

CS 4604: Introduction to Database Management Systems

B. Aditya Prakash

Lecture #13: Functional

Dependencies

Course Outline

- Weeks 1–4: Query/ Manipulation Languages and Data Modeling
 - Relational Algebra
 - Data definition
 - Programming with SQL
 - Entity-Relationship (E/R) approach
 - Specifying Constraints
 - Good E/R design
- Weeks 5–8: Indexes, Processing and Optimization
 - Storing
 - Hashing/Sorting
 - Query Optimization
 - NoSQL and Hadoop

- Week 9-10: Relational Design
 - Functional Dependencies
 - Normalization to avoid redundancy
- Week 11-12: Concurrency Control
 - Transactions
 - Logging and Recovery
- Week 13–14: Students' choice
 - Practice Problems
 - XML
 - Data mining and warehousing

Announcements

- Handout 3 on FDs and Normalization is out.
 - We will discuss it next Tue, Oct 23

Functional Dependencies and Schema Normalization

- A bit abstract and theoretical!
- But important!

- Plan: 3 lectures
 - 1. What are FDs? How to reason about them?
 - 2. BCNF, 3NF and Normalization
 - 3. Practice Problems in class

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover

Example

- Convert to relations
 - Students (ID, Name)
 - Advisors (ID, Name)
 - Favourite (StudentID, AdvisorID)
 - Advises (StudentID, AdvisorID)

Example

- What if we combine Students, Advises, and Favourite into one relation?
 - Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)
 - Seems 'intuitively bad' right?

Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)

- What makes it bad?
- Given the Student's Id, can any other values be determined?
 - Name and FavouriteAdvisorId
 - $Id \rightarrow Name$
 - $Id \rightarrow FavouriteAdvisorId$

Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)

- Name and FavouriteAdvisorId
- $Id \rightarrow Name$
- Id → FavouriteAdvisorId
- AdvisorId \rightarrow ?

Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)

- Name and FavouriteAdvisorId
- $Id \rightarrow Name$
- Id → FavouriteAdvisorId
- AdvisorId → AdvisorName
- Can we say $Id \rightarrow AdvisorId$?
 - Not really! Why?
 - Id is a not a key for Students relation
 - Key: {Id, AdvisorId}

Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)

- OK, what really makes it bad?
- Ans: Parts of the key determine other attributes
- Leads to:
 - Redundancy (Space, Inconsistencies,)

Motivation for Functional Dependencies

- Reason about constraints on attributes in a relation
- Procedurally determine the keys of a relation
- Detect when a relation has redundant information
- Improve database designs systematically using normalization

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover

Definition of FD (Functional Dependency)

 $\mathbf{X} \to \mathbf{Y}$

'X' functionally determines 'Y'

Informally: 'if you know 'X', there is only one 'Y'

to match'

Definition of FD (Functional Dependency)

 ((If t is a tuple in a relation R and A is an attribute of R, then t[A] is the value of attribute A in tuple t))

Formally:

$$X \rightarrow Y \rightarrow (t1[X] = t2[X] \rightarrow t1[Y] = t2[Y])$$

if two tuples agree on the 'X' attribute, they *must* agree on the 'Y' attribute, too

(eg., if ids are the same, so should be names)

$$X \rightarrow Y$$

X and Y can be sets of attributes

- Definition of FDs
- A FD on a relation R is a statement:
 - If two tuples in R agree on attributes A1, A2, ..., An they agree on attribute B
 - Notation: A1 A2 ... An \rightarrow B

Definitions contd.

- A FD is a constraint on a single relational schema
 - It must hold on every instance of the relation
 - —You can not deduce an FD from a relation instance!
 - –(but you can deduce if an FD does NOT hold using an instance)

Examples of FDs

List the FDs

Courses(Number, DeptName, CourseName, Classroom, Enrollment)

Number	DeptName	CourseName	Classroom	Enrollment
4604	CS	Databases	TORG 1020	45
4604	Dance	Tree Dancing	Drillfield	45
4604	English	The Basis of Data	Williams 44	45
2604	CS	Data Structures	MCB 114	100
2604	Physics	Dark Matter	Williams 44	100

- Number DeptName → CourseName
- Number DeptName → Classroom
- Number DeptName → Enrollment
- Number DeptName → CourseName Classroom Enrollment

Examples of FDs

List the FDs

Courses(Number, DeptName, CourseName, Classroom, Enrollment)

Number	DeptName	CourseName	Classroom	Enrollment
4604	CS	Databases	TORG 1020	45
4604	Dance	Tree Dancing	Drillfield	45
4604	English	The Basis of Data	Williams 44	45
2604	CS	Data Structures	MCB 114	100
2604	Physics	Dark Matter	Williams 44	100

■ Is Number → Enrollment an FD?

Where do FDs come from?

- "Keyness" of attributes
- Domain and application constraints
- Real world constraints
 - E.g. ProfessorID Time → Classroom

Definition of Keys

- FDs allow us to formally define keys
- A set of attributes {A1, A2, ..., An} is a key for relation R if:

Uniqueness: {A1, A2, ..., An} functionally determine all the other attributes of R

Minimality: no proper set of {A1, A2, ..., An} functionally determines all other attributes of R.

Definitions of Keys

- A superkey is a set of attributes that has the uniqueness property but is not necessarily minimal
- If a relation has multiple keys, specify one to be primary key
- Convention: underline the attributes (but you know that!)
- If a key has only one attribute A, say A rather than {A}

Example of keys

What is the key for Courses (<u>Number, DeptName</u>, CourseName, Classroom, Enrollment)?

- The key is {Number, DeptName}
 - These attributes functionally determine every other attribute
 - No proper subset of {Number, DeptName} has this property

Example of Keys

What is the key for Teach (Number, DepartmentName, ProfessorName, Classroom)?

- The key is {Number, DepartmentName}
 - Why?

Keys in E/R to Relational Conversion

From an ENTITY SET

If the relation comes from an entity set, the key attributes of the relation are precisely the key attributes of the entity set

Keys in E/R to Relational Conversion

- From a RELATIONSHIP (binary for now between E and F)
- R is many-many:
 - Key attributes of the relation are the key attributes of E and of F
- R is many-one:
 - Key attributes of the relation are the key attributes of E
- R is one-one:
 - Key attributes of the relation are the key attributes of E or of F

Keys in E/R to Relational Conversion

- From a RELATIONSHIP (multiway?)
- Need to reason about the FDs that R satisfies
- No simple rule
- If R has an arrow towards entity set E, at least one key for the relation for R excludes the key for E

Rules for Manipulating FDs

- Learn how to reason about FDs
- Define rules for deriving new FDs from a given set of FDs
- Example: R (A, B, C) satisfies FDs $A \rightarrow B$, $B \rightarrow C$.
 - What others does it satisfy?
 - $-A \rightarrow C$
 - What is the key for R?
 - $A (as A \rightarrow B and A \rightarrow C)$

Equivalence of FDs

- Why?
 - To derive new FDs from a set of FDs
- An FD F follows from a set of FDs T if every relation instance that satisfies all the FDs in T also satisfies F
 - $-A \rightarrow C$ follows from $T = \{A \rightarrow B, B \rightarrow C\}$
- Two sets of FDs S and T are equivalent if each FD in S follows from T and each FD in T follows from S
 - $-S = {A → B, B → C, A → C}$ and $T = {A → B, B → C}$ are equivalent

Splitting and Combining FDs

- The set of FDs
 - $A1 A2 A3...An \rightarrow B1$
 - $A1 A2 A3...An \rightarrow B2$
 - **—** ...

is equivalent to the FD

- A1 A2 A3...An \rightarrow B1 B2 B3 ... Bm
- This equivalence implies two rules:
 - Splitting rule
 - Combining rule
 - These rules work because all the FDs in S and T have identical left hand sides

Splitting and Combining FDs

- Can we split and combine left hand sides of FDs?
- For the relation Courses, is the FD
 - Number DeptName → CourseName
 - equivalent to the set of FDs
 - {Number → CourseName, DeptName → CourseName} ?
 - -NO

Triviality of FDs

- A FD A1 A2...An \rightarrow B1 B2...Bm is
 - Trivial if the B's are a subset of the A's

$$\{B_1, B_2, \dots B_n\} \subseteq \{A_1, A_2, \dots A_n\}$$

Non-trivial if at least one B is not among the A's

$$\{B_1, B_2, \dots B_n\} - \{A_1, A_2, \dots A_n\} \neq \emptyset$$

 Completely non-trivial if none of the B's are among the A's

$$\{B_1, B_2, \dots B_n\} \cap \{A_1, A_2, \dots A_n\} = \emptyset$$

Triviality of FDs

- What good are trivial and non-trivial FDs?
 - Trivial dependencies are always true
 - They help simplify reasoning about FDs
- Trivial dependency rule: The FD A1 A2...An
 B1 B2...Bm is equivalent to the FD A1 A2...An
 → C1 C2..Ck, where the C's are those B's that are not A's i.e.

$$\{C_1, C_2, \ldots, C_k\} = \{B_1, B_2, \ldots, B_m\} - \{A_1, A_2, \ldots, A_n\}$$

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover

Closure of Attributes: Example

- Suppose a relation R (A, B, C, D, E, F) has FDs:
 - $-AB \rightarrow C$, BC $\rightarrow AD$, D $\rightarrow E$, CF $\rightarrow B$

• Question:

Find set X of attributes such that AB \rightarrow X is true

Answer:

 $X = \{A, B, C, D, E\} \text{ i.e. } AB \rightarrow ABCDE$

Closure of Attributes: Example

- Suppose a relation R (A, B, C, D, E, F) has FDs:
 - $-AB \rightarrow C$, BC $\rightarrow AD$, D $\rightarrow E$, CF $\rightarrow B$

• Question:

Find set Y of attributes such that BCF \rightarrow Y is true

ans: A

Answer:

superkey

 $Y = \{A, B, C, D, E, F\}$ i.e. BCF \rightarrow ABCDEF

Closure of Attributes: Example

- Suppose a relation R (A, B, C, D, E, F) has FDs:
 - $-AB \rightarrow C$, BC $\rightarrow AD$, D $\rightarrow E$, CF $\rightarrow B$

• Question:

Find set Z of attributes such that AF \rightarrow Z is true

Answer:

 $Y = \{A, F\} \text{ i.e. } AF \rightarrow AF$

Closure of Attributes: Example

- Suppose a relation R (A, B, C, D, E, F) has FDs:
 - $-AB \rightarrow C$, BC $\rightarrow AD$, D $\rightarrow E$, CF $\rightarrow B$

X, Y, Z are the closures of {A, B}, {B, C, F}, and {A, F} respectively

Attribute Closure, another way of looking (not in book)

R(A, B, C)

FD set:

AB->C(1)

A->BC (2)

B->C (3)

A -> B (4)

Closure of Attributes: Definition

Given:

- Attributes {A1, A2, ..., An}
- A set of FDs S
- The **Closure** of {A1, A2, ..., An} under S is
 - the set of attributes {B1, B2, ..., Bm} such that for
 - 1 <= i <= m, the FD A1 A2 ... An \rightarrow Bi follows from S
 - the closure is denoted by {A1, A2, ..., An}+

Closure of Attributes: Definition

• Question:

Which attributes must {A1, A2, ..., An}⁺ contain at the minimum?

Answer:

{A1, A2, ..., An}

Why?

A1 A2 ... An \rightarrow Ai is a trivial FD

Closure of Attributes: Algorithm

- Given (INPUT):
 - Attributes {A1, A2, .. An}
 - Set of FDs S

- Find (OUTPUT):
 - $-X = \{A1, A2, ..., An\}^+$

Closure of Attributes: Algorithm

- 1. Use the splitting rule so that each FD in S has one attribute on the right.
- 2. Set $X == \{A1, A2 ..., An\}$
- 3. Find FD B1 B2...Bk \rightarrow C in S such that
- $\{B1 B2 \dots Bk\} \subseteq X \text{ but } C \not\in X$
- 4. Add C to X
- 5. Repeat the last two steps until you can't find

Why is the algorithm correct?

Why compute Attribute Closures?

Prove correctness of rules for manipulating FDs Example:

Prove the transitive rule i.e.

IF

A1 A2 ... An → B1 B2 ... Bm

B1 B2 ... Bm → C1 C2 ... Ck

THEN

A1 A2 ... An \rightarrow C1 C2 ... Ck

To prove this, check if

$$\{C_1, C_2, \dots, C_k\} \subseteq \{A_1, A_2, \dots, A_n\}^+$$

Why compute Attribute closures?

■ Check if a "new" FD A1, A2, ... An → B follows from a set of FDs S

Simply check if B is in {A1, A2, ..., An} + under S

Get keys procedurally (aka algorithmically)

A set of attributes X is a key for a relation R iff

- $-\{X\}^+$ is the set of all attributes of R
- For no attribute $A \subseteq X$ is $\{X \{A\}\}^+$ the set of all attributes of R

Examples of Closure Computations

- Consider the "bad" relation
 Students (Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)
- What are the FDs that hold in this relation?
 - $Id \rightarrow Name$
 - Id → FavouriteAdvisorId
 - AdvisorId → AdvisorName
- To compute the key for this relation:
 - Compute the closures for all sets of attributes
 - Find the minimal set of attributes whose closure is the set of all attributes

Algorithm for computing keys

- Given (INPUT):
 - A relation R (A1, A2, ..., An)
 - The set of all FDs S that hold in R
- Find (OUTPUT):
 - Compute all the keys of R
- For every subset K of {A1, A2, ..., An} compute its closure
- 2. If {K}+ = {A1, A2, ... An} and for every attribute A, {K {A}}+ is not {A1, A2, ... An}, then output K as a key
- Running time?

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover

 We can use closures of attributes to determine if any FD follows from a given set of FDs

OR

Use Armstrong's axioms: complete set of inference rules from which it is possible to derive every FD that follows from a given set:

Reflexivity

$$Y \subseteq X \Rightarrow X \rightarrow Y$$

- E.g. ssn, name \rightarrow ssn

Augmentation

$$X \rightarrow Y \Rightarrow XW \rightarrow YW$$

- E.g. ssn \rightarrow name then ssn grade \rightarrow name grade

Transitivity

$$X \to Y Y \to Z$$
 $\Rightarrow X \to Z$

e.g. if ssn \rightarrow address and address \rightarrow tax-rate then

ssn → tax-rate

Reflexivity: $Y \subseteq X \Rightarrow X \rightarrow Y$

Augmentation: $X \rightarrow Y \Rightarrow XW \rightarrow YW$

Transitivity:

 $X \to Y$ $Y \to Z$ $\Rightarrow X \to Z$

'sound' and 'complete'

Additional rules

$$- Union
X \to Y
X \to Z$$

$$X \to Z$$

- Decomposition
$$X \rightarrow YZ \Rightarrow X \rightarrow Y$$
 $X \rightarrow Z$

$$- \text{ Pseudo-transitivity } \left. \begin{array}{c} X \to Y \\ YW \to Z \end{array} \right\} \Rightarrow XW \to Z$$

Prove 'Union' from three axioms:

$$X \to Y X \to Z$$
 $\Rightarrow X \to YZ$

Prove 'Union' from three axioms:

$$X \rightarrow Y$$
 (1)
 $X \rightarrow Z$ (2)
 $(1) + augm.w / Z \Rightarrow XZ \rightarrow YZ$

$$(2) + augm.w / X \Rightarrow XX \rightarrow XZ \tag{4}$$

but XX is X thus

$$(3) + (4)$$
 and transitivity $\Rightarrow X \rightarrow YZ$

Prakash 2018 VT CS 4604 55

(3)

Prove Pseudo-transitivity: try it

$$Y \subseteq X \Rightarrow X \rightarrow Y$$

$$X \rightarrow Y \Rightarrow XW \rightarrow YW$$

$$X \rightarrow Y$$

$$Y \rightarrow Z$$

$$\Rightarrow X \rightarrow Z$$

$$X \to Y \\ YW \to Z$$
 $\Rightarrow XW \to Z$

Prove Decomposition: try it

$$Y \subseteq X \Rightarrow X \to Y$$

$$X \to Y \Rightarrow XW \to YW$$

$$X \to Y$$

$$Y \to Z$$

$$\Rightarrow X \to Z$$

$$X \to YZ \Longrightarrow X \to Y$$
$$X \to Z$$

Note on notation

- Relation Schema: R(A1, A2, A3): parentheses surround attributes, attributes separated by commas.
- Set of attributes: {A1, A2, A3}: curly braces surround attributes, attributes separated by commas
- FD: A1 A2 → A3: no parentheses or curly braces, attributes separated by spaces, arrows separates left hand side and right hand side
- Set of FDs: {A1 A2 → A3, A2 → A1}: curly braces surround FDs, FDs separated by commas

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover

FDs - Closure F+

```
Given a set F of FD (on a schema)
F+ is the set of all implied FD. Eg.,
takes(ssn, c-id, grade, name, address)
ssn, c-id -> grade
ssn-> name, address

F
```


FDs - Closure F+

ssn, c-id -> grade ssn-> name, address ssn-> ssn ssn, c-id-> address c-id, address-> c-id

F+

Computing Closures of FDs

 To compute the closure of a set of FDs, repeatedly apply Armstrong's Axioms until you cannot find any new FDs

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- \blacksquare F = {A \rightarrow B, B \rightarrow C}
- {F}+ = ??

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- \blacksquare F = {A \rightarrow B, B \rightarrow C}
- $F} + = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, AC \rightarrow B, AB \rightarrow C\}$

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- $F = \{AB \rightarrow C, BC \rightarrow A, AC \rightarrow B\}$
- {F}+ = ??

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- $F = \{AB \rightarrow C, BC \rightarrow A, AC \rightarrow B\}$
- \blacksquare {F}+ = {AB \rightarrow C, BC \rightarrow A, AC \rightarrow B}

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- {F}+ = ??

- ((Let us include only completely non-trivial FDs in these examples, with a single attribute on the right))
- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- $\{F\}+=\{A\rightarrow B, B\rightarrow C, C\rightarrow D, A\rightarrow C, A\rightarrow D, B\rightarrow D, ...\}$

Closures of Attributes vs Closure of FDs

- Both algorithms take as input a relation R and a set of FDs F
- Closure of FDs:
 - Computes {F}+, the set of all FDs that follow from F
 - Output is a set of FDs
 - Output may contain an exponential number of FDs
- Closure of attributes:
 - In addition, takes a set {A1, A2..., An} of attributes as input
 - Computes {A1, A2, ..., An}+, the set of all attributes B, such that A1 A2 ... An → B follows from F
 - Output is set of all attributes
 - Output may contain at most the number of attributes in R

FDs - 'canonical cover' Fc

Given a set F of FD (on a schema) Fc is a minimal set of equivalent FDs. Eg., takes(ssn, c-id, grade, name, address) ssn, c-id -> grade ssn-> name, address ssn,name-> name, address ssn, c-id-> grade, name

Canonical cover

 Also sometimes called the 'minimal basis' or 'minimal cover'

FDs - 'canonical cover' Fc

ssn, c-id -> grade ssn-> name, address ssn,name-> name, address ssn, c-id-> grade, name

- why do we need it?
- define it properly
- compute it efficiently

- why do we need it?
 - easier to compute candidate keys
- define it properly
- compute it efficiently

- define it properly three properties
 - 1) the RHS of every FD is a single attribute
 - 2) the closure of Fc is identical to the closure of F
 (ie., Fc and F are equivalent)
 - 3) Fc is minimal (ie., if we eliminate any attribute from the LHS or RHS of a FD, property #2 is violated

- #3: we need to eliminate 'extraneous' attributes. An attribute is 'extraneous if
 - the closure is the same, before and after its elimination
 - or if F-before implies F-after and vice-versa

ssn, c-id -> grade ssn-> name, address ssn,name-> name, address ssn, c-id-> grade, name

Algorithm:

- examine each FD; drop extraneous LHS or RHS attributes; or redundant FDs
- make sure that FDs have a single attribute in their RHS
- repeat until no change

Trace algo for

```
AB->C (1)
```

$$A -> BC (2)$$

$$B->C$$
 (3)

$$A -> B$$
 (4)

Trace algo for

```
AB->C (1)
```

$$A -> BC (2)$$

$$B->C$$
 (3)

$$A -> B$$
 (4)

```
AB->C (1)
A->B (2')
A->C (2'')
B->C (3)
A->B (4)
```



```
AB->C (1)

A->B (2')

A->C (2'')

B->C (3)

A->B (4)
```

```
AB->C (1)

A->C (2'')

B->C (3)

A->B (4)
```



```
AB->C (1)

A->C (2'')

B->C (3)

A->B (4)

(2''): redundant (implied by (4), (3) and transitivity
```


$$A -> B$$
 (4)

$$A -> B$$
 (4)

in (1), 'A' is extraneous:

(1),(3),(4) imply

(1'),(3),(4), and vice versa

- all RHS are single attributes
- final and original set of FDs are equivalent (same closure)

BEFORE

AB->C (1)

A->BC (2)

B->C (3)

A -> B (4)

AFTER

B->C (3) A->B (4)

Overview

- Functional dependencies
 - why
 - Definition
 - Attribute closures and keys
 - Armstrong's "axioms"
 - FD closure and cover