
CS 4264 October 13, 2025
Principles of Computer Security Project 3: Fuzzing

Project 3: Fuzzing

This project is due on October 31, 2025 at 11:59 p.m. and counts for 8% of your course
grade. Late submissions will be penalized by 10% plus an additional 10% every 5 hours until
received. Late work will not be accepted after 24 hours past the deadline. If you have a
conflict due to travel, interviews, etc., please plan accordingly and turn in your project early.

This is a group project; you will work in teams of two and submit one project per team.
Please find a partner as soon as possible. If you have trouble forming a team, post to Piazza’s
partner search forum.

The code and other answers your group submits must be entirely your own work, and you are
bound by the Honor Code. You may consult with other students about the conceptualization
of the project and the meaning of the questions, but you may not look at any part of someone
else’s solution or collaborate with anyone outside your group. You may consult published
references, provided that you appropriately cite them (e.g., with program comments), as you
would in an academic paper.

Solutions must be submitted electronically via Canvas, following the submission checklist
below. Please coordinate carefully with your partner to make sure at least one of you
submits on time.

Introduction

This project introduces you to automated vulnerability discovery in software through coverage-
guided fuzz testing, a.k.a. fuzzing. You will start by implementing a simple baseline fuzzer to
help you understand the fundamentals of fuzzer operation. Then you will progressively make
enhancements to your fuzzer targeting performance and effectiveness limitations. By the end
of this project, you will have a deep understanding of state-of-the-art fuzzer optimizations
used in the world’s fastest and most effective fuzzers.

Objectives

• Explain the fundamental operation and workflow of coverage-guided fuzzers.

• Analyze the types of bugs and vulnerabilities that fuzzers discover effectively—and
where they tend to fall short.

• Identify key sources of performance overhead and propose design strategies to improve
fuzzing efficiency.

• Gain familiarity with the state-of-research in high-performance fuzzing.



Read this First

This project asks you to find bugs in the software targets that we provide. Since you are
developing a very real fuzzer, you may also test other software for learning or debugging
purposes—but under no circumstances may you use discovered vulnerabilities to attack sys-
tems you do not own or for which you do not have explicit written authorization. Unau-
thorized testing or exploitation can violate criminal and civil law and University policy and
may result in disciplinary action (including failing the course or expulsion), civil liability,
and criminal prosecution. Bug-bounty participation is encouraged as a learning opportunity
and as a way to improve security in the real world—but only when done within the bounty
program’s rules and with explicit permission where required. See the “Ethics, Law, and
University Policies” section on the course website for full details. If you’re unsure, ask.

Objective 1: My First Fuzzer

Figure 1: Basic black-box fuzzer.

Fuzzing is the least academic way to find bugs in programs: a fuzzer generates random-
influenced test cases (i.e., inputs to some target Software Under Test (SUT)), executes
them, and sees if the test case causes a crash during execution. Figure 1 shows a predecessor
to fuzzing: black-box, completely-randomized testing. Black-box testing assumes to know
nothing about the internal operation of the target program during execution. Thus, the
testing system is limited to generating test cases randomly, executing them on the SUT,
with the only observable information being whether the SUT crashed or not. Crashing test
cases are sent to a human to triage. Alternatively, non-crashing test cases are ignored.

For the first objective, you will start the design of your fuzzer with a black-box fuzzer that
randomly generates test cases. Since you cannot assume anything about the target program
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(because this is black-box testing) your fuzzer must generate all possible bytes (except ‘

and the null terminator characters, for simplicity). The SUT that you will be testing takes
a byte string as input and crashes when the passed bytes match the secret value; the SUT
will crash when you pass in the secret value. As you progress your way through the other
assignment objectives, you will discover that black-box testing with completely-random test
cases is horribly ineffective.

Here are some hints to guide your development:
• Start with one-byte strings and increase the input length systematically.
• Use rand() to generate random numbers in C and srand() to seed the random number

generator.
• Supplying arbitrary bytes to programs: common methods:

– stdin from a file: echo $’\x41\x42\x00’ > case.bin; ./target < case.bin

– pipe: echo $’\x41\x42’ | ./target

– argv with bash-style escape: ./target $’A\x00B’.
– Note: the $ is not needed when passing raw bytes.

• For timing, you can use the C functions time() and difftime(), the time command,
or some other tool to time your fuzzer. The only requirement is seconds granularity.

• If you worry about your fuzzer not working with the target binary, you can download a
proof-of-life program (https://courses.cs.vt.edu/∼cs4264/static/fuzzing/pol.c) and bi-
nary (mac: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/mac/pol and linux: https://
courses.cs.vt.edu/∼cs4264/static/fuzzing/linux/pol) to test your fuzzer. The proof-of-
life program requires just a single byte of input and provides outputs that might be
useful for debugging your fuzzer. Note that the target binary is more complex.

Note: The pre- and post-objective questions (throughout the assignment) are designed to
get you to think about key fuzzing challenges and tradeoffs. Thus, your response will be
graded on effort—not correctness.

Pre-objective questions:
1. How do you generate test cases without needing to track what you’ve already gener-

ated?
2. Does it matter if you generate duplicate test cases? Roughly, how likely is it that your

fuzzer will generate duplicate test cases?
3. How do you run the SUT from inside your fuzzer and supply it with arbitrary bytes?

Objective Steps:
1. Download the SUT binary for your system:

(a) OSX: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/mac/target
(b) Linux: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/linux/target

2. Execute the SUT by hand to observe its behavior
(a) ./target myInput123
(b) The SUT outputs:
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• an error message with malformed input

• nothing with correctly formatted input

• crashes when you find the secret input value

3. Build your black-box fuzzer using C by solving three core fuzzer challenges
(a) SUT execution: you must use system() to execute the SUT from within your

fuzzer
(b) Test case generation: see the requirements and hint above
(c) Execution analysis: handle when the target crashes and when it doesn’t

4. Use your fuzzer to find a crash-inducing test case
(a) Note: this may take over 11 hours to discover the crash, depending on how fast

your machine is.
(b) Verify that the crash-inducing test case actually causes a crash outside of fuzzing

by running it independently of the fuzzer
5. Update your fuzzer so that it reports the crash-inducing test case, the number of test

cases it generated to before finding the crash, and the wall clock time it took to find
the crash-inducing test case.

Post-objective questions:
1. What is the fundamental weakness of black-box fuzzing?
2. How would you eliminate this weakness?
3. How would you improve your fuzzer?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Number of test cases: 1,234,567
• Wall clock time: 2700 seconds
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Pre question 3: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Source code: include in zip bundle

Objective 2: Statistical Analysis

Fuzzing is an inherently random process due to the way that it generates test cases. When
dealing with randomness in experiments (even beyond fuzzing), it is critical to perform
multiple trials to capture a distribution of behaviors to determine a truly representative
view of fuzzer performance and effectiveness. Thus, in Objective 2, you will repeat the crash
finding step of Objective 1 3 times to form a distribution of your fuzzer’s performance. For
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each trial, record the number of test cases the fuzzer generated to find a crash-inducing test
case and the wall clock time that the fuzzer took to uncover the crash. Report the average
and standard deviation for both fuzzer performance metrics. These results form the baseline
results that we will compare all future fuzzer incarnations against.

Diving Deeper: In an actual scientific experiment you must use statistics to guide when
you have performed a sufficient number of trials to get a good idea of the real distribution
of fuzzer behavior. I recommend reading the research paper “Evaluating Fuzz Testing”
from Klees et al. from the University of Maryland in 2018. The paper provides rules of
thumb for evaluating fuzzer performance and effectiveness as well as statisical analysis tools
to make scientific claims comparing fuzzers. The most important statistical tools that the
paper suggests fuzzing evaluations should employ are the Mann Whitney U-test to determine
whether the outcomes of the trials in fuzzer A’s data sample are more likely to be larger than
outcomes in fuzzer B’s and the Vargha and Delaney’s A12 test to determine the magintude
of difference between fuzzers A and B. To see how this paper impacted 150 fuzzing papers
published after it, read “SoK: Prudent Evaluation Practices for Fuzzing” from Schloegel et
al. in 2024. The paper reveals the common practices used in the evaluations of fuzzing
research papers published at the top venues across the Computer Security and Software
Engineering fields.

Pre-objective question:
1. Do you expect there to be a low or a high degree of variation between fuzzer runs and

why?

Objective Steps:
1. Augment your fuzzer, write a shell script, or use Python such that it performs 3 fuzzing

trials of the target.
2. Verify that the crash-inducing test case matches for every trial.
3. Calculate the mean and standard deviation for the number of test cases produced and

wall clock time arloss the trials.

Post-objective questions:
1. Did you see a little or a lot of inter-run variation and why?
2. What is the impact of making claims about fuzzer performance and effectiveness using

only a single run?
3. What tools or techniques would you use to assess if the number of experimental trials

collected is sufficient to make comparative claims?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet).

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Std. Dev. number of test cases: 123,456
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• Average wall clock time: 2700 seconds
• Std. Dev. wall clock time: 234 seconds
• Pre question 1: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.

Objective 3: Grammar-based Fuzzing: informing the

fuzzer about input structure

The fuzzer you built in Objective 1 treats inputs as opaque byte arrays. In practice, however,
fuzzing is far more effective when the fuzzer understands (or approximates) the SUT’s input
format. Real-world software usually expects structured, syntactically correct inputs (for
example, JavaScript to a browser, a PDF file to a viewer, or a well-formed network packet).
Thus, programs typically filter out malformed inputs quickly, so purely random inputs often
exercise only the format-checking paths.

Many bugs are triggered not by grossly malformed inputs but by unexpected yet well-
formed inputs (for example, a field with length zero, unusual nesting depth, or a rarely used
option). Reverse engineers sometimes recover input structure by reading source, examining
documentation, or by disassembling/decompiling a binary to find parsing routines; other
times, format structure is inferred from sample files or protocol traces. Investing time to
learn or model the expected input format is usually worth the effort, because it lets the
fuzzer reach deeper, semantically meaningful code paths where real bugs hide.

In this objective you will modify your fuzzer to exploit knowledge about the target
SUT’s input format. Possible approaches include grammar-based generation, template-based
generation, or structure-preserving mutation. In this objective, you will leverage grammar-
based generation.

I will save you the effort of running odjdump (to reverse engineer the SUT) and tell you
the SUT’s input format:

• Valid inputs are three characters long
• Valid characters come from the set [0− 9a− zA− Z]
• Complete grammar in regex form: [0− 9a− zA− Z]{3}
If you are going to ever work in writing a language processor, translator, or compiler, you

should know what Backus–Naur Form (BNF) is. BNF describes the syntax of programming
languages or other formally-defined languages. BNF encodes a context-free grammar. BNF
can be used to describe document formats, instruction sets, programming languages, and
communication protocols.

Here is a BNF grammar that encodes the SUT’s input format:
<input> ::= <char><char><char>

<char> ::= any lowercase character | any uppercase character | any decimal digit

Now that you know the grammar used to construct valid inputs for the SUT, update the
test case generation portion of your fuzzer to leverage that information.
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Pre-objective questions:
1. How do you expect grammar-based fuzzing to impact the number of test cases gener-

ated to discover the crash-inducing test case?
2. How do you expect grammar-based fuzzing to impact the wall clock time your fuzzer

takes to discover the crash-inducing input?

Objective Steps:
1. Update your fuzzer’s mutation engine such that it only generates syntactically valid

program inputs given the provided grammar.
2. Perform 5 trials of fuzzing the target program with the grammar-based test case

generation engine.
3. Verify that the resulting crash-inducing test cases match what you found in Objective

1 and that all trials match each other.
4. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

Post-objective questions:
1. Explain why your results (compared to the results in Objective 2) make sense.
2. What are the tradeoffs in terms of performance and bug-finding ability for grammar-

based fuzzing?
3. How would you improve your fuzzer’s performance?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 2: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 2: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 2: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 2: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Source code: include in zip bundle
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Objective 4: Coverage-guided Fuzzing: informing the

fuzzer about details of SUT execution

Figure 2: Basic coverage-guided fuzzer.

Even with a grammar, randomly producing a crash-inducing input for realistic programs
is extremely unlikely for SUTs of even moderate complexity. The major advance that makes
modern fuzzers effective is the addition of SUT execution feedback—typically in the form
of code coverage—to guide fuzzing decisions. Coverage gives the fuzzer information beyond
“crashed or didn’t crash”: it tells the fuzzer what parts of the program were exercised. This
more detailed execution feedback allows the fuzzer identify interesting inputs that explore
new SUT behavior.

By looking at the parts of a SUT’s code covered during execution, the fuzzer can deter-
mine if a test case is “interesting” with respect to all previously executed test cases. An
input is interesting if it increases coverage (e.g., executes a previously unseen edge or basic
block). A coverage-guided fuzzer keeps a pool of interesting test cases (called seeds), while
those that are uninteresting or result in timeouts are discarded. The fuzzer mutates seeds
rather than generating inputs from scratch, focusing effort on regions of the input space that
lead to new execution behavior. This guided, mutation-based approach is the foundation of
the most successful academic and industrial fuzzers as it allows for systematic SUT behavior
exploration.

Code coverage comes in many flavors with the most popular code coverage metrics in
software fuzzing being basic block, edge, and path coverage. Basic block coverage (also
referred to as statement or line coverage) represents specific instructions that contribute to
the SUT’s execution of a given test case. Note that a basic block is a set of sequential
(in location) instructions terminated with a control flow instruction. Thus, a basic block is
either executed entirely or not at all. It is possible to break every program into a graph of
connected basic blocks. Edge coverage is a superset of basic block coverage as it refers to
the possible flows between a pair of basic blocks (due to navigating control flow instructions
that direct control flow between basic blocks). For example, an if/else statement produces
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two edges: one that leads to the if basic block(s) and one that leads to the else basic
block(s). Thus, edge coverage is a superset of basic block coverage, as every basic block
is preceded by at least one edge, but possibly more. Lastly, path coverage represents an
ordered traversal of edges through the SUT. For two test cases to have the exact same path
coverage, they must execute the exact same instructions, in the exact same order as each
other—only the data values differ. Thus, basic block coverage represents the coarsest grain
metric and path coverage represents the finest grain metric. Research suggests that there is
no one superior code coverage metric as too fine grain of a coverage metric tends to report
effectively identical test cases as interesting, polluting the seed pool (which reduces mutation
effectiveness) and too coarse grain of a coverage metric tends to force the fuzzer to make too
big of jumps between a seed and a new, interesting test case (making a mutational fuzzer
preform closer to a generational fuzzer).

In this objective, you will transform your fuzzer from a grammar-based, generational,
black-box fuzzer to a grammar-based, mutational, coverage-guided, greybox fuzzer. See
Figure 2 for a high-level depiction of a grammar-based, mutational, coverage-guided, greybox
fuzzer. This type of fuzzer is the foundation for the most prevalent and successful academic
and industrial fuzzers. Accomplishing this goal requires solving two technical challenges:

1. Code coverage tracing: due to the time limit of the course, we will tell you the easiest
path to code coverage tracing: compiler-based instrumentation using LLVM’s existing
compile-time options. You will use LLVM’s SanitizerCoverage built-in code coverage
instrumentation to trace a test case’s edge coverage during execution. Once execution
completes, code coverage will be dumped to a file. You will write code to process the
coverage information in the file to determine if the most recently executed test case
increased coverage with respect to all previous test cases. If it does, you will add that
test case to the seed pool and continue the next fuzzing iteration by selecting a seed
from the seed pool.

2. Mutation-based test case creation: unfortunately, there is not a wealth of knowledge
about the tradeoffs at play during mutation. The literature does tell us that having
some seeds to mutate from is better than attempting to generate a test case from
scratch (especially without a grammar), because the fuzzer wastes much of its time
generating the first syntactically correct test case (most programs do a good job fil-
tering out obviously syntactically incorrect inputs). The literature also highlights the
power of using a dictionary of program-specific symbols for mutation. For example,
a common way to build a dictionary is to run the SUT through the strings utility,
which reports all constant strings in the SUT. The mutator can pull from this dic-
tionary when creating a new test case. Due to time constraints, we will not explore
the impact of having a dictionary for this assignment, but if you wanted to explore
the impact of a dictionary on your own, I recommend you write a script that extracts
all constants that the SUT uses for comparisons from the binary and constrict your
grammar to those values. Outside of having seeds and using a dictionary or grammar
to perform smarter mutations, we leave the mutation strategy up to you. If you are
curious of a simple yet effective mutation strategy, we recommend a baseline mutation
algorithm that first selects a byte of the seed to change, then to swaps in a random byte
to replace the existing byte (leveraging the grammar provided by the last objective, of
course).

9



Pre-objective questions:
1. What are viable mutation strategies?
2. What are the tradeoffs of mutating a lot of the seed versus mutating a little of the

seed?
3. What are the possible ways to collect code coverage from a program and the pros and

cons of each approach?
4. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?

Objective Steps:
1. Transform your fuzzer into a grammar-based, mutational, coverage-guided, greybox

fuzzer
(a) Add a seed pool that holds all previously seen coverage-increasing test cases

i. Assume that you will only need to hold up to 100 seeds to lower the complexity
of your implementation.

(b) Add a seed selector that chooses a seed from the seed pool to mutate
i. An ordered walk through the seed pool or purely random selection are both

sufficient strategies.
(c) Generate new test cases by mutating seeds (using the grammar from Objective 3

to ensure that you create only syntactically correct test cases.)
(d) Instrument the SUT such that it reports edge code coverage

i. Use LLVM’s SanitizerCoverage built-in code coverage instrumentation. Specif-
ically, use -fsanitize-coverage=trace-pc-guard

ii. Reference https://clang.llvm.org/docs/SanitizerCoverage.html to help you code
your implementation.

(e) Add logic to your execution analysis code to determine if the test case increased
code coverage given all previously executed test cases.

2. Download the source code for a new SUT at https://courses.cs.vt.edu/∼cs4264/static/
fuzzing/target.c, which you will need to compile the SUT with coverage tracing sup-
port. You will use this SUT for all remaining objectives.

3. Perform 10 trials of fuzzing the SUT with your coverage-guided fuzzer.
(a) Verify that the resulting crash-inducing test cases match across all trials.

4. Calculate the average and standard deviation of the number of test cases executed and
the wall clock time.

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer to improve performance or effectiveness?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.
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• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 3: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 3: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 3: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 3: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Pre question 3: A sentence or two.
• Pre question 4: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

Objective 5: Extending Code Coverage to Loops

Basic block and edge coverage record whether a program region was executed; hit counts
extend this binary notion of code coverage by recording how many times a block or edge
executed during a run. Hit counts are particularly useful for loop-heavy code: a test case
that executes more loop iterations than any previous test may be getting closer to triggering
loop-related bugs (e.g., off-by-one overflows, size checks, or loop-carried memory corruption).

In this objective you will replace the edge-only coverage tracing used in Objective 4 with
edge hit count tracing. To keep the assignment practical, use LLVM’s SanitizerCoverage
inline 8-bit counters instrumentation (compiler option) to record per-edge 8-bit counters.
These counters let your fuzzer detect when a test causes more iterations of a loop (or more
executions of a given edge) than all previous tests, up to a per-edge maximum of 255 counts.
Use this information to decide whether a test case is “interesting” (i.e., it increases the known
observed maximum hit count for at least one edge) and therefore should be added to the
seed pool.

Pre-objective questions:
1. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?
2. How does the implementation of trace-pc-guard and inline 8-bit counters compare?

Which do you expect to be lower overhead and why?
• Hint: use objdump to examine the disassembly of each instrumented target.

Objective Steps:
1. Replace edge coverage tracing with edge hit count coverage tracing

(a) Instrument the SUT such that it reports edge hit count code coverage
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i. Use LLVM’s SanitizerCoverage built-in code coverage instrumentation.
ii. Specifically, use -fsanitize-coverage=inline-8bit-counters

iii. Reference https://clang.llvm.org/docs/SanitizerCoverage.html to help you code
your implementation.

(b) Update the code coverage analysis logic to determine if the test case increased
the hit count on any edge given all previously executed test cases.

2. Perform 10 trials of fuzzing the SUT with your coverage-guided fuzzer.
(a) Verify that the resulting crash-inducing test cases match what you found in Ob-

jective 4 and that all trials match each other.
3. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer to improve performance or effectiveness?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 4: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 4: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 4: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 4: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

Objective 6: Better Process Management 1: Fork/Exec

After Objective 5, you now have a fully-functioning coverage-guided, greybox fuzzer that will
help you automatically find bugs in arbitrary programs. There are two ways that your fuzzer
can improve its performance at this point: (1) better process management and (2) lower-
overhead code coverage tracing. This objective focuses on increasing fuzzer performance
by improving process management. Given that fuzzing revolves around executing a massive
amount of test cases, the quicker it can execute them, the quicker it will find bugs. Where the
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Figure 3: Fresh process creation options for target process management.

fuzzer currently stands, for each test case, the fuzzer creates a new process and initializes it
with the target program, executes the test case, and reaps the process, freeing its resources.
It turns out that for the short running programs commonly fuzzed, the time taken to create,
initialize, and reap a process is the same order of magnitude as executing the test case. This
process management work is also invariant of the specific test case provided to the program.
At the same time, process management is important as it is essential for correctness that
each test case executes with the same starting program state (which starting with a fresh
process is an easy path to).

Thus, to dramatically increase the speed of your fuzzer, you will explore mechanisms to
eliminate duplicated process management. The first step in that direction is to create target
processes in a more idiomatic way (at least on UNIX systems), as shown in Figure 3. When
you run a program from a shell on a UNIX-based operating system, the shell creates a clone
of itself using the fork() system call, then the clone process replaces the shell program with
the code and data of the callee by using one of the exec() series of system calls. In this
objective, you will replace you invocation of the target program using system() with a call
to fork, followed by a call to exec.

Pre-objective question:
1. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?

Objective Steps:
1. Transform your generational coverage-guided, mutational, greybox fuzzer into one that

use fork/exec
(a) Replace system() with fork()/exec()

2. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.
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(a) Verify that the resulting crash-inducing test cases match what you found in Ob-
jective 5 and that all trials match each other.

3. Calculate the average and standard deviation of the number of test cases executed and
the wall clock time.

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer’s process management to improve performance?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 5: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 5: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 5: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 5: 0.54 times
• Pre question 1: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

[Extra Credit: 15 pts] Objective 7: Better Process Man-

agement 2: Forkserver

To deal with the high overhead of target process initialization, AFL-based Linux fuzzers
employ a forkserver. Forkserver-based fresh process creation represents a significant im-
provement over the more simple fork/exec-based process creation in the previous objective.
The forkserver reduces process management overhead by reducing some process initialization
costs by duplicating the target process for each test case, as opposed to duplicating the fuzzer
process and then replacing it with the target program. Cloning a process is low overhead due
to the operating system using a technique called copy-on-write. Copy-on-write only actually
creates duplicate memory pages (i.e., creates an independent copy of a memory page for a
child, from a parent process) when a child or parent process writes to a cloned page. Put
more simply, as long as the parent and child pages continue to be identical, they will share,
but once they diverge, the operating system will pause execution to create a private copy
for the child. The gambit at play is that most of the target’s pages remain unchanged due
to test case execution.
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Figure 4: AFL-style greybox fuzzer that relies on hooking the target.

By cloning the parent process and leveraging copy-on-write, the forkserver is more fine-
grain than than creating a fresh process as it ensures that the target process initialization
steps are done—only once—and provides a transparent, page-level rollback of test-case-
induced state changes via copy-on-write. Even though a forkserver does away with process
loading costs, it still suffers from page-level duplication/management costs, process tear-
down costs, as well as the kernel-level cost of process duplication. You will observe in future
objectives that this technique is still relatively coarse-grain as it works at the page level and
also relies on creating many processes.

A forkserver works by including some fuzzer-related code in the target program (called
hooking). The fuzzer initially forks and loads the, now hooked, target binary into memory
(just once though). The target pauses execution at the beginning of the inserted main func-
tion. The forkserver then waits for a new test case from the fuzzer. When it is received, the
forkserver forks itself (i.e., creates a copy of the target’s process at that point in execution)
and starts executing the target’s original main using the test case provided by the fuzzer
process. The fuzzer code inserted into the target during hooking monitors the child’s execu-
tion, reporting back the results to the fuzzer process. Because the fuzzer now has parts in
the target and in its own process, Inter-Process Communication (IPC) mechanisms are used
to coordinate and communicate across processes. In this objective, you will transform your
fuzzer such that it uses a forkserver.

Pre-objective question:
1. What tradeoffs does a forkserver make?
2. What do you expect the effect of moving to a forkserver to be in terms of average test

case run time and the average number of test cases executed until a crash is found and
why?

Objective Steps:
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Figure 5: Fresh process creation via target-embedded forkserver.

1. Transform your generational coverage-guided, mutational, greybox fuzzer into one that
uses a forkserver
(a) Hook the target

i. Interpose on the target’s main
A. Hint: an easy way to do this is via a preprocessor directive that creates

macro the renames the target’s main targetMain()

B. Hint: a slightly more complex way to do this is to leverage LD PRELOAD
ii. Use fork()/exec() in your target hook code that spawns a child of the target

and has the child execute the test case generated by the fuzzer process.
iii. The parent process waits for child completion and checks for crashes.
iv. The target hook code communicates test case execution status to the fuzzer

process.
v. The target hook code then waits for a new test case from the fuzzer process.
vi. Hint: pipes and named pipes (aka FIFOs) are a great Inter-Process Commu-

nication (IPC) mechanism to solve the synchronization and communication
challenges of this objective.

(b) Modify the fuzzer.
i. Invoke the hooked target from the fuzzer.

A. You can use either system() or fork()/exec() for this.
ii. Add matching IPC to synchronize and communicate with the target hook

code in the target.
iii. Add code to detect when the target crashes.

2. Use your fuzzer to find a crash-inducing test case for the target.
3. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.
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(a) Verify that the resulting crash-inducing test cases match each other across trials.
4. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

Post-objective questions:
1. Why did you choose the IPC mechanism(s) that you did? What are the tradeoffs at

play?
2. Why is it unimportant whether you use system() or fork()/exec() to start the

hooked target?
3. Explain why the test case throughput results make sense.
4. What can be done to increase fuzzer performance in terms of reducing process man-

agement overhead?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Std. Dev. In number of test cases: 123,456
• Average wall clock time: 2700 seconds
• Test case throughput (i.e., test cases per second): 1234
• Test case throughput relative to Objective 6: 1.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Post question 4: A sentence or two.
• Source code: include in zip bundle

Submission Checklist

Upload to Canvas a gzipped tar file named project5.pid1.pid2.tar.gz that contains
only the files listed below. These will be autograded, so make sure you have the
proper filenames, formats, and behaviors. Failure to work with the autograder—for
any reason—will result in a 5% deduction from the maximum possible points. You can
generate the tarball at the shell using this command:

tar -zcf project5.pid1.pid2.tar.gz obj[123456].txt obj[123456].c edgeTrace.c hitTrace.c

The tarball should contain only the files below:

obj1.txt

obj1.c
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obj2.txt

obj3.txt

obj3.c

obj4.txt

obj4.c

edgeTrace.c

obj5.txt

obj5.c

hitTrace.c

obj6.txt

obj6.c

obj7 target.c [Optional extra credit.]
obj7 fuzzer.c [Optional extra credit.]

Your files can make use of standard C libraries and the provided default utilities on
the most recent MacOS or Ubuntu Linux (using WSL 2 for Windows) operating systems
but your solutions must be otherwise self-contained. Do not include any generated files
with your submission. Be sure to test that your solutions work correctly in the described
environment—you don’t have to test across platforms.
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