Grade |[Name |Address

123413 A smith |Main ssn->name, address

1231415 |B smith |[Main ssn, c-id -> grade

234 211 |A jones |Forbes

Prakash 2018

VT CS 4604

18

MVirginiaTech
Overview - detailed

= DB desigh and normalization
— pitfalls of bad design
— decomposition

* lossless join decomp.
* dependency preserving

— normal forms

Prakash 2018 VT CS 4604

19

[MVirginiaTech

Decomposition - depend. pres.

= informally: we don’ t want the original FDs to
span two tables - counter-example:

S# |address |status

123 |London |E

125 |Paris E

234 |Blacks. |A

S# -> address, status
address -> status

Prakash 2018

S# |address S# |status
123 |London 123 |E
125 |Paris 125 E
234 |Blacks. 234 |A

S# -> address S# -> status

VT CS 4604 20

[MVirginiaTech
Decomposition - depend. pres.

= dependency preserving decomposition:

S# |address |status
123 |London |E
125 |Paris E
234 |Blacks. |A

S# -> address, status
address -> status

Prakash 2018

S# |address address |status
123 |London London |E
125 |Paris Paris E
234 |Blacks. Blacks. |A

S# -> address

(but: S#->status ?)

VT CS 4604

address -> status

21

MVirginiaTech
Decomposition - depend. pres.

= informally: we don’ t want the original FDs to
span two tables.

= So more specifically: ... the FDs of the
canonical cover.

Prakash 2018 VT CS 4604

22

MVirginiaTech

Decomposition - depend. pres.

why is dependency preservation good?

S#

address

SH#

status

123

London

123

E

125

Paris

125

E

234

Blacks.

234

A

S# -> address
S# -> status

(address->status: ‘lost’)

Prakash 2018

S#

address

123

London

125

Paris

234

Rlacks.

S# -> address

VT CS 4604

address

status

London

E

Paris

E

Blacks.

A

address -> status

23

MVirginiaTech
Decomposition - depend. pres.

= A: eg., record that ‘Philly’ has status ‘A’

S# -> address
S# -> status

(address->status: ‘lost’)

Prakash 2018

S# -> address

VT CS 4604

S# |status
S# |address ilE S# |address address |status
123 |London 123 |London London |E
125 |Paris 1251k 125 |Paris Paris E
234 |Blacks. 234 |A 234 |[BRlacks. Blacks. |A

address -> status

24

MVirginiaTech
Decomposition - conclusions

= decompositions should always be lossless
— joining attribute -> superkey

= whenever possible, we want them to be
dependency preserving (occasionally,
impossible - see ‘STJ example later...)

Prakash 2018 VT CS 4604 25

MVirginiaTech
Overview - detailed

= DB desigh and normalization
— pitfalls of bad design
— decomposition (-> how to fix the problem)

— normal forms (-> how to detect the problem)
* BCNF,
* 3NF
* (1NF, 2NF)

Prakash 2018 VT CS 4604

26

MVirginiaTech
Normal forms - BCNF

= We saw how to fix ‘bad’ schemas -
* but whatisa ‘good’ schema?

» Answer: ‘good , if it obeysa ‘normal form’,
= je., a set of rules.

" Typically: Boyce-Codd Normal form ’
P o

Prakash 2018 VT CS 4604

MVirginiaTech
Normal forms - BCNF

= Defn.: Rel. Risin BCNF wrt F, if

" informally: everything depends on the full key,
and nothing but the key

= semi-formally: every determinant i.e the left-
side (of the cover) is a candidate key

Prakash 2018 VT CS 4604 28

MVirginiaTech

Normal forms - BCNF

= Example and counter-example:

Ssn

Name

Address

123

smith

Main

999

smith

Shady

234

Jjones

Forbes

Ssn c—-i1id|Grade |[Name |Address
1231413 |A smith [Main
1231415 |B smith [Main
234 1211 |A Jjones |Forbes

ssn->name, address

Prakash 2018

VT CS 4604

ssn->name, address
ssn, c-id -> grade

29

MVirginiaTech
Normal forms - BCNF

" Formally: for every FD a->bin F
— a->b is trivial (a superset of b) or
— ais a superkey

Prakash 2018 VT CS 4604

30

MVirginiaTech
Normal forms - BCNF

" Theorem: given a schema R and a set of FD
‘F’, we can always decompose it to schemas
R1, ... Rn, so that

— R13, ... Rn are in BCNF and
— the decompositions are lossless.

" (but, some decomp. might lose dependencies)

Prakash 2018 VT CS 4604 31

MVirginiaTech

Normal forms - BCNF

= How? algorithm in book: for a relation R

- for every FD X->A in S that violates BCNF,
decompose to tables (X,A) and (R-A)

- repeat recursively
Q: how to get the FDs for the new relations (X,
A) and (R-A)?

Ans: just project the FDs into them i.e. which
FDs are in S and involve only attrs. of (X-A)
(similarly for R-A)

Prakash 2018 VT CS 4604

32

MVirginiaTech
Normal forms - BCNF

= How? algorithm in book: for a relation R

- for every FD X->A that violates BCNF,
decompose to tables (X,A) and (R-A)

- repeat recursively
= eg. TAKES1(ssn, c-id, grade, name, address)

— ssn -> name, address
— ssn, c-id -> grade

Prakash 2018 VT CS 4604 33

MVirginiaTech
Normal forms - BCNF

= eg. TAKES1(ssn, c-id, grade, name, address)

— ssn -> name, address ssn, c-id -> grade

name ‘

‘ grade ‘4—- address ‘

Prakash 2018 VT CS 4604 34

MVirginiaTech

Normal forms - BCNF

Ssn

c—-1d

Grade

123

413

A

123

415

B

234

211

A

ssn, c-id -> grade

Ssn |Name |Address

123 |smith |[Main

123 |smith |[Main

234 Forbes

jones

ssn->name, address

Ssn |c—1d Grade Name |Address
1231413 |A smith |[Main
1231415 B smith |[Main
234 211 |A jones |Forbes

Prakash 2018

VT CS 4604

ssn->name, address
ssn, c-id -> grade

35

MVirginiaTech
Normal forms - BCNF

= pictorially: we want a ‘star’ shape

name ‘

‘ srade ‘4-—— address ‘ :not in BCNF

Prakash 2018 VT CS 4604 36

MVirginiaTech
Normal forms - BCNF

= pictorially: we want a ‘star’ shape

or

M

Prakash 2018 VT CS 4604 37

MVirginiaTech
Normal forms - BCNF

" or a star-like: (eg., 2 cand. keys):
— STUDENT(ssn, st#, name, address)

name ‘

name ‘

\ address ‘ - address ‘

St#

st#

Prakash 2018 VT CS 4604

MVirginiaTech
Normal forms - BCNF

= hut not:

or

aaaaaaaaaaaa

VirginiaTech
BCNF Decomposing Courses

*» Schema is Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment, StudentName, Address)

= BCNF-violating FD is
Number DeparmentName = CourseName Classroom Enrollment

= Decompose Courses into

Courses1(Number, DepartmentName, CourseName, Classroom,
Enrollment)

and
Courses2(Number, DepartmentName, StudentName, Address)

Are there any BCNF violations in the

Prakash 2018 two new r‘elatiOI’]S?

MVirginiaTech
Another BCNF Example...

= Schema is Students(ID, Name, Advisorld, AdvisorName,
FavouriteAdvisorld)

= What are the FDs?
— ID - Name FavouriteAdvisorld
— Advisorld = AdvisorName

= What is the key?
— {ID, Advisorld}

= |sthere a BCNF violation?
— Yes

= Let’s use ID > Name FavouriteAdvisorld to decompose

= New relations?

— Students1(ID, Name, FavouriteAdvisorld)
— Students2(ID, Advisorld, AdvisorName)

Prakash 2018 VT CS 4604 41

MVirginiaTech

Another Example contd...

= What are the FDs in Student1(ID, Name,
FavouriteAdvisorld)?

— None that violate BCNF

= What are the FDs in Students2(ID, AdvisorlID,
AdvisorName)?

— AdvisorID = AdvisorName

= Does it violate BCNF?
— Yes!

" Rinse---Repeat the decomposition
= Let’s use AdvisorID =2 AdvisorName for it

= New Relations:

— Students2(ID, Advisorld)
— Students3(Advisorld, AdvisorName)

Prakash 2018 VT CS 4604

MVirginiaTech
Normal forms - 3NF

= consider the ‘classic’ case:

= STJ(Student, Teacher, sublect)
—T->
—S,J->T

" is it BCNF?

—{T_ |

Prakash 2018 VT CS 4604

43

MVirginiaTech
Normal forms - 3NF

= STJ(Student, Teacher, sublect)
—T->) S,J->T
" How to decompose it to BCNF?

—{T_ |

Prakash 2018 VT CS 4604

44

MVirginiaTech
Normal forms - 3NF

= STJ(Student, Teacher, sublect)
—T->) SJ->T
= 1) R1(T,J) R2(S,])
— (BCNF? - lossless? - dep. pres.?
= 2) R1(T,J) R2(S,T)
— (BCNF? - lossless? - dep. pres.?

Prakash 2018 VT CS 4604

)

)

45

[MVirginiaTech
Normal forms - 3NF

= STJ(Student, Teacher, sublect)

—T->) SJ->T
= 1) R1(T,J) R2(S,])

— (BCNF? Y+Y - lossless? N - dep. pres.? N)
= 2) R1(T,J) R2(S,T)

— (BCNF? Y+Y - lossless? Y - dep. pres.? N)

Prakash 2018 VT CS 4604

46

MVirginiaTech
Normal forms - 3NF

= STJ(Student, Teacher, sublect)
—T->) SJ->T

in this case: impossible to have both

BCNF and

dependency preservation

Welcome 3NF!

(essentially define the issue away ©)

Prakash 2018 VT CS 4604

47

MVirginiaTech

Normal forms - 3NF

= STJ(Student, Teacher, sublect)

—T->

Prakash 2018

SJ->T

informally, 3NF
‘forgives’ the red arrow
in the can. cover

VT CS 4604

48

MVirginiaTech

Normal forms - 3NF

= STJ(Student, Teacher, .
sublect)

—T->J SJ1->T

Prakash 2018 VT CS 4604

Formally, arel. R with

FDs ‘F isin 3NF if: for

every a->b in F:
it is trivial or
a is a superkey or

b: part of a candidate
key

49

MVirginiaTech
Normal forms - 3NF

how to bring a schema to 3NF?
two algo’ s in book: First one:
= start from ER diagram and turn to tables

= then we have a set of tables R1, ... Rn which
are in 3NF

= for each FD (X->A) in the cover that is not
preserved, create a table (X,A)

Prakash 2018 VT CS 4604

50

MVirginiaTech
Normal forms - 3NF

how to bring a schema to 3NF?

two algo’ s in book: Second one (‘synthesis’)

= take all attributes of R

= for each FD (X->A) in the cover, add a table
(X,A)

" if not lossless, add a table with appropriate
key

We prefer Synthesis as it is
clearer and does not need ER

diagrams
Prakash 2018 VT CS 4604 51

MVirginiaTech
3NF Synthesis Algorithm: Details

Surprisingly
" Let F be the set of all FDs of R Polynomial!
= We will compute a lossless-join, dependency-

preserving decomposition of R into S, where
every relation in Sis in 3NF

1. Find a canonical cover for F, say G

2. ForeveryFDX 2> Ain G, use XU A as the
schema for one of the relations in S

3. If the attributes in none of the relationsin S
form a superkey for R, add another relationto S
whose schema is a key for R (this will ensure
that the decomp. is lossless)

Prakash 2018 VT CS 4604 52

MVirginiaTech
3NF Synthesis Algorithm: Details

Correctness?
" Let F be the set of all FDs of R Tricky proof

= We will compute a lossless-join, dependency-
preserving decomposition of R into S, where
every relation in Sis in 3NF

1. Find a canonical cover for F, say G

2. ForeveryFDX 2> Ain G, use XU A as the
schema for one of the relations in S

3. If the attributes in none of the relationsin S
form a superkey for R, add another relationto S
whose schema is a key for R (this will ensure
that the decomp. is lossless)

Prakash 2018 VT CS 4604 53

MVirginiaTech
Normal forms - 3NF

Example:
R: ABC
F: A->B, C->B
" Q1: what is the cover?

= Q2: what is the decomposition to 3NF?

Prakash 2018 VT CS 4604

54

[MVirginiaTech
Normal forms - 3NF

Example:
R: ABC
F: A->B, C->B
" Q1: what is the cover?
Al: ‘F isthe cover
= Q2: what is the decomposition to 3NF?

Prakash 2018 VT CS 4604

55

MVirginiaTech
Normal forms - 3NF: Step 1

Example:
R: ABC
F: A->B, C->B
= Q1: what is the cover?
Al: ‘F is the cover
" Q2: what is the decomposition to 3NF?
A2: one table each for the FDs
R1(A,B), R2(C,B), ...

But is it lossless?? Or equivalently do any of the
relations in S form a superkey for R?

Prakash 2018 VT CS 4604

56

MVirginiaTech
Normal forms - 3NF: Step 2

Example:
R: ABC
F: A->B, C->B
" Q1: what is the cover?
Al: ‘F’ isthe cover
" Q2: what is the decomposition to 3NF?
A2: R1(A,B), R2(C,B), R3(A,C)
(note that AC is a key for R)

Prakash 2018 VT CS 4604

57

MVirginiaTech
Normal forms - 3NF vs BCNF

= [f ‘R’ isin BCNF, it is always in 3NF (but not
the reverse)

" |n practice, aim for
— BCNF; lossless join; and dep. preservation
" if impossible, we accept

— 3NF; but insist on lossless join and dep.
preservation

Prakash 2018 VT CS 4604

58

MVirginiaTech
Normal forms - more details

= why ‘3" NF? what is 2NF? 1NF?
= INF: attributes are atomic (ie., no set-valued
attr., a.k.a. ‘repeating groups’)

Ssn

Name

Dependents

123

Smith

Peter
Mary
John

234

Jones

Ann
Michael

Prakash 2018

VT CS 4604

not INF

MVirginiaTech

Normal forms - more details

= 2NF: INF and non-key attr. fully depend on

the key

" counter-example: TAKES1(ssn, c-id, grade,

name, address)

® ssn -> name, address

ssn, c-id -> grade

‘ grade |<'—

‘ ssnn

‘ c-id ‘

/‘ name ‘

‘ address ‘

Prakash 2018

VT CS 4604

60

WVirginiaTech
Normal forms - more details

= 3NF: 2NF and no transitive dependencies
" counter-example:

in 2NF, but not in 3NF

Prakash 2018 VT CS 4604

61

MVirginiaTech
Normal forms - more details

= ANF, multivalued dependencies etc: IGNORE

= Fifth Normal Form: outside the scope of
CS4604

= Sixth Normal Form: different versions exist.
One version developed for temporal
databases

= Seventh Normal Form
— just kidding ©

Prakash 2018 VT CS 4604 62

MVirginiaTech

Normal forms - more details

" in practice, E-R diagrams usually lead to tables
in BCNF

Prakash 2018 VT CS 4604 63

MVirginiaTech
Overview - conclusions

= DB desigh and normalization
— pitfalls of bad design
— decompositions (lossless, dep. preserving)
— normal forms (BCNF or 3NF)

= Design Mantra:

“everything should depend on the key, the
whole key, and nothing but the key”

Prakash 2018 VT CS 4604

64

