
CS	4604:	Introduction	to	
Database	Management	Systems	

B.	Aditya	Prakash	
Lecture	#12:	NoSQL	and	MapReduce	

NO	SQL	
(some	slides	from	Xiao	Yu)	

Prakash	2018	 VT	CS	4604	 2	

Why	No	SQL?	

Prakash	2018	 VT	CS	4604	 3	

RDBMS	
§  The	predominant	choice	in	storing	data	

– Not	so	true	for	data	miners	since	we	much	in	txt	
files.	

§  First	formulated	in	1969	by	Codd	
– We	are	using	RDBMS	everywhere	

Prakash	2018	 VT	CS	4604	 4	

Slide	from	neo	technology,	“A	NoSQL	Overview	and	the	Benefits	of	Graph	Databases"	

Prakash	2018	 VT	CS	4604	 5	

When	RDBMS	met	Web	2.0	

Slide	from	Lorenzo	Alberton,	"NoSQL	Databases:	Why,	what	and	when"	
Prakash	2018	 VT	CS	4604	 6	

What	to	do	if	data	is	really	large?	

§  Peta-bytes	(exabytes,	zettabytes	…..)	

§  Google	processed	24	PB	of	data	per	day	
(2009)	

§  FB	adds	0.5	PB	per	day	

Prakash	2018	 VT	CS	4604	 7	

Prakash	2018	 VT	CS	4604	 8	

BIG	
data	

What’s	Wrong	with	Relational	DB?	

§  Nothing	is	wrong.	You	just	need	to	use	the	
right	tool.	

§  Relational	is	hard	to	scale.	
– Easy	to	scale	reads	
– Hard	to	scale	writes	

Prakash	2018	 VT	CS	4604	 9	

What’s	NoSQL?	

§  The	misleading	term	“NoSQL”	is	short	for	“Not	
Only	SQL”.	

§  non-relational,	schema-free,	non-(quite)-ACID	
– More	on	ACID	transactions	later	in	class	

§  horizontally	scalable,	distributed,	easy	
replication	support	

§  simple	API	

Prakash	2018	 VT	CS	4604	 10	

Four	(emerging)	NoSQL	Categories	

§  Key-value	(K-V)	stores	
– Based	on	Distributed	Hash	Tables/	Amazon’s	
Dynamo	paper	*	

– Data	model:	(global)	collection	of	K-V	pairs	
– Example:	Voldemort	

§  Column	Families	
– BigTable	clones	**	
– Data	model:	big	table,	column	families	
– Example:	HBase,	Cassandra,	Hypertable	

*G	DeCandia	et	al,	Dynamo:	Amazon's	Highly	Available	Key-value	Store,	SOSP	07	
**	F	Chang	et	al,	Bigtable:	A	Distributed	Storage	System	for	Structured	Data,	OSDI	06	

Prakash	2018	 VT	CS	4604	 11	

Four	(emerging)	NoSQL	Categories	

§  Document	databases	
–  Inspired	by	Lotus	Notes	
– Data	model:	collections	of	K-V	Collections	
– Example:	CouchDB,	MongoDB	

§  Graph	databases	
–  Inspired	by	Euler	&	graph	theory	
– Data	model:	nodes,	relations,	K-V	on	both	
– Example:	AllegroGraph,	VertexDB,	Neo4j	

Prakash	2018	 VT	CS	4604	 12	

Focus	of	Different	Data	Models	

Slide	from	neo	technology,	“A	NoSQL	Overview	and	the	Benefits	of	Graph	Databases"	

Prakash	2018	 VT	CS	4604	 13	

C-A-P	“theorem"	

Consistency	

Availability	

Partition	
Tolerance	

RDBMS	

NoSQL	(most)	

Prakash	2018	 VT	CS	4604	 14	

When	to	use	NoSQL?	§  Bigness	
§  Massive	write	performance	

–  Twitter	generates	7TB	/	per	day	(2010)	
§  Fast	key-value	access	
§  Flexible	schema	or	data	types	
§  Schema	migration	
§  Write	availability	

–  Writes	need	to	succeed	no	matter	what	(CAP,	partitioning)	
§  Easier	maintainability,	administration	and	operations	
§  No	single	point	of	failure	
§  Generally	available	parallel	computing	
§  Programmer	ease	of	use	
§  Use	the	right	data	model	for	the	right	problem	
§  Avoid	hitting	the	wall	
§  Distributed	systems	support	
§  Tunable	CAP	tradeoffs	 from	http://highscalability.com/	

Prakash	2018	 VT	CS	4604	 15	

Key-Value	Stores	
id	 hair_color	 age	 height	

1923	 Red	 18	 6’0”	

3371	 Blue	 34	 NA	

…	 …	 …	 …	

Table	in	relational	db Store/Domain	in	Key-Value	db

Find	users	whose	age	is	above	18?	
Find	all	attributes	of	user	1923?	
Find	users	whose	hair	color	is	Red	and	age	is	19?	
(Join	operation)	Calculate	average	age	of	all	grad	students?

Prakash	2018	 VT	CS	4604	 16	

Voldemort	in	LinkedIn

Sid	Anand,	LinkedIn	Data	Infrastructure	(QCon	London	2012)	

Prakash	2018	 VT	CS	4604	 17	

Voldemort	vs	MySQL

Sid	Anand,	LinkedIn	Data	Infrastructure	(QCon	London	2012)	

Prakash	2018	 VT	CS	4604	 18	

Column	Families	–	BigTable	like

F	Chang,	et	al,	Bigtable:	A	Distributed	Storage	System	for	Structured	Data,	osdi	06 Prakash	2018	 VT	CS	4604	 19	

BigTable	Data	Model

The	 row	 name	 is	 a	 reversed	 URL.	 The	 contents	 column	 family	 contains	 the	 page	
contents,	 and	 the	 anchor	 column	 family	 contains	 the	 text	 of	 any	 anchors	 that	
reference	the	page.

Prakash	2018	 VT	CS	4604	 20	

BigTable	Performance

Prakash	2018	 VT	CS	4604	 21	

Document	Database	-	mongoDB	

Table	in	relational	db

Documents	in	a	collection

Initial	release	2009

Open	source,	document	db	
Json-like	document	with	dynamic	schema	

Prakash	2018	 VT	CS	4604	 22	

mongoDB	Product	Deployment	

And	much	more…	Prakash	2018	 VT	CS	4604	 23	

Graph	Database

Data	Model	Abstraction:	
• Nodes	
• Relations	
• Properties

Prakash	2018	 VT	CS	4604	 24	

Neo4j	-	Build	a	Graph

Slide	from	neo	technology,	“A	NoSQL	Overview	and	the	Benefits	of	Graph	Databases"	

Prakash	2018	 VT	CS	4604	 25	

A	Debatable	Performance	Evaluation

Prakash	2018	 VT	CS	4604	 26	

Conclusion

§  Use	the	right	data	model	for	the	right	problem	

Prakash	2018	 VT	CS	4604	 27	

THE	HADOOP	ECOSYSTEM	

Prakash	2018	 VT	CS	4604	 28	

VT	CS	4604	 29	Prakash	2018	

Single	vs	Cluster	

§  4TB	HDDs	are	coming	out	
§  Cluster?	

– How	many	machines?		
– Handle	machine	and	drive	failure	
– Need	redundancy,	backup..	

Prakash	2018	 VT	CS	4604	 30	

How to analyze such large datasets?

First thing, how to store them?

Single machine? 4TB drive is out

Cluster of machines?

• How many machines?
• Need to worry about

machine and drive failure.
Really?

• Need data backup,
redundancy, recovery, etc.

5

3% of 100,000 hard drives
fail within first 3 months

Failure Trends in a Large Disk Drive Population
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/disk_failures.pdf

3%	of	100K	HDDs	fail	
in	<=	3	months	

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/disk_failures.pdf	

Hadoop	

§  Open	source	software		
– Reliable,	scalable,	distributed	computing	

§  Can	handle	thousands	of	machines	
§ Written	in	JAVA	
§  A	simple	programming	model		
§  HDFS	(Hadoop	Distributed	File	System)	

– Fault	tolerant	(can	recover	from	failures)	

Prakash	2018	 VT	CS	4604	 31	

Open-source software for reliable, scalable, distributed computing

Written in Java

Scale to thousands of machines

• Linear scalability: if you have 2 machines, your job runs twice
as fast

Uses simple programming model (MapReduce)

Fault tolerant (HDFS)

• Can recover from machine/disk failure (no need to restart
computation)

7http://hadoop.apache.org

Idea	and	Solution	
§  Issue:	Copying	data	over	a	network	takes	time	
§  Idea:	

– Bring	computation	close	to	the	data	
– Store	files	multiple	times	for	reliability	

§ Map-reduce	addresses	these	problems	
– Google’s	computational/data	manipulation	model	
– Elegant	way	to	work	with	big	data	
– Storage	Infrastructure	–	File	system	

•  Google:	GFS.	Hadoop:	HDFS	
– Programming	model	

•  Map-Reduce	
VT	CS	4604	 32	Prakash	2018	

Map-Reduce	[Dean	and	Ghemawat	2004]	

§  Abstraction	for	simple	computing	
– Hides	details	of	parallelization,	fault-tolerance,	
data-balancing	

– MUST	Read!	
http://static.googleusercontent.com/media/
research.google.com/en/us/archive/mapreduce-
osdi04.pdf	

Prakash	2018	 VT	CS	4604	 33	

Hadoop	VS	NoSQL	

§  Hadoop:	computing	framework	
– Supports	data-intensive	applications	
–  Includes	MapReduce,	HDFS	etc.		
			(we	will	study	MR	mainly	next)	

§  NoSQL:	Not	only	SQL	databases	
– Can	be	built	ON	hadoop.	E.g.	HBase.	

Prakash	2018	 VT	CS	4604	 34	

Storage	Infrastructure	

§  Problem:	
–  If	nodes	fail,	how	to	store	data	persistently?		

§  Answer:	
– Distributed	File	System:	

•  Provides	global	file	namespace	
•  Google	GFS;	Hadoop	HDFS;	

§  Typical	usage	pattern	
– Huge	files	(100s	of	GB	to	TB)	
– Data	is	rarely	updated	in	place	
–  Reads	and	appends	are	common	

	
VT	CS	4604	 35	Prakash	2018	

Distributed	File	System	
§  Chunk	servers	

–  File	is	split	into	contiguous	chunks	
–  Typically	each	chunk	is	16-64MB	
–  Each	chunk	replicated	(usually	2x	or	3x)	
–  Try	to	keep	replicas	in	different	racks	

§  Master	node	
–  a.k.a.	Name	Node	in	Hadoop’s	HDFS	
–  Stores	metadata	about	where	files	are	stored	
– Might	be	replicated	

§  Client	library	for	file	access	
–  Talks	to	master	to	find	chunk	servers		
–  Connects	directly	to	chunk	servers	to	access	data	

VT	CS	4604	 36	Prakash	2018	

Programming	Model:	MapReduce	

Warm-up	task:	
§ We	have	a	huge	text	document	

§  Count	the	number	of	times	each		
distinct	word	appears	in	the	file	

§  Sample	application:		
– Analyze	web	server	logs	to	find	popular	URLs	

VT	CS	4604	 37	Prakash	2018	

Task:	Word	Count	

Case	1:		
–  File	too	large	for	memory,	but	all	<word,	count>	pairs	
fit	in	memory	

Case	2:	
§  Count	occurrences	of	words:	

– words(doc.txt) | sort | uniq -c
•  where	words	takes	a	file	and	outputs	the	words	in	it,	one	
per	a	line	

§  Case	2	captures	the	essence	of	MapReduce	
– Great	thing	is	that	it	is	naturally	parallelizable	
	

VT	CS	4604	 38	Prakash	2018	

MapReduce:	Overview	

§  Sequentially	read	a	lot	of	data	
§  Map:	

–  Extract	something	you	care	about	

§  Group	by	key:	Sort	and	Shuffle	
§  Reduce:	

–  Aggregate,	summarize,	filter	or	transform	

§  Write	the	result	

Outline	stays	the	same,	Map	and	Reduce	
change	to	fit	the	problem	

VT	CS	4604	 39	Prakash	2018	

MapReduce:	The	Map	Step	

v	k	

k	 v	

k	 v	

map	
v	k	

v	k	

…	

k	 v	
map	

Input
key-value pairs

Intermediate
key-value pairs

…	

k	 v	

VT	CS	4604	 40	Prakash	2018	

MapReduce:	The	Reduce	Step	

k	 v	

…	

k	 v	

k	 v	

k	 v	

Intermediate
key-value pairs

Group	
by	key	

reduce	

reduce	

k	 v	

k	 v	

k	 v	

…	

k	 v	

…	

k	 v	

k	 v	 v	

v	 v	

Key-value groups
Output
key-value pairs

VT	CS	4604	 41	Prakash	2018	

More	Specifically	
§  Input:	a	set	of	key-value	pairs	
§  Programmer	specifies	two	methods:	

– Map(k, v) → <k’, v’>*
•  Takes	a	key-value	pair	and	outputs	a	set	of	key-value	pairs	

–  E.g.,	key	is	the	filename,	value	is	a	single	line	in	the	file	

•  There	is	one	Map	call	for	every	(k,v)	pair	

– Reduce(k’, <v’>*) → <k’, v’’>*
•  All	values	v’	with	same	key	k’	are	reduced	together		
and	processed	in	v’	order	

•  There	is	one	Reduce	function	call	per	unique	key	k’	

VT	CS	4604	 42	Prakash	2018	

MapReduce:	Word	Counting	

The crew of the space
shuttle Endeavor recently
re turned to Ear th as
ambassadors, harbingers of
a new era o f space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing
-- is what we're going to
need ……………………..

Big document

(The,	1)	
(crew,	1)	
(of,	1)	
(the,	1)	
(space,	1)	
(shuttle,	1)	
(Endeavor,	1)	
(recently,	1)	

….	

(crew,	1)	
(crew,	1)	
(space,	1)	
(the,	1)	
(the,	1)	
(the,	1)	

(shuttle,	1)	
(recently,	1)	

…	

(crew,	2)	
(space,	1)	
(the,	3)	

(shuttle,	1)	
(recently,	1)	

…	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	
with	same	key	

Reduce:	
Collect	all	values	
belonging	to	the	
key	and	output	

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value) (key, value)

Se
qu

en
tia

lly
	re

ad
	th

e	
da
ta
	

O
nl
y	
			
se
qu

en
tia

l		
		r
ea
ds
	

VT	CS	4604	 43	Prakash	2018	

Word	Count	Using	MapReduce	

map(key, value):
// key: document name; value: text of the document
 for each word w in value:

 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)

VT	CS	4604	 44	Prakash	2018	

Map-Reduce	(MR)	as	SQL	

§  select			count(*)	
				from	DOCUMENT	
				group	by	word 				

Prakash	2018	 VT	CS	4604	 45	

Mapper

Reducer

Map-Reduce:	Environment	

Map-Reduce	environment	takes	care	of:	
§  Partitioning	the	input	data	
§  Scheduling	the	program’s	execution	across	a		
set	of	machines	

§  Performing	the	group	by	key	step	
§  Handling	machine	failures	
§ Managing	required	inter-machine	
communication	

VT	CS	4604	 46	Prakash	2018	

Map-Reduce:	A	diagram	

VT	CS	4604	 47	

Big	document	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	with	

same	key	
(Hash	merge,	Shuffle,	

Sort,	Partition)	

Reduce:	
Collect	all	values	

belonging	to	the	key	
and	output	

Prakash	2018	

Map-Reduce:	In	Parallel	

VT	CS	4604	 48	All	phases	are	distributed	with	many	tasks	doing	the	work	Prakash	2018	

Map-Reduce	
§  Programmer	specifies:	

–  Map	and	Reduce	and	input	files	
§  Workflow:	

–  Read	inputs	as	a	set	of	key-value-pairs	
–  Map	transforms	input	kv-pairs	into	a	

new	set	of	k'v'-pairs	
–  Sorts	&	Shuffles	the	k'v'-pairs	to	output	

nodes	
–  All	k’v’-pairs	with	a	given	k’	are	sent	to	

the	same	reduce	
–  Reduce	processes	all	k'v'-pairs	grouped	

by	key	into	new	k''v''-pairs	
–  Write	the	resulting	pairs	to	files	

§  All	phases	are	distributed	with	many	
tasks	doing	the	work	

Input	0	

Map	0	

Input	1	

Map	1	

Input	2	

Map	2	

Reduce	0	 Reduce	1	

Out	0	 Out	1	

Shuffle	

49	VT	CS	4604	Prakash	2018	

Data	Flow	

§  Input	and	final	output	are	stored	on	a	
distributed	file	system	(FS):	
– Scheduler	tries	to	schedule	map	tasks	“close”	to	
physical	storage	location	of	input	data	

§  Intermediate	results	are	stored	on	local	FS		
of	Map	and	Reduce	workers	

§  Output	is	often	input	to	another		
MapReduce	task	

VT	CS	4604	 50	Prakash	2018	

Coordination:	Master	

§  Master	node	takes	care	of	coordination:	
–  Task	status:	(idle,	in-progress,	completed)	
–  Idle	tasks	get	scheduled	as	workers	become	available	
– When	a	map	task	completes,	it	sends	the	master	the	
location	and	sizes	of	its	R	intermediate	files,	one	for	
each	reducer	

– Master	pushes	this	info	to	reducers	

§  Master	pings	workers	periodically	to	detect	
failures	

	
VT	CS	4604	 51	Prakash	2018	

Dealing	with	Failures	

§  Map	worker	failure	
– Map	tasks	completed	or	in-progress	at		
worker	are	reset	to	idle	

–  Reduce	workers	are	notified	when	task	is	rescheduled	
on	another	worker	

§  Reduce	worker	failure	
– Only	in-progress	tasks	are	reset	to	idle		
–  Reduce	task	is	restarted	

§  Master	failure	
– MapReduce	task	is	aborted	and	client	is	notified	

VT	CS	4604	 52	Prakash	2018	

PROBLEMS	SUITED	FOR		
MAP-REDUCE	

Prakash	2018	 VT	CS	4604	 53	

Example:	Host	size	

§  Suppose	we	have	a	large	web	corpus	
§  Look	at	the	metadata	file	

–  Lines	of	the	form:	(URL,	size,	date,	…)	
§  For	each	host,	find	the	total	number	of	bytes	

–  That	is,	the	sum	of	the	page	sizes	for	all	URLs	from	
that	particular	host	

§  Other	examples:		
–  Link	analysis	and	graph	processing	
– Machine	Learning	algorithms	

VT	CS	4604	 54	Prakash	2018	

Example:	Language	Model	

§  Statistical	machine	translation:	
– Need	to	count	number	of	times	every	5-word	
sequence	occurs	in	a	large	corpus	of	documents	

§  Very	easy	with	MapReduce:	
– Map:		

•  Extract	(5-word	sequence,	count)	from	document	

– Reduce:		
•  Combine	the	counts	

VT	CS	4604	 55	Prakash	2018	

In	HW5	

§  You’ll	deal	with	n-grams 		
– n-gram	is	a	contiguous	sequence	of	n	items	from	a	
given	sequence	of	text	or	speech	

§  Example	 		
§  Sentence:	“the	rain	in	Spain	falls	mainly	on	the	
plain”	
– 2	grams:	the	rain,	rain	in,	in	Spain,	Spain	falls,	etc.	
– 3	grams:	the	rain	in,	rain	in	Spain,	in	Spain	falls,….	

Prakash	2018	 VT	CS	4604	 56	

In	HW5	
§  You	will	work	with	the	Google	4-gram	corpus.	Example:	

–  analysis is often described 1991 10 1 1
–  analysis is often described 1992 30 2 1

§  We	will	ask	you	to		
–  Find	total	occurrence	counts	(this	will	be	similar	to	just	word	
count)	

•  in	the	example	above	“analysis is often described”
occurs	total	of	10+30	=	40	times.	

–  Convert	4-grams	to	2-grams	(think	what	should	be	the	mapper	
and	reducer	for	this)	

•  Example:	“analysis is often described” will	give	rise	to	
the	following	2	grams:		analysis is, is often, often
described	

	

Prakash	2018	 VT	CS	4604	 57	

Degree	of	graph	Example	

§  Find	degree	of	every	node	in	a	graph	
	
	
	
Example:	In	a	friendship	graph,	what	is	the	number	
of	friends	of	every	person:	
Node	6	=	1			Node	2	=	3	
Node	4	=	3			Node	1	=	2	
Node	3	=	2			Node	5	=	3	

Prakash	2018	 VT	CS	4604	 58	

Degree	of	each	node	in	a	graph	

§  Suppose	you	have	the	edge	list		
	 	 	 	 	 	 	===	 	 	 	 	==	a	table!	

	 	 	 	 	 	 	 	 	 	 	 	 	Schema?		
	 	 	 	 	 	 	 	 	 	 	 	Edges(from,	to)	

	
	
	
	
	Prakash	2018	 VT	CS	4604	 59	

6 4
4 6
4 3
3 4
4 5
5 4
...

Degree	of	each	node	in	a	graph	

§  Suppose	you	have	the	edge	list		
	 	 	 	 	 	 	===	 	 	 	 	==	a	table!	

	 	 	 	 	 	 	 	 	 	 	 	 	Schema?		
	 	 	 	 	 	 	 	 	 	 	 	Edges(from,	to)	

	
SQL	for	degree	list?														
	
	
	
	

Prakash	2018	 VT	CS	4604	 60	

SELECT	from,	count(*)	
FROM	Edges	
GROUP	BY	from	
	

6 4
4 6
4 3
3 4
4 5
5 4
...

Degree	of	each	node	in	a	graph	

§  So	in	SQL:		
	
§ MapReduce?		
Mapper:		
	emit	(from,	1)	

Reducer:		
	emit	(from,	count())	

	
	Prakash	2018	 VT	CS	4604	 61	

SELECT	from,	count(*)	
FROM	Edges	
GROUP	BY	from	

Remember	

6 4
4 6
4 3
3 4
4 5
5 4
...

I.E.	essentially	equivalent	to	the	‘word-count’	example	J	

Conclusions	

§  Hadoop	is	a	distributed	data-intesive	
computing	framework	

§ MapReduce	
– Simple	programming	paradigm	
– Surprisingly	powerful	(may	not	be	suitable	for	all	
tasks	though)	

§  Hadoop	has	specialized	FileSystem,	Master-
Slave	Architecture	to	scale-up	

Prakash	2018	 VT	CS	4604	 62	

NoSQL	and	Hadoop	

§  Hot	area	with	several	new	problems	
– Good	for	academic	research	
– Good	for	industry		

=	Fun	AND	Profit	J		

Prakash	2018	 VT	CS	4604	 63	

	
POINTERS	AND	FURTHER	READING	

Prakash	2018	 VT	CS	4604	 64	

Implementations	

§  Google	
– Not	available	outside	Google	

§  Hadoop	
– An	open-source	implementation	in	Java	
– Uses	HDFS	for	stable	storage	
– Download:	http://lucene.apache.org/hadoop/

§  Aster	Data	
– Cluster-optimized	SQL	Database	that	also	
implements	MapReduce	

	

	
	

VT	CS	4604	 65	Prakash	2018	

Cloud	Computing	

§  Ability	to	rent	computing	by	the	hour	
– Additional	services	e.g.,	persistent	storage	

§  Amazon’s	“Elastic	Compute	Cloud”	(EC2)	

§  Aster	Data	and	Hadoop	can	both	be	run	on	
EC2	

VT	CS	4604	 66	Prakash	2018	

Reading	

§  Jeffrey	Dean	and	Sanjay	Ghemawat:	
MapReduce:	Simplified	Data	Processing			on	
Large	Clusters	
– http://labs.google.com/papers/mapreduce.html	

§  Sanjay	Ghemawat,	Howard	Gobioff,	and	Shun-
Tak	Leung:	The	Google	File	System	
– http://labs.google.com/papers/gfs.html		

VT	CS	4604	 67	Prakash	2018	

Resources	
§  Hadoop	Wiki	

–  	Introduction	
•  	http://wiki.apache.org/lucene-hadoop/	

–  	Getting	Started	
•  	http://wiki.apache.org/lucene-hadoop/
GettingStartedWithHadoop	

–  	Map/Reduce	Overview		
•  	http://wiki.apache.org/lucene-hadoop/HadoopMapReduce	
•  	http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses	

–  	Eclipse	Environment	
•  http://wiki.apache.org/lucene-hadoop/EclipseEnvironment	

§  	Javadoc	
–  	http://lucene.apache.org/hadoop/docs/api/ 		

VT	CS	4604	 68	Prakash	2018	

Resources	

§  	Releases	from	Apache	download	mirrors	
– http://www.apache.org/dyn/closer.cgi/lucene/
hadoop/	

§  	Nightly	builds	of	source	
– http://people.apache.org/dist/lucene/hadoop/
nightly/	

§  	Source	code	from	subversion	
– http://lucene.apache.org/hadoop/
version_control.html	

VT	CS	4604	 69	Prakash	2018	

Further	Reading	
§  Programming	model	inspired	by	functional	language	primitives	
§  Partitioning/shuffling	similar	to	many	large-scale	sorting	systems		

–  NOW-Sort	['97]		
§  Re-execution	for	fault	tolerance		

–  BAD-FS	['04]	and	TACC	['97]		
§  Locality	optimization	has	parallels	with	Active	Disks/Diamond	work		

–  Active	Disks	['01],	Diamond	['04]		
§  Backup	tasks	similar	to	Eager	Scheduling	in	Charlotte	system		

–  Charlotte	['96]		
§  Dynamic	load	balancing	solves	similar	problem	as	River's	

distributed	queues		
–  River	['99]	

VT	CS	4604	 70	Prakash	2018	

