
CS 4264 November 20, 2024
Principles of Computer Security Project 5: Fuzzing

Project 5: Fuzzing

This project is due on December 11, 2024 at 11:59 p.m. and counts for 8% of your course
grade. Late submissions will be penalized by 10% plus an additional 10% every 5 hours until
received. Late work will not be accepted after 24 hours past the deadline. If you have a
conflict due to travel, interviews, etc., please plan accordingly and turn in your project early.

This is a group project; you will work in teams of two and submit one project per team.
Please find a partner as soon as possible. If you have trouble forming a team, post to Piazza’s
partner search forum.

The code and other answers your group submits must be entirely your own work, and you are
bound by the Honor Code. You may consult with other students about the conceptualization
of the project and the meaning of the questions, but you may not look at any part of someone
else’s solution or collaborate with anyone outside your group. You may consult published
references, provided that you appropriately cite them (e.g., with program comments), as you
would in an academic paper.

Solutions must be submitted electronically via Canvas, following the submission checklist
below. Please coordinate carefully with your partner to make sure at least one of you
submits on time.

Introduction

This project will introduce you to automated vulnerability discovery in software through
coverage-guided fuzz testing, a.k.a. fuzzing. The project starts by having you implement
the world’s simplest fuzzer to help you understand the basic operation of a fuzzer, then
progressively tasks you with making focused improvements that increase the performance
and effectiveness of your fuzzer. The result of this project is a fuzzer that is among the
world’s fastest, most effective fuzzers.

Objectives

• Understand the fundamentals of how coverage-guided fuzzers work.

• Understand what a fuzzer is good at and what it struggles with.

• Understand the sources of overhead and opportunities for improvement in a fuzzer’s
design.

• Gain familiarity with the state-of-research in high-performance fuzzing.

Read this First

This project asks you to find bugs in software targets that we provide you. While it is
acceptable—in fact, encouraged—to test other pieces of software with your fuzzer, using
the discovered security vulnerabilities to attack others’ systems without authorization is
prohibited by law and university policies and may result in fines, expulsion, and jail time.
You must not attack anyone else’s system without authorization! Per the course
ethics policy, you are required to respect the privacy and property rights of others at all
times, or else you will fail the course. See the “Ethics, Law, and University Policies” section
on the course website. Note that many companies have bug bounty programs and using your
fuzzer to find bugs in such programs to claim such bug bounties is encouraged as it makes
society safer.

Objective 1: My First Fuzzer

Figure 1: Basic black-box fuzzer.

Fuzzing is the least academic way to find bugs in programs: a fuzzer generates random
test cases (i.e., inputs to some target program under test), executes them, and sees if the test
case causes a crash during execution. Figure 1 shows a predecessor to fuzzing: black-box,
randomized testing. In black-box testing, we assume that we know nothing about the internal
operation of the target program during execution. Thus, the fuzzer can only generate test
cases, execute the target with those test cases, and see what outputs the target produces;
the ideal output being a crash, that is then sent to a human to triage.

In the first objective of this assignment, you will start the design of your fuzzer with a
black-box fuzzer that randomly generates test cases. Since you can’t assume anything about
the target (because this is black-box testing) you will have to make sure that your fuzzer will

2

generate all possible bytes (except ‘ and the null terminator). The target program that you
will be testing takes a character string as input and crashes when the passed character string
matches the secret value. Your fuzzer’s goal is to find the secret value by causing the target
program to crash. As you progress your way through the other assignment objectives, you
will discover that black-box testing with randomly generated test cases is horribly ineffective.

Here are some hints to guide your development:
• Start with one-character strings and increase the length of the strings systematically.
• Use rand() to generate random numbers in C and srand() to seed the random number

generator.
• You can use single quotes to pass bytes as input to a program via the command line.

’“When using single quotes, any characters enclosed within them are treated literally,
which means that variable expansion and command substitution do not occur. This
makes single quotes useful when you want to preserve the exact value of a variable or
a command within a string.”

• You can pass a binary information to a program’s standard in via < redirection using
a binary file as the source.

• You can use a pipe (via |) to pass binary information between programs via standard
in.

• For timing, you can use the C functions time() and difftime(), the time command,
or some other tool to time your fuzzer. The only requirement is seconds granularity.

• If you worry about your fuzzer not working with the target binary, you can download a
proof-of-life program (https://courses.cs.vt.edu/∼cs4264/static/fuzzing/pol.c) and bi-
nary (mac: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/mac/pol and linux: https://
courses.cs.vt.edu/∼cs4264/static/fuzzing/linux/pol) to test your fuzzer. The proof-of-
life program requires just a single byte of input and provides outputs that might be
useful for debugging your fuzzer. Note that the target binary is more complex.

Note: The pre- and post-objective questions (throughout the assignment) are designed to
get you to think about key fuzzing challenges and tradeoffs. Thus, your response will be
graded on effort—not on correctness.

Pre-objective questions:
1. How do you generate test cases without needing to track what you’ve already gener-

ated?
2. Does it matter if you generate duplicate test cases? Roughly, how likely is it that your

fuzzer will generate duplicate test cases?
3. How do you run another program from inside your program and supply it with arbitrary

bytes?

Objective Steps:
1. Download the target binary for your system:

(a) OSX: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/mac/target

3

https://courses.cs.vt.edu/~cs4264/static/fuzzing/pol.c
https://courses.cs.vt.edu/~cs4264/static/fuzzing/mac/pol
https://courses.cs.vt.edu/~cs4264/static/fuzzing/linux/pol
https://courses.cs.vt.edu/~cs4264/static/fuzzing/linux/pol
https://courses.cs.vt.edu/~cs4264/static/fuzzing/mac/target

(b) Linux: https://courses.cs.vt.edu/∼cs4264/static/fuzzing/linux/target
2. Run the target by hand to observe its behavior

(a) ./target myInput123
(b) The program outputs an error message with malformed input, nothing with cor-

rectly formatted input, and will crash when you find the secret input.
3. Build your black-box fuzzer using C by solving three challenges

(a) Target execution: you must use system()
(b) Test case generation: see the hint above
(c) Output analysis: handle when the target crashes and when it doesn’t

4. Use your fuzzer to find a crash-inducing test case
(a) Note: this may take over an hour to discover the crash, depending on how fast

your machine is.
(b) Verify that the crash-inducing test case actually causes a crash outside of fuzzing

by running it independently of the fuzzer
5. Update your fuzzer so that it reports the crash-inducing test case, the number of test

cases it generated to find the crash, and the wall clock time it took to find the crash
as your answer for Objective 1

Post-objective questions:
1. What is the fundamental weakness of black-box fuzzing?
2. How would you eliminate this weakness?
3. How would you improve your fuzzer?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Number of test cases: 1,234,567
• Wall clock time: 2700 seconds
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Pre question 3: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Source code: include in zip bundle

Objective 2: Statistical Analysis

Fuzzing is an inherently random process due to the way that it generates test cases. When
dealing with randomness in experiments, it is critical to perform many trials to capture a
more complete distribution of behaviors to determine a truly representative outcome. Thus,
in Objective 2, you will repeat the crash finding step of Objective 1 3 times to form a

4

https://courses.cs.vt.edu/~cs4264/static/fuzzing/linux/target

distribution of your fuzzer’s performance. For each trial, record the number of test cases
the fuzzer generated to find a crash-inducing test case and the wall clock time that the
fuzzer took to uncover the crash. Report the average and standard deviation for both fuzzer
performance metrics. These results form the baseline results that we will compare all future
fuzzer incarnations against.

Pre-objective question:
1. Do you expect there to be a low or a high degree of variation between fuzzer runs and

why?

Objective Steps:
1. Augment your fuzzer, write a shell script, or use Python such that it performs 3 fuzzing

trials of the target.
2. Verify that the crash-inducing test case matches for every trial.
3. Calculate the mean and standard deviation for the number of test cases produced and

wall clock time for each trial.

Post-objective questions:
1. Did you see a little or a lot of inter-run variation and why?
2. What is the impact of making claims about fuzzer performance and effectiveness using

only a single run?
3. What tools or techniques would you use to assess if the number of experimental trials

collected is sufficient to make comparative claims?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet).

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Std. Dev. number of test cases: 123,456
• Average wall clock time: 2700 seconds
• Std. Dev. wall clock time: 234 seconds
• Pre question 1: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.

Objective 3: Grammar-based Fuzzing

The limiting factor with the fuzzer you built in Objective 1 is that the fuzzer has no clue
what types of input the target program takes besides it being a single array of bytes. In
practice, reverse engineers looking to fuzz an opaque binary will have some information about
the target program and the input format that the target expects (e.g., javascript to a web

5

browser or a PDF file to Adobe Acrobat). Even in cases where such information is unknown,
reverse engineers will disassemble or decompile the binary and perform manual analysis to
get an idea of the target’s input format. Spending time learning about the input the fuzzer
expects is time well spent as it greatly increases the effectiveness of the fuzzer. This is
because most real-world programs do a good job of dispatching test cases with malformed
(i.e., syntactically incorrect) inputs. Thus, blindly throwing randomly generated bytes at a
program only serves to test the existence of input format checking logic. Contrary to this,
most bugs discovered by fuzzing involved unexpected, but well-formed inputs (e.g., a packet
with zero length).

I will save you the effort of running odjdump and let you know the target’s input format:
• Valid inputs are three characters long
• Valid characters come from the set [0− 9a− zA− Z]
• Complete regex: [0− 9a− zA− Z]{3}

If you are going to ever work in writing a language processor, translator, or compiler, you
should know what Backus–Naur Form (BNF) is. BNF describes the syntax of programming
languages or other formally-defined languages. BNF encodes a context-free grammar. BNF
can be used to describe document formats, instruction sets, programming languages, and
communication protocols.

Here is a BNF grammar that encodes this input format:
<input> ::= <char><char><char>

<char> ::= any lowercase character | any uppercase character | any decimal digit

Now that you know the grammar used to construct valid inputs to the target program,
you will update the test case generation portion of your fuzzer to leverage that information
to improve its effectiveness.

Pre-objective questions:
1. How do you expect grammar-based fuzzing to impact the number of test cases gener-

ated to discover the crash-inducing test case?
2. How do you expect grammar-based fuzzing to impact the wall clock time your fuzzer

takes to discover the crash-inducing input?

Objective Steps:
1. Update your fuzzer’s mutation engine such that it only generates syntactically valid

program inputs given the provided grammar.
2. Perform 5 trials of fuzzing the target program with the grammar-based test case

generation engine.
3. Verify that the resulting crash-inducing test cases match what you found in Objective

1 and that all trials match each other.
4. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

6

Post-objective questions:
1. Explain why your results (compared to the results in Objective 2) make sense.
2. What are the tradeoffs in terms of performance and bug-finding ability for grammar-

based fuzzing?
3. How would you improve your fuzzer’s performance?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 2: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 2: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 2: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 2: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Source code: include in zip bundle

Objective 4: My First Coverage-guided Fuzzer

Figure 2: Basic coverage-guided fuzzer.

7

Even when fuzzers have access to a grammar that describes a target program’s input
format, modern programs are so complex that randomly generating a crash-inducing test
case is incredibly unlikely. Your improvements in this objective will reveal that having
a grammar alone does not yield an effective fuzzer—even with a relatively simple target
program. The greatest advancement in fuzzing is the introduction of code coverage to guide
the many decisions a fuzzer must make (instead of relying on pure randomness). At a high
level, code coverage extends the information about test case execution beyond whether it
produces a crash or not. The fuzzer uses this more detailed information to systematically
explore a target program’s behavior by gradually building new test cases upon past test cases;
eventually leading to a crash as opposed to happening to magically derive a crash-inducing
test case from thin air. The source of this extra information is code coverage.

By looking at the parts of a target’s code that are covered or touched during execution,
the fuzzer can determine if a test case is ‘interesting’ with respect to all previous test cases.
This is done by seeing if the current test case executes some previously unexecuted region of
the target’s code or executes a previously executed region in a new way. The fuzzer keeps all
interesting test cases (called seeds) around in a seed pool; the fuzzer discards all test cases
that are both uninteresting and non-crashing. The fuzzer creates new test cases by mutating
a seed selected from the seed pool (usually at random or using a power schedule) as opposed
to generating one from scratch (as in Objective 3). By collecting and analyzing the set of
interesting test cases, the fuzzer can make more targeted (but still randomly influenced)
decisions during test case generation that allow the fuzzer to systematically work towards
finding a crash-inducing test case.

Code coverage comes in many flavors with the most popular code coverage metrics in
software fuzzing being basic block, edge, and path coverage. Basic block coverage (also
referred to as statement or line coverage) represents specific instructions that contribute to
the target’s execution of a given test case. Note that a basic block is a set of sequential
(in location) instructions terminated with a control flow instruction. Thus, a basic block is
either executed entirely or not at all (because control never passes to the first instruction
in the basic block). It is possible to break every program into a graph of connected basic
blocks. Edge coverage is a superset of basic block coverage as it refers to the possible flows
between a pair of basic blocks (due to navigating control flow instructions that direct control
between basic blocks). For example, an if/else statement produces two edges: one that leads
to the if basic block(s) and one that leads to the else basic block(s). Thus, edge coverage
is a superset of basic block coverage, as every basic block is preceded by at least one edge,
but possibly more. Lastly, path coverage represents an ordered traversal of edges through
a program. For two test cases to have the exact same path coverage, they must execute
the exact same instructions, in the exact same order as each other—only the data values
differ. Thus, basic block coverage represents the coarsest grain metric and path coverage
represents the finest grain metric. Research suggests that there is no one superior code
coverage metric as too fine grain of a coverage metric tends to report effectively identical
test cases as interesting, polluting the seed pool (which reduces mutation effectiveness) and
too coarse grain of a coverage metric tends to force the fuzzer to make too big of jumps
between a seed and a new, interesting test case (making a mutational fuzzer preform closer
to a generational fuzzer).

In this objective, you will transform your fuzzer from a grammar-based, generational,

8

black-box fuzzer to a grammar-based, mutational, coverage-guided, greybox fuzzer. See Fig-
ure 2 for a high-level depiction of a grammar-based, mutational, coverage-guided, greybox
fuzzer. This type of fuzzer is the foundation for the most prevalent and successful academic
and industrial fuzzers. Accomplishing this goal requires solving two technical challenges:
(1) how to trace the code coverage during test case execution and (2) how to mutate seed
test cases to form new test cases. Due to the time limit of the course, we will tell you the
easiest path to code coverage tracing: compiler-based instrumentation using LLVMs existing
compile-time options. You will use LLVM’s SanitizerCoverage built-in code coverage instru-
mentation to trace a test case’s edge coverage during execution. Once execution completes,
you coverage will be dumped to a file. You will write code to process the coverage informa-
tion in the file to determine if the most recently executed test case increased coverage with
respect to all previous test cases. If it does, you will add that test case to the seed pool and
continue the next fuzzing iteration by selecting a seed from the seed pool.

Once you’ve selected a seed, you must mutate that seed to create a new test case. Unfor-
tunately, there is not a wealth of knowledge about the tradeoffs at play during mutation. The
literature does tell us that having some seeds to mutate from is better than attempting to
generate a test case from scratch (especially without a grammar), because the fuzzer wastes
much of its time generating the first syntactically correct test case (most programs do a good
job filtering out obviously syntactically incorrect inputs). The literature also highlights the
power of using a dictionary of program-specific symbols for mutation. For example, a com-
mon way to build a dictionary is to run the target through the strings utility, which reports
all constant strings in the target. The mutator can pull from this dictionary when creating a
new test case. Due to time constraints, we will not explore the impact of having a dictionary
for this assignment, but if you wanted to explore the impact of a dictionary on your own, I
recommend you write a script that extracts all constants that the target uses for comparisons
from the binary and constrict your grammar to those values. Outside of having seeds and
using a dictionary or grammar to perform smarter mutations, we leave the mutation strategy
up to you. If you are curious of a simple yet effective mutation strategy, we recommend a
baseline mutation algorithm that first selects a byte of the seed to change, then to swaps
in a random byte to replace the existing byte (leveraging the grammar provided by the last
objective, of course).

Pre-objective questions:
1. What are viable mutation strategies?
2. What are the tradeoffs of mutating a lot of the seed versus mutating a little of the

seed?
3. What are the possible ways to collect code coverage from a program and the pros and

cons of each approach?
4. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?

Objective Steps:
1. Transform your fuzzer into a grammar-based, mutational, coverage-guided, greybox

fuzzer

9

(a) Add a seed pool that holds all previously seen coverage-increasing test cases
i. Assume that you will only need to hold up to 100 seeds to lower the complexity

of your implementation.
(b) Add a seed selector that chooses a seed from the seed pool to mutate

i. An ordered walk through the seed pool or purely random selection are both
sufficient strategies.

(c) Generate new test cases by mutating seeds (using the grammar from Objective 3
to ensure that you create only syntactically correct test cases.)

(d) Instrument the target that it reports edge code coverage
i. Use LLVM’s SanitizerCoverage built-in code coverage instrumentation. Specif-

ically, use -fsanitize-coverage=trace-pc-guard

ii. Reference https://clang.llvm.org/docs/SanitizerCoverage.html to help you code
your implementation.

(e) Add logic to your execution analysis code to determine if the test case increased
code coverage given all previously executed test cases.

2. Download the source code for a new target program at https://courses.cs.vt.edu/
∼cs4264/static/fuzzing/target.c, which you will need to compile the target with cover-
age tracing support. You will use this target for all remaining objectives.

3. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.
(a) Verify that the resulting crash-inducing test cases match across all trials.

4. Calculate the average and standard deviation of the number of test cases executed and
the wall clock time.

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer to improve performance or effectiveness?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 3: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 3: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 3: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 3: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Pre question 3: A sentence or two.
• Pre question 4: A sentence or two.

10

https://clang.llvm.org/docs/SanitizerCoverage.html
https://courses.cs.vt.edu/~cs4264/static/fuzzing/target.c
https://courses.cs.vt.edu/~cs4264/static/fuzzing/target.c

• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

Objective 5: Extending Code Coverage to Loops

As mentioned in the previous objective, the most common code coverage metrics employed
by commercial and academic fuzzers are basic block, edge, and path coverage. There is
actually an enhancement to basic block and edge coverage metrics that attempt to bridge
the gap between them and path coverage. This coverage enhancement is called hit counts.
Instead of the binary notion of coverage (i.e., either covered or not) used by basic block and
edge coverage, they can be extended to record how many times a basic block or edge was
executed by a test case, i.e., its hit count. Recording hit counts is useful for assessing the
progress of loops. If a test cases executes more iterations of a loop than all previous test
cases, then this could be an indicator that we are getting closer to seeing new, potentially
buggy, behavior. Consider a buffer overflow as an example.

Thus, in this objective, you will replace the edge coverage tracing in your fuzzer with
edge hit count tracing. You will still use LLVM’s SanitizerCoverage for this but will leverage
the inline 8-bit counters instrumentation, as opposed to the trace-pc-guard instrumentation.
This will give your fuzzer to accurately track up to 255 iterations of any loops in the target.

Pre-objective questions:
1. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?
2. How does the implementation of trace-pc-guard and inline 8-bit counters compare?

Which do you expect to be lower overhead and why?
• Hint: use objdump to examine the disassembly of each instrumented target.

Objective Steps:
1. Replace edge coverage tracing with edge hit count coverage tracing

(a) Instrument the target that it reports edge hit count code coverage
i. Use LLVM’s SanitizerCoverage built-in code coverage instrumentation.

ii. Specifically, use -fsanitize-coverage=inline-8bit-counters

iii. Reference https://clang.llvm.org/docs/SanitizerCoverage.html to help you code
your implementation.

(b) Update the code coverage analysis logic to determine if the test case increased
the hit count on any edge given all previously executed test cases.

2. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.
(a) Verify that the resulting crash-inducing test cases match what you found in Ob-

jective 4 and that all trials match each other.
3. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

11

https://clang.llvm.org/docs/SanitizerCoverage.html

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer to improve performance or effectiveness?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 4: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 4: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 4: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 4: 0.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

Objective 6: Better Process Management 1: Fork/Exec

Figure 3: Fresh process creation options for target process management.

After Objective 5, you now have a fully-functioning coverage-guided, greybox fuzzer that

12

will help you automatically find bugs in arbitrary programs. There are two ways that your
fuzzer can improve its performance at this point: (1) better process management and (2)
lower-overhead code coverage tracing. This objective focuses on increasing fuzzer perfor-
mance by improving process management. Given that fuzzing revolves around executing a
massive amount of test cases, the quicker it can execute them, the quicker it will find bugs.
Where the fuzzer currently stands, for each test case, the fuzzer creates a new process and
initializes it with the target program, executes the test case, and reaps the process, freeing
its resources. It turns out that for the short running programs commonly fuzzed, the time
taken to create, initialize, and reap a process is the same order of magnitude as executing the
test case. This process management work is also invariant of the specific test case provided
to the program. At the same time, process management is important as it is essential for
correctness that each test case executes with the same starting program state (which starting
with a fresh process is an easy path to).

Thus, to dramatically increase the speed of your fuzzer, you will explore mechanisms to
eliminate duplicated process management. The first step in that direction is to create target
processes in a more idiomatic way (at least on UNIX systems), as shown in Figure 3. When
you run a program from a shell on a UNIX-based operating system, the shell creates a clone
of itself using the fork() system call, then the clone process replaces the shell program with
the code and data of the callee by using one of the exec() series of system calls. In this
objective, you will replace you invocation of the target program using system() with a call
to fork, followed by a call to exec.

Pre-objective question:
1. What do you expect the impact on number of test cases and run time to be compared

to the previous objective and why?

Objective Steps:
1. Transform your generational coverage-guided, mutational, greybox fuzzer into one that

use fork/exec
(a) Replace system() with fork()/exec()

2. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.
(a) Verify that the resulting crash-inducing test cases match what you found in Ob-

jective 5 and that all trials match each other.
3. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

Post-objective questions:
1. How do the results from this objective compare to those of the previous objective in

terms of number of test cases and execution time and why do they make sense?
2. How could you change the fuzzer’s process management to improve performance?

13

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Average number of test cases relative to Objective 5: 0.54 times
• Std. Dev. In number of test cases: 123,456
• Std. dev. in number of test cases relative to Objective 5: 0.54 times
• Average wall clock time: 2700 seconds
• Average wall clock time relative to Objective 5: 0.54 times
• Std. Dev. in wall clock time: 234 seconds
• Std. Dev. in wall clock time relative to Objective 5: 0.54 times
• Pre question 1: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Source code: include in zip bundle

[Extra Credit: 15 pts] Objective 7: Better Process Man-

agement 2: Forkserver

Figure 4: AFL-style greybox fuzzer that relies on hooking the target.

To deal with the high overhead of target process initialization, AFL-based Linux fuzzers
employ a forkserver. Forkserver-based fresh process creation represents a significant im-
provement over the more simple fork/exec-based process creation in the previous objective.
The forkserver reduces process management overhead by reducing some process initialization
costs by duplicating the target process for each test case, as opposed to duplicating the fuzzer
process and then replacing it with the target program. Cloning a process is low overhead due
to the operating system using a technique called copy-on-write. Copy-on-write only actually

14

Figure 5: Fresh process creation via target-embedded forkserver.

creates duplicate memory pages (i.e., creates an independent copy of a memory page for a
child, from a parent process) when a child or parent process writes to a cloned page. Put
more simply, as long as the parent and child pages continue to be identical, they will share,
but once they diverge, the operating system will pause execution to create a private copy
for the child. The gambit at play is that most of the target’s pages remain unchanged due
to test case execution.

By cloning the parent process and leveraging copy-on-write, the forkserver is more fine-
grain than than creating a fresh process as it ensures that the target process initialization
steps are done—only once—and provides a transparent, page-level rollback of test-case-
induced state changes via copy-on-write. Even though a forkserver does away with process
loading costs, it still suffers from page-level duplication/management costs, process tear-
down costs, as well as the kernel-level cost of process duplication. You will observe in future
objectives that this technique is still relatively coarse-grain as it works at the page level and
also relies on creating many processes.

A forkserver works by including some fuzzer-related code in the target program (called
hooking). The fuzzer initially forks and loads the, now hooked, target binary into memory
(just once though). The target pauses execution at the beginning of the inserted main func-
tion. The forkserver then waits for a new test case from the fuzzer. When it is received, the
forkserver forks itself (i.e., creates a copy of the target’s process at that point in execution)
and starts executing the target’s original main using the test case provided by the fuzzer
process. The fuzzer code inserted into the target during hooking monitors the child’s execu-
tion, reporting back the results to the fuzzer process. Because the fuzzer now has parts in
the target and in its own process, Inter-Process Communication (IPC) mechanisms are used
to coordinate and communicate across processes. In this objective, you will transform your

15

fuzzer such that it uses a forkserver.

Pre-objective question:
1. What tradeoffs does a forkserver make?
2. What do you expect the effect of moving to a forkserver to be in terms of average test

case run time and the average number of test cases executed until a crash is found and
why?

Objective Steps:
1. Transform your generational coverage-guided, mutational, greybox fuzzer into one that

uses a forkserver
(a) Hook the target

i. Interpose on the target’s main
A. Hint: an easy way to do this is via a preprocessor directive that creates

macro the renames the target’s main targetMain()

B. Hint: a slightly more complex way to do this is to leverage LD PRELOAD
ii. Use fork()/exec() in your target hook code that spawns a child of the target

and has the child execute the test case generated by the fuzzer process.
iii. The parent process waits for child completion and checks for crashes.
iv. The target hook code communicates test case execution status to the fuzzer

process.
v. The target hook code then waits for a new test case from the fuzzer process.
vi. Hint: pipes and named pipes (aka FIFOs) are a great Inter-Process Commu-

nication (IPC) mechanism to solve the synchronization and communication
challenges of this objective.

(b) Modify the fuzzer.
i. Invoke the hooked target from the fuzzer.

A. You can use either system() or fork()/exec() for this.
ii. Add matching IPC to synchronize and communicate with the target hook

code in the target.
iii. Add code to detect when the target crashes.

2. Use your fuzzer to find a crash-inducing test case for the target.
3. Perform 10 trials of fuzzing the target program with your coverage-guided fuzzer.

(a) Verify that the resulting crash-inducing test cases match each other across trials.
4. Calculate the average and standard deviation of the number of test cases executed and

the wall clock time.

Post-objective questions:
1. Why did you choose the IPC mechanism(s) that you did? What are the tradeoffs at

play?
2. Why is it unimportant whether you use system() or fork()/exec() to start the

hooked target?
3. Explain why the test case throughput results make sense.

16

4. What can be done to increase fuzzer performance in terms of reducing process man-
agement overhead?

What to submit: submit a plain text file containing your answers to the objective ques-
tions formatted as shown below (without the preceding bullet). Include your source file(s)
along with your plain text file in the submitted zip file.

• Crash-inducing test case: ABC123
• Average number of test cases: 1,234,567
• Std. Dev. In number of test cases: 123,456
• Average wall clock time: 2700 seconds
• Test case throughput (i.e., test cases per second): 1234
• Test case throughput relative to Objective 6: 1.54 times
• Pre question 1: A sentence or two.
• Pre question 2: A sentence or two.
• Post question 1: A sentence or two.
• Post question 2: A sentence or two.
• Post question 3: A sentence or two.
• Post question 4: A sentence or two.
• Source code: include in zip bundle

Submission Checklist

Upload to Canvas a gzipped tar file named project5.pid1.pid2.tar.gz that contains
only the files listed below. These will be autograded, so make sure you have the
proper filenames, formats, and behaviors. Failure to work with the autograder—for
any reason—will result in a 5% deduction from the maximum possible points. You can
generate the tarball at the shell using this command:

tar -zcf project5.pid1.pid2.tar.gz obj[123456].txt obj[123456].c edgeTrace.c hitTrace.c

The tarball should contain only the files below:

obj1.txt

obj1.c

obj2.txt

obj3.txt

obj3.c

obj4.txt

obj4.c

edgeTrace.c

obj5.txt

obj5.c

hitTrace.c

obj6.txt

obj6.c

17

obj7 target.c [Optional extra credit.]
obj7 fuzzer.c [Optional extra credit.]

Your files can make use of standard C libraries and the provided on the most recent
MacOS or Ubuntu Linux operating systems but they must be otherwise self-contained. Do
not include any generated files with your submission. Be sure to test that your solutions
work correctly in described environment—you don’t have to test across platforms.

18

