
A brief intro into AMBER PACKAGE, including visualization tools.

In this assignment you will run a few semi-realistic simulations that will help

you master the very basics of the AMBER suite of programs, which you will use

for your main project. The goal is to become familar with the input/output and

key parameters. Please provide TYPED solutions, no more than 3 pages long,

including pictures. One report per group, please. Indicate who did what and

% effort for each group member. Use of Windows OS for file manipulation is

discouraged, as it is poorly suited for scientific computing.

• Warm-up. Skim through first few pages of ”Simple Simulation of Alanine

Dipeptide” that can be found here:

http://ambermd.org/tutorials/Introductory.php. The set-up of these simulations is

hardcore, but, fortunately, you will not be going through all of that rigmarole, as

all the input files are available for you in that tutorial (and the project). Create

”Tutoral” directory as suggested in your group’s directory, this is where this work

will be done.

• Carefully do all of the steps in section ”Prepare Amber MD pmemd and

sander input files”. This is where you will actually do some type of minimiza-

tion followed by heating of the molecule, followed by ”making it come alive” – a

molecular dynamics at constant temperature. These are the very basic steps that

will be useful for you in your project. Use the “supercomputer on the desk” ma-

chine assigned to this class; I have explained in class how to login, contact your

GTA with questions.

Each group creates one working directory named accordingly. Use the parm7

(prmtop) and rst7 (inpcrd) from the tutorial website – links right above ”Prepare

Amber MD pmemd and sander input files”. DO NOT attempt to create the input

files for these simulations, just take them from the tutorial. Note that this tutorial

has been available for years, and successfully completed by thousands of people,

which means it is guaranteed to work if you follow the steps carefully. All the

necessary code has been pre-installed for you. Some directories may have been

moved in the latest AMBER, e.g. you may want to look into $AMBERHOME-

/bin/.

Then, do “Run Amber MD pmemd” part, followed by “Visualize the results”

part. Under ”Run production MD” 19., the command

http://ambermd.org/tutorials/Introductory.php

pmemd −O − i 03 P r o d . in −o 03 P r o d . o u t −p parm7 −c 02 H e a t . n c r s t \
− r 03 P r o d . n c r s t −x 03 P r o d . nc − i n f 03 P r o d . i n f o &

will run on the cpu. To run in “supercomputer” mode (and significantly speed

up the MD simulation) see the README file in the kuprin home directory. In the

unix shell, export the GPU corresponding to your group number,

e.g. CUDA VISIBLE DEVICES=2,

and use pmemd.cuda instead of pmemd in the code snippet above. Important:

do not change any of the input files above.

For visualization, you must install VMD or/and PyMol on your own machine/lap-

top, transfer the relevant files from the supercomputer, and visualize them locally.

VMD is free and open source. PyMol is available free through VT Network Soft-

ware. It is reommended that you install both, and learn how they work. Some

features work better in one than the other. Save a couple of snapshots from the

trajectory you have generated, include them in your report.

VMD: http://www.ks.uiuc.edu/Research/vmd/

(Windows users may run into probelms with netcdf trajectory format on VMD.

A workaround is decribed in the README in the top directory.)

Notes on using PyMol with AMBER: (1)

https://wikis.ch.cam.ac.uk/ro-walesdocs/wiki/index.php/Loading_AMBER_prmtop_and_inpcrd_files_into

(2) https://pymolwiki.org/index.php/Load_traj

http://www.ks.uiuc.edu/Research/vmd/
https://wikis.ch.cam.ac.uk/ro-walesdocs/wiki/index.php/Loading_AMBER_prmtop_and_inpcrd_files_into_Pymol
https://pymolwiki.org/index.php/Load_traj

Figure 1: Data flow in Amber. prmtop - a file containing a description of the molecular topology and

the necessary energy function (force-field) parameters. inpcrd (or a restrt from a previous run) -

a file containing a description of the atom coordinates and optionally velocities. mdin - the sander

input file consisting of a series of namelists and control variables that determine the options (e.g.

how often to output snapshots) and type of simulation to be run, e.g. whether this is a minimization

run or a run at constant temperature. mdout – run info, including energy of every snapshot.

For the coming exercises, which is separate from the above and relies on a

separate set of input files, copy the EXAMPLES directory to your own personal di-

rectory, within your particular group’s folder. Name it whatever you like. Further

mentions of the EXAMPLES directory will refer to your personal copy.

• Explore the power of your supercomputer. Familiarize yourself with the con-

tents of the EXAMPLES directory. See README. First, run MD on a single CPU

and notice the time it takes to perform 2000 steps. Then run the same one in su-

percomputer mode. Look at the bottom of mdout file for the total time, or use

the unix ”time” utility. What is the speed-up? That is the ratio of the two times?

If you were to simulate thioredoxin for 1 ns on GPU, how much computer time

would that take?

• Explore how the GPU speed-up depends on the structure size. Inside the

“folding miniprotein” folder – that’s where all the key files for your project are –

you will find minip.prmtop and minip.inpcrd; these are your input files

to use in MD - you have just learned how to set initial conditions for your sim-

ulations. (rename the files to minip.top and minip.crd). Use those instead of the

defaults in the EXAMPLES directory (make sure you do this run in your own direc-

tory, not in EXAMPLES!). It is possible that the simulation breaks down, because

minip.inpcrd is not minimized (gradients are too large for the integrator to

handle). In this case, use min.rst (from the same “folding miniprotein” folder)

instead of minip.inpcrd. Report the run time and speed-up numbers in a table

as a function of the number of atoms in each of the proteins you have tested. You

can look up the number of atoms in ”mdout” output file. You can find the number

of atoms in one of the AMBER output files, just look carefully. Or you can just

count the atoms in the PDB file that you can make from the input amber files using

cpptraj or ambpdb -p minip.top < minip.crd > minip.pdb .

• Now that you have an idea of what is possible, create a VMD or PyMol movie

of the example protein (2trx) dynamics. Then, estimate number of steps you can

afford to run in about 1 hour on GPU (supercomputer mode). Then, figure out

how to save, say, 100 equidistant snapshots (frames) from start to finish. Run the

simulation and use VMD (or PyMol) to make a movie of the protein trajectory;

include a few snaphots in your report.

• Look inside ”mdout” file, it gives you energy of your protein as a function of

simulation time, that is at each step of the trajectory (for each frame). Use unix

tools grep and awk to output the potential energy as a function of time (frame

number). For example, in the following line: Etot = -325.3714 EKtot =

1048.6677 EPtot = -1374.0391 you need the value of EPtot. Present

a plot for Eptot(t).

