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Lecture	#13:	Functional	

Dependencies	



Course	Outline	
§  Weeks	1–4:	Query/

Manipulation	Languages	
and	Data	Modeling	
–  Relational	Algebra	
–  Data	definition	
–  Programming	with	SQL	
–  Entity-Relationship	(E/R)	
approach	

–  Specifying	Constraints	
–  Good	E/R	design	

§  Weeks	5–8:	Indexes,	
Processing	and	
Optimization	
–  Storing	
–  Hashing/Sorting	
–  Query	Optimization	
–  NoSQL	and	Hadoop	

§  Week	9-10:	Relational	
Design	
–  Functional	Dependencies	
–  Normalization	to	avoid	
redundancy	

§  Week	11-12:	Concurrency	
Control	
–  Transactions	
–  Logging	and	Recovery	

§  Week	13–14:	Students’	
choice	
–  Practice	Problems		
–  XML	
–  Data	mining	and	
warehousing	
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Announcements	

§  Handout	3	on	FDs	and	Normalization	is	out.		
–  We	will	discuss	it	next	Tue,	Oct	23	
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Functional	Dependencies	and	Schema	
Normalization	

§  A	bit	abstract	and	theoretical!	
§  But	important!	

§  Plan:	3	lectures	
– 1.	What	are	FDs?	How	to	reason	about	them?	
– 2.	BCNF,	3NF	and	Normalization	
– 3.	Practice	Problems	in	class	
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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Example	

§  Convert	to	relations	
– Students	(ID,	Name)	
– Advisors	(ID,	Name)	
– Favourite	(StudentID,	AdvisorID)	
– Advises	(StudentID,	AdvisorID)	

Prakash	2018	 VT	CS	4604	 6	



Example	

§ What	if	we	combine	Students,	Advises,	and	
Favourite	into	one	relation?	
– Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

– Seems	‘intuitively	bad’	right?		
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Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§ What	makes	it	bad?		
§  Given	the	Student’s	Id,	can	any	other	values	
be	determined?		
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	
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Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	?	
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Example	of	a	Bad	Relation	
Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	AdvisorName	

§  Can	we	say	Id	à	AdvisorId	?		
– Not	really!	Why?	
–  Id	is	a	not	a	key	for	Students	relation		
–  Key:	{Id,	AdvisorId}	
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Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§  OK,	what	really	makes	it	bad?		
§  Ans:	Parts	of	the	key	determine	other	
attributes		

§  Leads	to:	
– Redundancy	(Space,	Inconsistencies,	….)	
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Motivation	for	Functional	
Dependencies	

§  Reason	about	constraints	on	attributes	in	a	
relation	

§  Procedurally	determine	the	keys	of	a	relation	
§  Detect	when	a	relation	has	redundant	
information	

§  Improve	database	designs	systematically	using	
normalization	
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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Definition	of	FD	(Functional	
Dependency)	

§  X	à	Y		
‘X’	functionally	determines	‘Y’	
Informally:	‘if	you	know	‘X’,	there	is	only	one	‘Y’	
to	match’		
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Definition	of	FD	(Functional	
Dependency)	

§  ((If	t	is	a	tuple	in	a	relation	R	and	A	is	an	attribute	
of	R,	then	t[A]	is	the	value	of	attribute	A	in	tuple	
t))	

§  Formally:	
X	à	Y	è	(t1[X]	=	t2[X]	è	t1[Y]	=	t2[Y])		
if	two	tuples	agree	on	the	‘X’	attribute,	they	*must*	
agree	on	the	‘Y’	attribute,	too		
(eg.,	if	ids	are	the	same,	so	should	be	names)	
	
Prakash	2018	 VT	CS	4604	 15	



X	à	Y	

§  X	and	Y	can	be	sets	of	attributes	

§  Definition	of	FDs	
§  A	FD	on	a	relation	R	is	a	statement:		
–  If	two	tuples	in	R	agree	on	attributes	A1,	A2,	…,	An	
they	agree	on	attribute	B	

– Notation:	A1	A2	…	An	à	B	
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Definitions	contd.	

§  A	FD	is	a	constraint	on	a	single	relational	
schema		
–  It	must	hold	on	every	instance	of	the	relation	

– You	can	not	deduce	an	FD	from	a	
relation	instance!	
– (but	you	can	deduce	if	an	FD	does	NOT	
hold	using	an	instance)	
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Examples	of	FDs	
§  List	the	FDs	

	

§  Number	DeptName	à	CourseName	
§  Number	DeptName	à	Classroom	
§  Number	DeptName	à	Enrollment		
§  Number	DeptName	à	CourseName	Classroom	Enrollment		
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Examples	of	FDs	
§  List	the	FDs	

	
	
§  Is	Number	à	Enrollment	an	FD?		
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Where	do	FDs	come	from?	

§  “Keyness”	of	attributes		
§  Domain	and	application	constraints	
§  Real	world	constraints		
– E.g.	ProfessorID	Time	à	Classroom	
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Definition	of	Keys	

§  FDs	allow	us	to	formally	define	keys	
§  A	set	of	attributes	{A1,	A2,	…,	An}	is	a	key	for	
relation	R	if:	

	
Uniqueness:	{A1,	A2,	…,	An}	functionally	determine	
all	the	other	attributes	of	R	
	
Minimality:	no	proper	set	of	{A1,	A2,	…,	An}	
functionally	determines	all	other	attributes	of	R.	
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Definitions	of	Keys	

§  A	superkey	is	a	set	of	attributes	that	has	the	
uniqueness	property	but	is	not	necessarily	
minimal	

§  If	a	relation	has	multiple	keys,	specify	one	to	
be	primary	key	

§  Convention:	underline	the	attributes	(but	you	
know	that!)		

§  If	a	key	has	only	one	attribute	A,	say	A	rather	
than	{A}	
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Example	of	keys	

§ What	is	the	key	for		
Courses	(Number,	DeptName,	CourseName,	
Classroom,	Enrollment)	?	

§  The	key	is	{Number,	DeptName}	
– These	attributes	functionally	determine	every	
other	attribute	

– No	proper	subset	of	{Number,	DeptName}	has	this	
property	
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Example	of	Keys	

§ What	is	the	key	for	
Teach	(Number,	DepartmentName,	
ProfessorName,	Classroom)	?	
	
§  The	key	is	{Number,	DepartmentName}	
– Why?	
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Keys	in	E/R	to	Relational	Conversion	

§  From	an	ENTITY	SET	
	
If	the	relation	comes	from	an	entity	set,	the	key	
attributes	of	the	relation	are	precisely	the	key	
attributes	of	the	entity	set	
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Keys	in	E/R	to	Relational	Conversion	

§  From	a	RELATIONSHIP	(binary	for	now	between	E	
and	F)	

§  R	is	many-many:	
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	and	of	F	

§  R	is	many-one:	
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	

§  R	is	one-one:		
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	or	of	F	
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Keys	in	E/R	to	Relational	Conversion	

§  From	a	RELATIONSHIP	(multiway?)	
§  Need	to	reason	about	the	FDs	that	R	satisfies	
§  No	simple	rule	
§  If	R	has	an	arrow	towards	entity	set	E,	at	least	
one	key	for	the	relation	for	R	excludes	the	key	
for	E	
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Rules	for	Manipulating	FDs	

§  Learn	how	to	reason	about	FDs	
§  Define	rules	for	deriving	new	FDs	from	a	given	
set	of	FDs	

§  Example:	R	(A,	B,	C)	satisfies	FDs	AàB,	BàC.	
– What	others	does	it	satisfy?		
– AàC	
– What	is	the	key	for	R?		
– A	(as	AàB	and	AàC)	
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Equivalence	of	FDs	
§  Why?	
–  To	derive	new	FDs	from	a	set	of	FDs	

§  An	FD	F	follows	from	a	set	of	FDs	T	if	every	
relation	instance	that	satisfies	all	the	FDs	in	T	also	
satisfies	F	
– A	à	C	follows	from	T	=	{AàB,	BàC}	

§  Two	sets	of	FDs	S	and	T	are	equivalent	if	each	FD	
in	S	follows	from	T	and	each	FD	in	T	follows	from	
S	
–  S	=	{AàB,	BàC,	AàC}	and	T	=	{AàB,	BàC}	are	
equivalent	
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Splitting	and	Combining	FDs	
§  The	set	of	FDs	
– A1	A2	A3…An	à	B1	
– A1	A2	A3…An	à	B2	
– …	
is	equivalent	to	the	FD	
– A1	A2	A3…An	à	B1	B2	B3	…	Bm	

§  This	equivalence	implies	two	rules:	
–  Splitting	rule	
–  Combining	rule	
–  These	rules	work	because	all	the	FDs	in	S	and	T	have	
identical	left	hand	sides	
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Splitting	and	Combining	FDs	

§  Can	we	split	and	combine	left	hand	sides	of	
FDs?	

§  For	the	relation	Courses,	is	the	FD	
– Number	DeptName	à	CourseName	

			equivalent	to	the	set	of	FDs	
–  {Number	à	CourseName,	DeptName	à	
CourseName}	?	

– NO	
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Triviality	of	FDs	

§  A	FD	A1	A2…An	à	B1	B2…Bm	is		
– Trivial	if	the	B’s	are	a	subset	of	the	A’s	

– Non-trivial	if	at	least	one	B	is	not	among	the	A’s		

– Completely	non-trivial	if	none	of	the	B’s	are	
among	the	A’s	
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Triviality	of	FDs	

§ What	good	are	trivial	and	non-trivial	FDs?	
– Trivial	dependencies	are	always	true	
– They	help	simplify	reasoning	about	FDs	

§  Trivial	dependency	rule:	The	FD	A1	A2…An	à	
B1	B2…Bm	is	equivalent	to	the	FD	A1	A2…An	
à	C1	C2..Ck,	where	the	C’s	are	those	B’s	that	
are	not	A’s	i.e.	
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	X	of	attributes	such	that	AB	à	X	is	true	

§  Answer:		
X	=	{A,	B,	C,	D,	E}	i.e.	AB	à	ABCDE	
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Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	Y	of	attributes	such	that	BCF	à	Y	is	true	

§  Answer:		
Y	=	{A,	B,	C,	D,	E,	F}	i.e.	BCF	à	ABCDEF	

What	is	
BCF		?	
	
ans:	A	
superkey		
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Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	Z	of	attributes	such	that	AF	à	Z	is	true	

§  Answer:		
Y	=	{A,	F}	i.e.	AF	à	AF	
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Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  X,	Y,	Z	are	the	closures	of	{A,	B},	{B,	C,	F},	and	
{A,	F}	respectively	
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Attribute	Closure,	another	way	of	
looking	(not	in	book)	

R(A,	B,	C)	
	
FD	set:		
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
	

C A 

B 
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Closure	of	Attributes:	Definition	

§  Given:	
– Attributes	{A1,	A2,	…,	An}		
– A	set	of	FDs	S	

§  The	Closure	of	{A1,	A2,	…,	An}	under	S	is	
–  the	set	of	attributes	{B1,	B2,	…,	Bm}	such	that	for		
1	<=	i	<=	m,	the	FD	A1	A2	…	An	à	Bi	follows	from	S	
–  the	closure	is	denoted	by	{A1,	A2,	…,	An}		+
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Closure	of	Attributes:	Definition	

§  Question:		
Which	attributes	must	{A1,	A2,	…,	An}				contain	
at	the	minimum?		
§  Answer:		
{A1,	A2,	…,	An}		
§  Why?		
A1	A2	…	An	à	Ai	is	a	trivial	FD	

	

+
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Closure	of	Attributes:	Algorithm	

§  Given		(INPUT)	:	
– Attributes	{A1,	A2,	..	An}	
– Set	of	FDs	S		

§  Find	(OUTPUT)	:	
– X	=	{A1,	A2,	…	,	An}		+
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Closure	of	Attributes:	Algorithm	

1.  Use	the	splitting	rule	so	that	each	FD	in	S	has	
one	attribute	on	the	right.	

2.  Set	X	==	{A1,	A2	…,	An}		
3.  Find	FD	B1	B2…Bk	à	C	in	S	such	that		
{B1	B2	…	Bk}						X	but	C					X	
4.  Add	C	to	X	
5.  Repeat	the	last	two	steps	until	you	can’t	find	

C	
Why	is	the	algorithm	correct?		
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Why	compute	Attribute	Closures?	

§  Prove	correctness	of	rules	for	manipulating	FDs	
Example:		
Prove	the	transitive	rule	i.e.	
IF		
A1	A2	…	An	à	B1	B2	…	Bm	
B1	B2	…	Bm	à	C1	C2	…	Ck	
THEN	
A1	A2	…	An	à	C1	C2	…	Ck		

To	prove	this,	check	if	
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Why	compute	Attribute	closures?	

§  Check	if	a	“new”	FD	A1,	A2,	…	An	à	B	follows	
from	a	set	of	FDs	S	

Simply	check	if	B	is	in	{A1,	A2,	…,	An}				under	S	
§  Get	keys	procedurally	(aka	algorithmically)		
A	set	of	attributes	X	is	a	key	for	a	relation	R	iff		
–  {X}				is	the	set	of	all	attributes	of	R		
– For	no	attribute	A							X	is	{X	–	{A}}				the	set	of	all	
attributes	of	R	

+

+

∈ +
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Examples	of	Closure	Computations	

§  Consider	the	“bad”	relation		
Students	(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
§  What	are	the	FDs	that	hold	in	this	relation?	
–  Id	à	Name	
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	AdvisorName	

§  To	compute	the	key	for	this	relation:		
–  Compute	the	closures	for	all	sets	of	attributes	
–  Find	the	minimal	set	of	attributes	whose	closure	is	the	
set	of	all	attributes	
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Algorithm	for	computing	keys	

§  Given	(INPUT)	:	
–  	A	relation	R	(A1,	A2,	…,	An)		
–  The	set	of	all	FDs	S	that	hold	in	R	

§  Find	(OUTPUT)	:	
–  Compute	all	the	keys	of	R	

1.  For	every	subset	K	of	{A1,	A2,	…,	An}	compute	its	
closure	

2.  If	{K}+	=	{A1,	A2,	…	An}	and	for	every	attribute	A,	{K	–	
{A}}+	is	not	{A1,	A2,	…	An},	then	output	K	as	a	key	

§  Running	time?		
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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Armstrong’s	Axioms	

§ We	can	use	closures	of	attributes	to	
determine	if	any	FD	follows	from	a	given	set	
of	FDs	

OR	
§  Use	Armstrong's	axioms:	complete	set	of	
inference	rules	from	which	it	is	possible	to	
derive	every	FD	that	follows	from	a	given	set:	
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Armstrong’s	Axioms	

§  Reflexivity	

– E.g.	ssn,	name	à	ssn	

§  Augmentation	

– E.g.	ssn	à	name	then	ssn	grade	à	name	grade	

Y ⊆ X⇒ X→Y

X→Y ⇒ XW →YW
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Armstrong’s	Axioms	

§  Transitivity	

	e.g.	if	ssn	à	address		and	address	à	tax-rate	
	then	
	 	 	ssn	à	tax-rate	

X→Y
Y → Z

"
#
$
⇒ X→ Z
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Armstrong’s	Axioms	

 
Reflexivity:  
Augmentation:  
Transitivity:  
     

  
ZX

ZY
YX

→⇒
⎭
⎬
⎫

→

→

YXXY →⇒⊆

YWXWYX →⇒→

‘sound’ and ‘complete’ 
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Armstrong	Axioms	

	
§  Additional	rules	
– Union		

– Decomposition	

– Pseudo-transitivity		

X→Y
X→ Z

"
#
$
⇒ X→YZ

X→YZ⇒
X→Y
X→ Z

#
$
%

X→Y
YW → Z

"
#
$
⇒ XW → Z
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Armstrong’s	Axioms	

§  Prove	‘Union’	from	three	axioms:	

	

X→Y
X→ Z

"
#
$
⇒ X→YZ
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Armstrong’s	Axioms	

§  Prove	‘Union’	from	three	axioms:	

	

X→Y (1)

X→ Z (2)

"
#
$

%$

(1)+ augm.w / Z⇒ XZ→YZ (3)

(2)+ augm.w / X⇒ XX→ XZ (4)

but XX is X thus

(3) + (4) and transitivity ⇒ X→YZ
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Armstrong’s	Axioms	

§  Prove	Pseudo-transitivity:	try	it	
	 Y ⊆ X⇒ X→Y
X→Y ⇒ XW →YW
X→Y
Y → Z

$
%
&
⇒ X→ Z

X→Y
YW → Z

"
#
$
⇒ XW → Z
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Armstrong’s	Axioms	

§  Prove	Decomposition:	try	it	
	 Y ⊆ X⇒ X→Y
X→Y ⇒ XW →YW
X→Y
Y → Z

$
%
&
⇒ X→ Z

X→YZ⇒
X→Y
X→ Z

#
$
%
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Note	on	notation	
§  Relation	Schema:	R(A1,	A2,	A3):	parentheses	
surround	attributes,	attributes	separated	by	
commas.		

§  Set	of	attributes:	{A1,	A2,	A3}:	curly	braces	
surround	attributes,	attributes	separated	by	
commas	

§  FD:	A1	A2	à	A3:	no	parentheses	or	curly	braces,	
attributes	separated	by	spaces,	arrows	separates	
left	hand	side	and	right	hand	side	

§  Set	of	FDs:	{A1	A2	à	A3,	A2	à	A1}:	curly	braces	
surround	FDs,	FDs	separated	by	commas	
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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FDs	-	Closure	F+	

Given	a	set	F	of	FD	(on	a	schema)	
F+	is	the	set	of	all	implied	FD.	Eg.,	
takes(ssn,	c-id,	grade,	name,	address)	
	ssn,	c-id	->	grade	

			ssn->	name,	address	 }F 
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FDs	-	Closure	F+	

			ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn->	ssn	
			ssn,	c-id->	address	
			c-id,	address->	c-id	
			...	

F+ 
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Computing	Closures	of	FDs	

§  To	compute	the	closure	of	a	set	of	FDs,	
repeatedly	apply	Armstrong’s	Axioms	until	
you	cannot	find	any	new	FDs	
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC}	
§  {F}+	=	??		
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC}	
§  {F}+	=	{AàB,	BàC,	AàC,	ACàB,	ABàC}	
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{ABàC,	BCàA,	ACàB}	
§  {F}+	=	??		
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{ABàC,	BCàA,	ACàB}	
§  {F}+	=	{ABàC,	BCàA,	ACàB}	
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC,	CàD}	
§  {F}+	=	??		
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Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC,	CàD}	
§  {F}+	=	{AàB,	BàC,	CàD,	AàC,	AàD,	BàD,	
…}	
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Closures	of	Attributes	vs	Closure	of	
FDs	

§  Both	algorithms	take	as	input	a	relation	R	and	a	set	of	
FDs	F	

§  Closure	of	FDs:	
–  	Computes	{F}+,	the	set	of	all	FDs	that	follow	from	F	
–  	Output	is	a	set	of	FDs	
–  	Output	may	contain	an	exponential	number	of	FDs	

§  Closure	of	attributes:	
–  	In	addition,	takes	a	set	{A1,	A2…,	An}	of	attributes	as	input	
–  Computes	{A1,	A2,	…,	An}+,	the	set	of	all	attributes	B,	such	
that	A1	A2	…	An	à	B	follows	from	F	

–  Output	is	set	of	all	attributes	
–  Output	may	contain	at	most	the	number	of	attributes	in	R	
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FDs	-	‘canonical	cover’	Fc	

Given	a	set	F	of	FD	(on	a	schema)	
Fc	is	a	minimal	set	of	equivalent	FDs.	Eg.,	
takes(ssn,	c-id,	grade,	name,	address)	
	ssn,	c-id	->	grade	

			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F 
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Canonical	cover	

§  Also	sometimes	called	the	‘minimal	basis’	or	
‘minimal	cover’	
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FDs	-	‘canonical	cover’	Fc	

	ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F 

Fc 
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FDs	-	‘canonical	cover’	Fc	

§  why	do	we	need	it?	
§  define	it	properly	
§  compute	it	efficiently	
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FDs	-	‘canonical	cover’	Fc	

§  why	do	we	need	it?	
– easier	to	compute	candidate	keys	

§  define	it	properly	
§  compute	it	efficiently	
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FDs	-	‘canonical	cover’	Fc	

§  define	it	properly	-	three	properties	
– 1)	the	RHS	of	every	FD	is	a	single	attribute	
– 2)	the	closure	of		Fc	is	identical	to	the	closure	of	F		
(ie.,	Fc	and	F	are	equivalent)	

– 3)	Fc	is	minimal	(ie.,	if	we	eliminate	any	attribute	
from	the	LHS	or	RHS	of	a	FD,	property	#2	is	
violated	
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FDs	-	‘canonical	cover’	Fc	

§  #3:	we	need	to	eliminate	‘extraneous’	
attributes.	An	attribute	is	‘extraneous	if	
–  	the	closure	is	the	same,	before	and	after	its	
elimination	

– or	if	F-before	implies	F-after	and	vice-versa	
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FDs	-	‘canonical	cover’	Fc	

	ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F 
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FDs	-	‘canonical	cover’	Fc	

Algorithm:	
§  examine	each	FD;	drop	extraneous	LHS	or	RHS	
attributes;	or	redundant	FDs	

§  make	sure	that	FDs	have	a	single	attribute	in	
their	RHS	

§  repeat	until	no	change	
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FDs	-	‘canonical	cover’	Fc	

	Trace	algo	for	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
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FDs	-	‘canonical	cover’	Fc	

	Trace	algo	for	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
	split	(2):	

	
AB->C		(1)	
A->B					(2’)	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
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FDs	-	‘canonical	cover’	Fc	

	
AB->C		(1)	
A->B					(2’)	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
		

	
AB->C		(1)	
	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
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FDs	-	‘canonical	cover’	Fc	

	
AB->C		(1)	
	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
(2’’):	redundant	(implied	by	(4),	
(3)	and	transitivity	
	
		

	
AB->C		(1)	
	
	
B->C					(3)	
A->B					(4)	
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FDs	-	‘canonical	cover’	Fc	

	
B->C					(1’)	
	
	
B->C					(3)	
A->B					(4)	
	
		

	
AB->C		(1)	
	
	
B->C					(3)	
A->B					(4)	
	
in	(1),	‘A’	is	extraneous:	
(1),(3),(4)	imply	
(1’),(3),(4),	and	vice	versa	
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FDs	-	‘canonical	cover’	Fc	

	
	
	
	
B->C					(3)	
A->B					(4)	
	
		

	
B->C					(1’)	
	
	
B->C					(3)	
A->B					(4)	
	
		

•  nothing is extraneous 
•  all RHS are single attributes 
•  final and original set of FDs 
are equivalent (same closure) 
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FDs	-	‘canonical	cover’	Fc	

AFTER	
	
	
	
B->C					(3)	
A->B					(4)	
	
	

	BEFORE	
	
	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
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Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	
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