
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#13:	Functional	

Dependencies	

Course	Outline	
§  Weeks	1–4:	Query/

Manipulation	Languages	
and	Data	Modeling	
–  Relational	Algebra	
–  Data	definition	
–  Programming	with	SQL	
–  Entity-Relationship	(E/R)	
approach	

–  Specifying	Constraints	
–  Good	E/R	design	

§  Weeks	5–8:	Indexes,	
Processing	and	
Optimization	
–  Storing	
–  Hashing/Sorting	
–  Query	Optimization	
–  NoSQL	and	Hadoop	

§  Week	9-10:	Relational	
Design	
–  Functional	Dependencies	
–  Normalization	to	avoid	
redundancy	

§  Week	11-12:	Concurrency	
Control	
–  Transactions	
–  Logging	and	Recovery	

§  Week	13–14:	Students’	
choice	
–  Practice	Problems		
–  XML	
–  Data	mining	and	
warehousing	

Prakash	2018	 VT	CS	4604	 2	

Announcements	

§  Handout	3	on	FDs	and	Normalization	is	out.		
–  We	will	discuss	it	next	Tue,	Oct	23	

Prakash	2018	 VT	CS	4604	 3	

Functional	Dependencies	and	Schema	
Normalization	

§  A	bit	abstract	and	theoretical!	
§  But	important!	

§  Plan:	3	lectures	
– 1.	What	are	FDs?	How	to	reason	about	them?	
– 2.	BCNF,	3NF	and	Normalization	
– 3.	Practice	Problems	in	class	

Prakash	2018	 VT	CS	4604	 4	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 5	

Example	

§  Convert	to	relations	
– Students	(ID,	Name)	
– Advisors	(ID,	Name)	
– Favourite	(StudentID,	AdvisorID)	
– Advises	(StudentID,	AdvisorID)	

Prakash	2018	 VT	CS	4604	 6	

Example	

§ What	if	we	combine	Students,	Advises,	and	
Favourite	into	one	relation?	
– Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

– Seems	‘intuitively	bad’	right?		

Prakash	2018	 VT	CS	4604	 7	

Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§ What	makes	it	bad?		
§  Given	the	Student’s	Id,	can	any	other	values	
be	determined?		
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	

Prakash	2018	 VT	CS	4604	 8	

Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	?	

Prakash	2018	 VT	CS	4604	 9	

Example	of	a	Bad	Relation	
Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
– Name	and	FavouriteAdvisorId	
–  Id	à	Name		
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	AdvisorName	

§  Can	we	say	Id	à	AdvisorId	?		
– Not	really!	Why?	
–  Id	is	a	not	a	key	for	Students	relation		
–  Key:	{Id,	AdvisorId}	

Prakash	2018	 VT	CS	4604	 10	

Example	of	a	Bad	Relation	

Students(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	

§  OK,	what	really	makes	it	bad?		
§  Ans:	Parts	of	the	key	determine	other	
attributes		

§  Leads	to:	
– Redundancy	(Space,	Inconsistencies,	….)	

Prakash	2018	 VT	CS	4604	 11	

Motivation	for	Functional	
Dependencies	

§  Reason	about	constraints	on	attributes	in	a	
relation	

§  Procedurally	determine	the	keys	of	a	relation	
§  Detect	when	a	relation	has	redundant	
information	

§  Improve	database	designs	systematically	using	
normalization	

Prakash	2018	 VT	CS	4604	 12	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 13	

Definition	of	FD	(Functional	
Dependency)	

§  X	à	Y		
‘X’	functionally	determines	‘Y’	
Informally:	‘if	you	know	‘X’,	there	is	only	one	‘Y’	
to	match’		

Prakash	2018	 VT	CS	4604	 14	

Definition	of	FD	(Functional	
Dependency)	

§  ((If	t	is	a	tuple	in	a	relation	R	and	A	is	an	attribute	
of	R,	then	t[A]	is	the	value	of	attribute	A	in	tuple	
t))	

§  Formally:	
X	à	Y	è	(t1[X]	=	t2[X]	è	t1[Y]	=	t2[Y])		
if	two	tuples	agree	on	the	‘X’	attribute,	they	*must*	
agree	on	the	‘Y’	attribute,	too		
(eg.,	if	ids	are	the	same,	so	should	be	names)	
	
Prakash	2018	 VT	CS	4604	 15	

X	à	Y	

§  X	and	Y	can	be	sets	of	attributes	

§  Definition	of	FDs	
§  A	FD	on	a	relation	R	is	a	statement:		
–  If	two	tuples	in	R	agree	on	attributes	A1,	A2,	…,	An	
they	agree	on	attribute	B	

– Notation:	A1	A2	…	An	à	B	

Prakash	2018	 VT	CS	4604	 16	

Definitions	contd.	

§  A	FD	is	a	constraint	on	a	single	relational	
schema		
–  It	must	hold	on	every	instance	of	the	relation	

– You	can	not	deduce	an	FD	from	a	
relation	instance!	
– (but	you	can	deduce	if	an	FD	does	NOT	
hold	using	an	instance)	

Prakash	2018	 VT	CS	4604	 17	

Examples	of	FDs	
§  List	the	FDs	

	

§  Number	DeptName	à	CourseName	
§  Number	DeptName	à	Classroom	
§  Number	DeptName	à	Enrollment		
§  Number	DeptName	à	CourseName	Classroom	Enrollment		

Prakash	2018	 VT	CS	4604	 18	

Examples	of	FDs	
§  List	the	FDs	

	
	
§  Is	Number	à	Enrollment	an	FD?		

Prakash	2018	 VT	CS	4604	 19	

Where	do	FDs	come	from?	

§  “Keyness”	of	attributes		
§  Domain	and	application	constraints	
§  Real	world	constraints		
– E.g.	ProfessorID	Time	à	Classroom	

Prakash	2018	 VT	CS	4604	 20	

Definition	of	Keys	

§  FDs	allow	us	to	formally	define	keys	
§  A	set	of	attributes	{A1,	A2,	…,	An}	is	a	key	for	
relation	R	if:	

	
Uniqueness:	{A1,	A2,	…,	An}	functionally	determine	
all	the	other	attributes	of	R	
	
Minimality:	no	proper	set	of	{A1,	A2,	…,	An}	
functionally	determines	all	other	attributes	of	R.	

Prakash	2018	 VT	CS	4604	 21	

Definitions	of	Keys	

§  A	superkey	is	a	set	of	attributes	that	has	the	
uniqueness	property	but	is	not	necessarily	
minimal	

§  If	a	relation	has	multiple	keys,	specify	one	to	
be	primary	key	

§  Convention:	underline	the	attributes	(but	you	
know	that!)		

§  If	a	key	has	only	one	attribute	A,	say	A	rather	
than	{A}	

Prakash	2018	 VT	CS	4604	 22	

Example	of	keys	

§ What	is	the	key	for		
Courses	(Number,	DeptName,	CourseName,	
Classroom,	Enrollment)	?	

§  The	key	is	{Number,	DeptName}	
– These	attributes	functionally	determine	every	
other	attribute	

– No	proper	subset	of	{Number,	DeptName}	has	this	
property	

Prakash	2018	 VT	CS	4604	 23	

Example	of	Keys	

§ What	is	the	key	for	
Teach	(Number,	DepartmentName,	
ProfessorName,	Classroom)	?	
	
§  The	key	is	{Number,	DepartmentName}	
– Why?	

Prakash	2018	 VT	CS	4604	 24	

Keys	in	E/R	to	Relational	Conversion	

§  From	an	ENTITY	SET	
	
If	the	relation	comes	from	an	entity	set,	the	key	
attributes	of	the	relation	are	precisely	the	key	
attributes	of	the	entity	set	

Prakash	2018	 VT	CS	4604	 25	

Keys	in	E/R	to	Relational	Conversion	

§  From	a	RELATIONSHIP	(binary	for	now	between	E	
and	F)	

§  R	is	many-many:	
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	and	of	F	

§  R	is	many-one:	
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	

§  R	is	one-one:		
–  Key	attributes	of	the	relation	are	the	key	attributes	of	
E	or	of	F	

Prakash	2018	 VT	CS	4604	 26	

Keys	in	E/R	to	Relational	Conversion	

§  From	a	RELATIONSHIP	(multiway?)	
§  Need	to	reason	about	the	FDs	that	R	satisfies	
§  No	simple	rule	
§  If	R	has	an	arrow	towards	entity	set	E,	at	least	
one	key	for	the	relation	for	R	excludes	the	key	
for	E	

Prakash	2018	 VT	CS	4604	 27	

Rules	for	Manipulating	FDs	

§  Learn	how	to	reason	about	FDs	
§  Define	rules	for	deriving	new	FDs	from	a	given	
set	of	FDs	

§  Example:	R	(A,	B,	C)	satisfies	FDs	AàB,	BàC.	
– What	others	does	it	satisfy?		
– AàC	
– What	is	the	key	for	R?		
– A	(as	AàB	and	AàC)	

Prakash	2018	 VT	CS	4604	 28	

Equivalence	of	FDs	
§  Why?	
–  To	derive	new	FDs	from	a	set	of	FDs	

§  An	FD	F	follows	from	a	set	of	FDs	T	if	every	
relation	instance	that	satisfies	all	the	FDs	in	T	also	
satisfies	F	
– A	à	C	follows	from	T	=	{AàB,	BàC}	

§  Two	sets	of	FDs	S	and	T	are	equivalent	if	each	FD	
in	S	follows	from	T	and	each	FD	in	T	follows	from	
S	
–  S	=	{AàB,	BàC,	AàC}	and	T	=	{AàB,	BàC}	are	
equivalent	

Prakash	2018	 VT	CS	4604	 29	

Splitting	and	Combining	FDs	
§  The	set	of	FDs	
– A1	A2	A3…An	à	B1	
– A1	A2	A3…An	à	B2	
– …	
is	equivalent	to	the	FD	
– A1	A2	A3…An	à	B1	B2	B3	…	Bm	

§  This	equivalence	implies	two	rules:	
–  Splitting	rule	
–  Combining	rule	
–  These	rules	work	because	all	the	FDs	in	S	and	T	have	
identical	left	hand	sides	

Prakash	2018	 VT	CS	4604	 30	

Splitting	and	Combining	FDs	

§  Can	we	split	and	combine	left	hand	sides	of	
FDs?	

§  For	the	relation	Courses,	is	the	FD	
– Number	DeptName	à	CourseName	

			equivalent	to	the	set	of	FDs	
–  {Number	à	CourseName,	DeptName	à	
CourseName}	?	

– NO	

Prakash	2018	 VT	CS	4604	 31	

Triviality	of	FDs	

§  A	FD	A1	A2…An	à	B1	B2…Bm	is		
– Trivial	if	the	B’s	are	a	subset	of	the	A’s	

– Non-trivial	if	at	least	one	B	is	not	among	the	A’s		

– Completely	non-trivial	if	none	of	the	B’s	are	
among	the	A’s	

Prakash	2018	 VT	CS	4604	 32	

Triviality	of	FDs	

§ What	good	are	trivial	and	non-trivial	FDs?	
– Trivial	dependencies	are	always	true	
– They	help	simplify	reasoning	about	FDs	

§  Trivial	dependency	rule:	The	FD	A1	A2…An	à	
B1	B2…Bm	is	equivalent	to	the	FD	A1	A2…An	
à	C1	C2..Ck,	where	the	C’s	are	those	B’s	that	
are	not	A’s	i.e.	

Prakash	2018	 VT	CS	4604	 33	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 34	

Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	X	of	attributes	such	that	AB	à	X	is	true	

§  Answer:		
X	=	{A,	B,	C,	D,	E}	i.e.	AB	à	ABCDE	

Prakash	2018	 VT	CS	4604	 35	

Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	Y	of	attributes	such	that	BCF	à	Y	is	true	

§  Answer:		
Y	=	{A,	B,	C,	D,	E,	F}	i.e.	BCF	à	ABCDEF	

What	is	
BCF		?	
	
ans:	A	
superkey		

Prakash	2018	 VT	CS	4604	 36	

Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  Question:			
Find	set	Z	of	attributes	such	that	AF	à	Z	is	true	

§  Answer:		
Y	=	{A,	F}	i.e.	AF	à	AF	

Prakash	2018	 VT	CS	4604	 37	

Closure	of	Attributes:	Example	

§  Suppose	a	relation	R	(A,	B,	C,	D,	E,	F)	has	FDs:	
– AB	à	C,	BC	à	AD,	D	à	E,	CF	à	B	

§  X,	Y,	Z	are	the	closures	of	{A,	B},	{B,	C,	F},	and	
{A,	F}	respectively	

Prakash	2018	 VT	CS	4604	 38	

Attribute	Closure,	another	way	of	
looking	(not	in	book)	

R(A,	B,	C)	
	
FD	set:		
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
	

C A

B

Prakash	2018	 VT	CS	4604	 39	

Closure	of	Attributes:	Definition	

§  Given:	
– Attributes	{A1,	A2,	…,	An}		
– A	set	of	FDs	S	

§  The	Closure	of	{A1,	A2,	…,	An}	under	S	is	
–  the	set	of	attributes	{B1,	B2,	…,	Bm}	such	that	for		
1	<=	i	<=	m,	the	FD	A1	A2	…	An	à	Bi	follows	from	S	
–  the	closure	is	denoted	by	{A1,	A2,	…,	An}		+

Prakash	2018	 VT	CS	4604	 40	

Closure	of	Attributes:	Definition	

§  Question:		
Which	attributes	must	{A1,	A2,	…,	An}				contain	
at	the	minimum?		
§  Answer:		
{A1,	A2,	…,	An}		
§  Why?		
A1	A2	…	An	à	Ai	is	a	trivial	FD	

	

+

Prakash	2018	 VT	CS	4604	 41	

Closure	of	Attributes:	Algorithm	

§  Given		(INPUT)	:	
– Attributes	{A1,	A2,	..	An}	
– Set	of	FDs	S		

§  Find	(OUTPUT)	:	
– X	=	{A1,	A2,	…	,	An}		+

Prakash	2018	 VT	CS	4604	 42	

Closure	of	Attributes:	Algorithm	

1.  Use	the	splitting	rule	so	that	each	FD	in	S	has	
one	attribute	on	the	right.	

2.  Set	X	==	{A1,	A2	…,	An}		
3.  Find	FD	B1	B2…Bk	à	C	in	S	such	that		
{B1	B2	…	Bk}						X	but	C					X	
4.  Add	C	to	X	
5.  Repeat	the	last	two	steps	until	you	can’t	find	

C	
Why	is	the	algorithm	correct?		

Prakash	2018	 VT	CS	4604	 43	

Why	compute	Attribute	Closures?	

§  Prove	correctness	of	rules	for	manipulating	FDs	
Example:		
Prove	the	transitive	rule	i.e.	
IF		
A1	A2	…	An	à	B1	B2	…	Bm	
B1	B2	…	Bm	à	C1	C2	…	Ck	
THEN	
A1	A2	…	An	à	C1	C2	…	Ck		

To	prove	this,	check	if	
	
	

Prakash	2018	 VT	CS	4604	 44	

Why	compute	Attribute	closures?	

§  Check	if	a	“new”	FD	A1,	A2,	…	An	à	B	follows	
from	a	set	of	FDs	S	

Simply	check	if	B	is	in	{A1,	A2,	…,	An}				under	S	
§  Get	keys	procedurally	(aka	algorithmically)		
A	set	of	attributes	X	is	a	key	for	a	relation	R	iff		
–  {X}				is	the	set	of	all	attributes	of	R		
– For	no	attribute	A							X	is	{X	–	{A}}				the	set	of	all	
attributes	of	R	

+

+

∈ +

Prakash	2018	 VT	CS	4604	 45	

Examples	of	Closure	Computations	

§  Consider	the	“bad”	relation		
Students	(Id,	Name,	AdvisorId,	AdvisorName,	
FavouriteAdvisorId)	
§  What	are	the	FDs	that	hold	in	this	relation?	
–  Id	à	Name	
–  Id	à	FavouriteAdvisorId	
– AdvisorId	à	AdvisorName	

§  To	compute	the	key	for	this	relation:		
–  Compute	the	closures	for	all	sets	of	attributes	
–  Find	the	minimal	set	of	attributes	whose	closure	is	the	
set	of	all	attributes	

Prakash	2018	 VT	CS	4604	 46	

Algorithm	for	computing	keys	

§  Given	(INPUT)	:	
–  	A	relation	R	(A1,	A2,	…,	An)		
–  The	set	of	all	FDs	S	that	hold	in	R	

§  Find	(OUTPUT)	:	
–  Compute	all	the	keys	of	R	

1.  For	every	subset	K	of	{A1,	A2,	…,	An}	compute	its	
closure	

2.  If	{K}+	=	{A1,	A2,	…	An}	and	for	every	attribute	A,	{K	–	
{A}}+	is	not	{A1,	A2,	…	An},	then	output	K	as	a	key	

§  Running	time?		

Prakash	2018	 VT	CS	4604	 47	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 48	

Armstrong’s	Axioms	

§ We	can	use	closures	of	attributes	to	
determine	if	any	FD	follows	from	a	given	set	
of	FDs	

OR	
§  Use	Armstrong's	axioms:	complete	set	of	
inference	rules	from	which	it	is	possible	to	
derive	every	FD	that	follows	from	a	given	set:	

Prakash	2018	 VT	CS	4604	 49	

Armstrong’s	Axioms	

§  Reflexivity	

– E.g.	ssn,	name	à	ssn	

§  Augmentation	

– E.g.	ssn	à	name	then	ssn	grade	à	name	grade	

Y ⊆ X⇒ X→Y

X→Y ⇒ XW →YW

Prakash	2018	 VT	CS	4604	 50	

Armstrong’s	Axioms	

§  Transitivity	

	e.g.	if	ssn	à	address		and	address	à	tax-rate	
	then	
	 	 	ssn	à	tax-rate	

X→Y
Y → Z

"
#
$
⇒ X→ Z

Prakash	2018	 VT	CS	4604	 51	

Armstrong’s	Axioms	

Reflexivity:
Augmentation:
Transitivity:

ZX

ZY
YX

→⇒
⎭
⎬
⎫

→

→

YXXY →⇒⊆

YWXWYX →⇒→

‘sound’ and ‘complete’

Prakash	2018	 VT	CS	4604	 52	

Armstrong	Axioms	

	
§  Additional	rules	
– Union		

– Decomposition	

– Pseudo-transitivity		

X→Y
X→ Z

"
#
$
⇒ X→YZ

X→YZ⇒
X→Y
X→ Z

#
$
%

X→Y
YW → Z

"
#
$
⇒ XW → Z

Prakash	2018	 VT	CS	4604	 53	

Armstrong’s	Axioms	

§  Prove	‘Union’	from	three	axioms:	

	

X→Y
X→ Z

"
#
$
⇒ X→YZ

Prakash	2018	 VT	CS	4604	 54	

Armstrong’s	Axioms	

§  Prove	‘Union’	from	three	axioms:	

	

X→Y (1)

X→ Z (2)

"
#
$

%$

(1)+ augm.w / Z⇒ XZ→YZ (3)

(2)+ augm.w / X⇒ XX→ XZ (4)

but XX is X thus

(3) + (4) and transitivity ⇒ X→YZ

Prakash	2018	 VT	CS	4604	 55	

Armstrong’s	Axioms	

§  Prove	Pseudo-transitivity:	try	it	
	 Y ⊆ X⇒ X→Y
X→Y ⇒ XW →YW
X→Y
Y → Z

$
%
&
⇒ X→ Z

X→Y
YW → Z

"
#
$
⇒ XW → Z

Prakash	2018	 VT	CS	4604	 56	

Armstrong’s	Axioms	

§  Prove	Decomposition:	try	it	
	 Y ⊆ X⇒ X→Y
X→Y ⇒ XW →YW
X→Y
Y → Z

$
%
&
⇒ X→ Z

X→YZ⇒
X→Y
X→ Z

#
$
%

Prakash	2018	 VT	CS	4604	 57	

Note	on	notation	
§  Relation	Schema:	R(A1,	A2,	A3):	parentheses	
surround	attributes,	attributes	separated	by	
commas.		

§  Set	of	attributes:	{A1,	A2,	A3}:	curly	braces	
surround	attributes,	attributes	separated	by	
commas	

§  FD:	A1	A2	à	A3:	no	parentheses	or	curly	braces,	
attributes	separated	by	spaces,	arrows	separates	
left	hand	side	and	right	hand	side	

§  Set	of	FDs:	{A1	A2	à	A3,	A2	à	A1}:	curly	braces	
surround	FDs,	FDs	separated	by	commas	

Prakash	2018	 VT	CS	4604	 58	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 59	

FDs	-	Closure	F+	

Given	a	set	F	of	FD	(on	a	schema)	
F+	is	the	set	of	all	implied	FD.	Eg.,	
takes(ssn,	c-id,	grade,	name,	address)	
	ssn,	c-id	->	grade	

			ssn->	name,	address	 }F

Prakash	2018	 VT	CS	4604	 60	

FDs	-	Closure	F+	

			ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn->	ssn	
			ssn,	c-id->	address	
			c-id,	address->	c-id	
			...	

F+

Prakash	2018	 VT	CS	4604	 61	

Computing	Closures	of	FDs	

§  To	compute	the	closure	of	a	set	of	FDs,	
repeatedly	apply	Armstrong’s	Axioms	until	
you	cannot	find	any	new	FDs	

Prakash	2018	 VT	CS	4604	 62	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC}	
§  {F}+	=	??		

Prakash	2018	 VT	CS	4604	 63	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC}	
§  {F}+	=	{AàB,	BàC,	AàC,	ACàB,	ABàC}	

Prakash	2018	 VT	CS	4604	 64	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{ABàC,	BCàA,	ACàB}	
§  {F}+	=	??		

Prakash	2018	 VT	CS	4604	 65	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{ABàC,	BCàA,	ACàB}	
§  {F}+	=	{ABàC,	BCàA,	ACàB}	

Prakash	2018	 VT	CS	4604	 66	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC,	CàD}	
§  {F}+	=	??		

Prakash	2018	 VT	CS	4604	 67	

Examples	of	Computing	Closures	of	
FDs	

§  ((Let	us	include	only	completely	non-trivial	
FDs	in	these	examples,	with	a	single	attribute	
on	the	right))	

§  F	=	{AàB,	BàC,	CàD}	
§  {F}+	=	{AàB,	BàC,	CàD,	AàC,	AàD,	BàD,	
…}	

Prakash	2018	 VT	CS	4604	 68	

Closures	of	Attributes	vs	Closure	of	
FDs	

§  Both	algorithms	take	as	input	a	relation	R	and	a	set	of	
FDs	F	

§  Closure	of	FDs:	
–  	Computes	{F}+,	the	set	of	all	FDs	that	follow	from	F	
–  	Output	is	a	set	of	FDs	
–  	Output	may	contain	an	exponential	number	of	FDs	

§  Closure	of	attributes:	
–  	In	addition,	takes	a	set	{A1,	A2…,	An}	of	attributes	as	input	
–  Computes	{A1,	A2,	…,	An}+,	the	set	of	all	attributes	B,	such	
that	A1	A2	…	An	à	B	follows	from	F	

–  Output	is	set	of	all	attributes	
–  Output	may	contain	at	most	the	number	of	attributes	in	R	

Prakash	2018	 VT	CS	4604	 69	

FDs	-	‘canonical	cover’	Fc	

Given	a	set	F	of	FD	(on	a	schema)	
Fc	is	a	minimal	set	of	equivalent	FDs.	Eg.,	
takes(ssn,	c-id,	grade,	name,	address)	
	ssn,	c-id	->	grade	

			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F

Prakash	2018	 VT	CS	4604	 70	

Canonical	cover	

§  Also	sometimes	called	the	‘minimal	basis’	or	
‘minimal	cover’	

Prakash	2018	 VT	CS	4604	 71	

FDs	-	‘canonical	cover’	Fc	

	ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F

Fc

Prakash	2018	 VT	CS	4604	 72	

FDs	-	‘canonical	cover’	Fc	

§  why	do	we	need	it?	
§  define	it	properly	
§  compute	it	efficiently	

Prakash	2018	 VT	CS	4604	 73	

FDs	-	‘canonical	cover’	Fc	

§  why	do	we	need	it?	
– easier	to	compute	candidate	keys	

§  define	it	properly	
§  compute	it	efficiently	

Prakash	2018	 VT	CS	4604	 74	

FDs	-	‘canonical	cover’	Fc	

§  define	it	properly	-	three	properties	
– 1)	the	RHS	of	every	FD	is	a	single	attribute	
– 2)	the	closure	of		Fc	is	identical	to	the	closure	of	F		
(ie.,	Fc	and	F	are	equivalent)	

– 3)	Fc	is	minimal	(ie.,	if	we	eliminate	any	attribute	
from	the	LHS	or	RHS	of	a	FD,	property	#2	is	
violated	

Prakash	2018	 VT	CS	4604	 75	

FDs	-	‘canonical	cover’	Fc	

§  #3:	we	need	to	eliminate	‘extraneous’	
attributes.	An	attribute	is	‘extraneous	if	
–  	the	closure	is	the	same,	before	and	after	its	
elimination	

– or	if	F-before	implies	F-after	and	vice-versa	

Prakash	2018	 VT	CS	4604	 76	

FDs	-	‘canonical	cover’	Fc	

	ssn,	c-id	->	grade	
			ssn->	name,	address	
			ssn,name->	name,	address	
			ssn,	c-id->	grade,	name	

F

Prakash	2018	 VT	CS	4604	 77	

FDs	-	‘canonical	cover’	Fc	

Algorithm:	
§  examine	each	FD;	drop	extraneous	LHS	or	RHS	
attributes;	or	redundant	FDs	

§  make	sure	that	FDs	have	a	single	attribute	in	
their	RHS	

§  repeat	until	no	change	

Prakash	2018	 VT	CS	4604	 78	

FDs	-	‘canonical	cover’	Fc	

	Trace	algo	for	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	

Prakash	2018	 VT	CS	4604	 79	

FDs	-	‘canonical	cover’	Fc	

	Trace	algo	for	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
	split	(2):	

	
AB->C		(1)	
A->B					(2’)	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
		

Prakash	2018	 VT	CS	4604	 80	

FDs	-	‘canonical	cover’	Fc	

	
AB->C		(1)	
A->B					(2’)	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
		

	
AB->C		(1)	
	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
		

Prakash	2018	 VT	CS	4604	 81	

FDs	-	‘canonical	cover’	Fc	

	
AB->C		(1)	
	
A->C					(2’’)	
B->C					(3)	
A->B					(4)	
	
(2’’):	redundant	(implied	by	(4),	
(3)	and	transitivity	
	
		

	
AB->C		(1)	
	
	
B->C					(3)	
A->B					(4)	
	
		

Prakash	2018	 VT	CS	4604	 82	

FDs	-	‘canonical	cover’	Fc	

	
B->C					(1’)	
	
	
B->C					(3)	
A->B					(4)	
	
		

	
AB->C		(1)	
	
	
B->C					(3)	
A->B					(4)	
	
in	(1),	‘A’	is	extraneous:	
(1),(3),(4)	imply	
(1’),(3),(4),	and	vice	versa	
	
		

Prakash	2018	 VT	CS	4604	 83	

FDs	-	‘canonical	cover’	Fc	

	
	
	
	
B->C					(3)	
A->B					(4)	
	
		

	
B->C					(1’)	
	
	
B->C					(3)	
A->B					(4)	
	
		

•  nothing is extraneous
•  all RHS are single attributes
•  final and original set of FDs
are equivalent (same closure)

Prakash	2018	 VT	CS	4604	 84	

FDs	-	‘canonical	cover’	Fc	

AFTER	
	
	
	
B->C					(3)	
A->B					(4)	
	
	

	BEFORE	
	
	
AB->C		(1)	
A->BC		(2)	
B->C					(3)	
A->B					(4)	
	

Prakash	2018	 VT	CS	4604	 85	

Overview	

§  Functional	dependencies	
– why	
– Definition	
– Attribute	closures	and	keys	
– Armstrong’s	“axioms”	
– FD	closure	and	cover	

Prakash	2018	 VT	CS	4604	 86	

