CS 4264 Monday, August 26, 2024
Principles of Computer Security Project 1: Cryptographic Attacks

Project 1: Cryptographic Attacks

This project is due on Friday, September 20, 2024 at 11:59 p.m. and counts for 8% of your course
grade. Late submissions will be penalized by 10%, plus an additional 10% every 5 hours until
received. Late work will not be accepted after 24 hours past the deadline. If you have a conflict due
to travel, interviews, etc., please plan accordingly and turn in your project early.

This is a group project; you will work in teams of two and submit one project per team. Please find
a partner as soon as possible. If you have trouble forming a team, post to Piazza’s partner search
forum. The final exam will cover project material, so you and your partner should collaborate on
each part.

The code and other answers your group submits must be entirely your own work, and you are bound
by the Honor Code. You may consult with other students about the conceptualization of the project
and the meaning of the questions, but you may not look at any part of someone else’s solution or
collaborate with anyone outside your group. You may consult published references, provided that
you appropriately cite them (e.g., with program comments), as you would in an academic paper.

Introduction

In this project, you will investigate vulnerabilities in widely used cryptographic hash functions,
including length-extension attacks and collision vulnerabilities, and an implementation vulnerability
in a popular digital signature scheme. In Part 1, we will guide you through attacking the authentica-
tion capability of an imaginary server API. The attack will exploit the length-extension vulnerability
of hash functions in the MDS5 and SHA family. In Part 2, you will use a cutting-edge tool to generate
different messages with the same MDS5 hash value (collisions). You’ll then investigate how that
capability can be exploited to conceal malicious behavior in software. In Part 3, you will learn about
an attack against certain implementations of RSA padding; then, you will forge a digital signature
using your own implementation of this attack.

Objectives:

* Understand how to apply basic cryptographic integrity and authentication primitives.
* Investigate how cryptographic failures can compromise the security of applications.
» Appreciate why you should use HMAC-SHA256 as a substitute for common hash functions.

* Understand why padding schemes are integral to cryptographic security.

Part 1. Length Extension

In most applications, you should use MACs such as HMAC-SHA256 instead of plain cryptographic
hash functions (e.g. MDS, SHA-1, or SHA-256), because hashes, also known as digests, fail to
match our intuitive security expectations. What we really want is something that behaves like a
pseudorandom function, which HMACs seem to approximate and hash functions do not.

One difference between hash functions and pseudorandom functions is that many hashes are subject
to length extension. All the hash functions we’ve discussed use a design called the Merkle-Damgard
construction. Each is built around a compression function f and maintains an internal state s, which
is initialized to a fixed constant. Messages are processed in fixed-sized blocks by applying the
compression function to the current state and current block to compute an updated internal state,
i.e., si+1 = f(si,b;). The result of the final application of the compression function becomes the
output of the hash function.

A consequence of this design is that if we know the hash of an n-block message, we can find the
hash of longer messages by applying the compression function for each block b, 1,5, 12, ... that we
want to add. This process is called length extension, and it can be used to attack many applications
of hash functions.

1.1 Experiment with Length Extension in Python

To experiment with this idea, we’ll use a Python implementation of the MD5 hash function, though
SHA-1 and SHA-256 are vulnerable to length extension too. You can download the pymd5 module
athttp://courses.cs.vt.edu/cs4264/static/projectl/pymd5.py and learn how to use it
by running $ pydoc pymd5. To follow along with these examples, run Python in interactive mode
($ python -i) and run the command from pymd5 import md5, padding.

Consider the string “Use HMAC, not hashes”. We can compute its MDS5 hash by running:

m "Use HMAC, not hashes"
h = md5()

h.update (m)

print (h.hexdigest())

or, more compactly, print (md5(m) .hexdigest ()). The output should be:
3ecc68efal871751ea9b0blabb25004d

MD)5 processes messages in 512-bit blocks, so, internally, the hash function pads m to a multiple of
that length. The padding consists of the bit 1, followed by as many O bits as necessary, followed
by a 64-bit count of the number of bits in the unpadded message. (If the 1 and count won'’t fit in
the current block, an additional block is added.) You can use the function padding(count) in the
pymd5 module to compute the padding that will be added to a count -bit message.

Even if we didn’t know m, we could compute the hash of longer messages of the general form
m + padding(len(m)*8) + suffiz by setting the initial internal state of our MD5 function to
MD5 (m), instead of the default initialization value, and setting the function’s message length counter

http://courses.cs.vt.edu/cs4264/static/project1/pymd5.py

to the size of m plus the padding (a multiple of the block size). To find the padded message length,
guess the length of m and run bits = (length_of m + len(padding(length_of_m*8)))*8.

The pymd5 module lets you specify these parameters as additional arguments to the md5 object:

h = md5(state="3ecc68efal871751ea9b0b1a5b25004d", count=512)

Now you can use length extension to find the hash of a longer string that appends the suffix “Good
advice." Simply run:

x = "Good advice"
h.update(x)
print (h.hexdigest())

to execute the compression function over x and output the resulting hash. Verify that it equals the
MDS5 hash of m + padding(len(m)*8) + x. Notice that, due to the length-extension property
of MD5, we didn’t need to know the value of m to compute the hash of the longer string—all we
needed to know was m’s length and its MDS5 hash.

This component is intended to introduce length extension and familiarize you with the Python MD35
module we will be using; you will not need to submit anything for it.

1.2 Conduct a Length Extension Attack

Length extension attacks can cause serious vulnerabilities when people mistakenly try to construct
something like an HMAC by using hash(secret || message)'. The National Bank of CS 4264, which
1s not up-to-date on its security practices, hosts an API that allows its client-side applications to
perform actions on behalf of a user by loading URLs of the form:

http://courses.cs.vt.edu/cs4264/projectl/api?token=402a574d265dc212ee64970£159575d0
4user=admin&commandl=ListFiles&command2=NoOp

where token is MD5(user’s 8-character password || user= ... [the rest of the URL starting from
user=and ending with the last command)).

Using the techniques that you learned in the previous section and without guessing the password,
apply length extension to create a URL ending with &command3=UnlockAllSafes that is treated
as valid by the server API. You have permission to use our server to check whether your command
is accepted.

Hint: You might want to use the quote() function from Python’s urllib module to encode
non-ASCII characters in the URL.

Hint: You may see additional bytes in the padding (i.e., C2). You do not want to include these bytes
when calculating the hash, but you need to include them in the message sent to the server, otherwise
encoding errors will occur. The server removes these C2 bytes before calculating its hash.

Historical fact: In 2009, security researchers found that the API used by the photo-sharing site
Flickr suffered from a length-extension vulnerability almost exactly like the one in this exercise.

!|| is the symbol for contatenation, i.e. “hello" || “world" = “helloworld".

http://courses.cs.vt.edu/cs4264/project1/api?token=402a574d265dc212ee64970f159575d0&user=admin&command1=ListFiles&command2=NoOp
http://courses.cs.vt.edu/cs4264/project1/api?token=402a574d265dc212ee64970f159575d0&user=admin&command1=ListFiles&command2=NoOp

What to submit A Python 3.x script named len_ext_attack.py that:

1. Accepts a valid URL in the same form as the one above as a command line argument.
2. Modifies the URL so that it will execute the UnlockAllSafes command as the user.

3. Successfully performs the command on the server and prints the server’s response.

You should make the following assumptions:

* The input URL will have the same form as the sample above, but we may change the server
hostname and the values of token, user, commandl, and command?2 (although they will
remain in the same order). These values may be of substantially different lengths than in the
sample.

* The input URL may be for a user with a different password, but the length of the password
will be unchanged.

* The server’s output might not exactly match what you see during testing.

You can base your code on the following example:

import http.client as httplib
from urllib.parse import urlparse
import sys

url = sys.argv[1]

Your code to modify url goes here

parsedUrl = urlparse.urlparse(url)

conn = httplib.HTTPSConnection(parsedUrl.hostname,parsedUrl.port)
conn.request ("GET", parsedUrl.path + "?" + parsedUrl.query)
print(conn.getresponse() .read())

Part 2. MDS5 Collisions

MDS5 was once the most widely used cryptographic hash function, but today it is considered
dangerously insecure. This is because cryptanalysts have discovered efficient algorithms for finding
collisions—pairs of messages with the same MDS5 hash value.

The first known collisions were announced on August 17, 2004, by Xiaoyun Wang, Dengguo Feng,
Xuejia Lai, and Hongbo Yu. Here’s one pair of colliding messages they published:

Message 1:

d131dd02c5ebeecd693d9a0698aff95¢c 2fcabb58712467eabd004583eb8fb 7189
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6bdacd436¢c919¢c6 dd53e2b487da03fd02396306d248cdal
e99f£33420f577ee8ceb4b67080a80dle c69821bcb6a8839396f9652b6ff72a70

Message 2:

d131dd02c5ebeecd693d9a0698aff95¢c 2fcab50712467eab4004583eb8fb7£89
55ad340609£4b30283e4888325f1415a 085125e8f7cdc99£d91dbd7280373c5b
d8823e3156348f5bae6dacd436c919¢c6 ddb3e23487da03£d02396306d248cda0l
e99£33420f577ee8ceb4b67080280d1e c69821bcb6a8839396£965ab6££72a70

Convert each group of hex strings into a binary file.
(On Linux, run $§ xxd -r -p file.hex > file.)

1. What are the MD5 hashes of the two binary files? Verify that they’re the same.
($ openssl dgst -md5 filel file?2)

2. What are their SHA-256 hashes? Verify that they’re different.
($ openssl dgst -sha256 filel file?2)

This component is intended to introduce you to MDS3 collisions; you will not submit anything for it.

2.1 Generating Collisions Yourself

In 2004, Wang’s method took more than 5 hours to find a collision on a desktop PC. Since then,
researchers have introduced vastly more efficient collision finding algorithms. You can compute
your own MDS5 collisions using a tool written by Marc Stevens that uses a more advanced technique.
You can download the fastcoll tool here:
http://www.win.tue.nl/hashclash/fastcoll v1.0.0.5.exe.zip (Windows executable) or
http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5-1_source.zip (source code)

If you are building fastcoll from source, you can compile using this makefile: http://courses.
cs.vt.edu/cs4264/static/projectl/Makefile. You will also need the Boost libraries. On
Ubuntu, you can install these using apt-get install libboost-all-dev. On OS X, you can
install Boost via the Homebrew package manager using brew install boost.

1. Generate your own collision with this tool. How long did it take?
($ time fastcoll -o filel file2)

2. What are your files? To get a hex dump, run $§ xxd -p file.
3. What are their MD5 hashes? Verify that they’re the same.

4. What are their SHA-256 hashes? Verify that they’re different.

http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5.exe.zip
http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5-1_source.zip
http://courses.cs.vt.edu/cs4264/static/project1/Makefile
http://courses.cs.vt.edu/cs4264/static/project1/Makefile
http://brew.sh

What to submit A text file named generating collisions.txt containing your answers.
Format your file using this template. Make sure to follow the format precisely as this part is
autograded:

Question 1
time_for_fastcoll (e.g. 3.456s)

Question 2
filel:
filel_hex_dump
file2:
file2_hex_dump

Question 3
md5_hash

Question 4
filel:
filel_sha256_hash
file2:

file2 sha256_hash

2.2 A Hash Collision Attack

The collision attack lets us generate two messages with the same MD5 hash and any chosen
(identical) prefix. Due to MDS5’s length-extension behavior, we can append any suffix to both
messages and know that the longer messages will also collide. This lets us construct files that differ
only in a binary “blob” in the middle and have the same MDS5 hash, i.e. prefix || bloba || suffix and
prefix || blobg || suffix.

We can leverage this to create two programs that have identical MD5 hashes but wildly different
behaviors. We’ll use Python, but almost any language would do. Put the following three lines into a
file called prefix:

#!/usr/bin/python
-*- coding: utf-8 -*-
blob = nnn

and put these three lines into a file called suffix:

from hashlib import sha256
print (sha256 (blob.encode('utf-8')) .hexdigest())

Now use fastcoll to generate two files with the same MDS5 hash that both begin with prefix.
($ fastcoll -p prefix -o coll col2). Then append the suffix to both ($ cat coll suffix

6

> filel.py; cat col2 suffix > file2.py). Verify that filel.py and file2.py have the
same MDS5 hash but generate different output.

Extend this technique to produce another pair of programs, good and evil, that also share the
same MD5 hash. One program should execute a benign payload: print "I come in peace."
The second should execute a pretend malicious payload: print "Prepare to be destroyed!".
Note that we may rename these program before grading them.

What to submit Two Python 3.x scripts named good.py and evil.py that have the same MD5
hash, have different SHA-256 hashes, and print the specified messages.

Part 3. RSA Signature Forgery

A secure implementation of RSA encryption or digital signatures requires a proper padding scheme.
RSA without padding, also known as textbook RSA, has several undesirable properties. One property
is that it is trivial for an attacker with only an RSA public key pair (1, e) to produce a mathematically
valid (message, signature) pair by choosing an s and returning (s°,s).

In order to prevent an attacker from being able to forge valid signatures in this way, RSA implemen-
tations use a padding scheme to provide structure to the values that are encrypted or signed. The
most commonly used padding scheme in practice is defined by the PKCS #1 v1.5 standard, which
can be found at https://tools.ietf.org/html/rfc2313. The standard defines, among other
things, the format of RSA keys and signatures and the procedures for generating and validating
RSA signatures.

3.1 Validating RSA Signatures

You can experiment with validating RSA signatures yourself. Create a text file called key . pub that
contains the following RSA public key:

MFowDQYJKoZIhvcNAQEBBQADSQAwWRgJBALvMZ+YhjwKpteNYzzbPHvPqdvMrs2RE
HeThK+ui9vOYHNyFW6aBwwG/6sfbvxx401ePBWjRhpoxDC5A/ J+rVXkCAQM=

Confirm that the key has a 512-bit modulus with an exponent of 3. You can view the modulus and
public exponent of this key by running:

$ openssl rsa -in key.pub -pubin -text -noout

Create a file containing only the text CS 4264 rul3z! ($ echo -n ’CS 4264 rul3z!’ >
myfile). The following is a base64-encoded signature of the file using the private key corresponding
to the public key above.

HO1NNINrWyDFL8hEJFYVOG237A901uqr2EqFKZUicVOLzVtmvSeJC
jVmY5MxuJ33zCQ11iShZm2Yd7DRrKBLDSw==

https://tools.ietf.org/html/rfc2313

Copy the base64-encoded signature to a file, and then convert it from base64 to raw binary. ($
base64 --decode -i sig.b64 > sig). Verify the signature against the file you created:

$ openssl dgst -shal -verify key.pub -signature sig myfile
We can also use basic math operations in Python to explore this signature further. Remember, RSA
ciphertexts, plaintexts, exponents, moduli, and signatures are actually all integers.

Usually, you would use a cryptography library to import a public key. However, for the purposes of
this part of the assignment, you can just manually assign the modulus and exponent as integers in
Python based on the earlier output from OpenSSL. You may find the following command useful:

$ openssl rsa -in key.pub -text -noout -pubin | egrep '~ ' | tr -d ' :\n'
Launch Python in interactive mode and assign the modulus and the exponent to integer variables:

n is the modulus from the key.

You can just assign it as a hexadecimal literal--remember to start with Ox
It will look something like:

n = 0x00d56d87ba372303£8...104dd059e49e435f

=+

e is the exponent from the key
=3

(0]

We can also load the signature into Python. Like the modulus and the exponent, we’ll convert the
signature to an integer:

signature = int.from_bytes(open('sig', mode='rb').read(), byteorder='big')
Now reverse the signing operation by computing signature® mod n:

x = pow(signature, e, n)

You can print the resulting value as a 64-byte (512-bit) integer in hex:

print ("%0128x" % x)

You should see something like 0001fffff...ccc66£d5£58739932f0585d3e8362. Verify that the
last 20 bytes of this value match the SHA-1 hash of your file:

import hashlib

m = hashlib.shal()

m.update("CS 4264 rul3z!".encode())
print (m.hexdigest())

The hash has been padded using the PKCS #1 v1.5 signature scheme, which specifies that, for a
SHA-1 hash with a k-bit RSA key, the signed value will contain the following bytes:

0001 FFFFFF --- FF 00 3021300906052B0OE03021A050004 14 XX XXXXXX --- XX
k/8 ,EE bytes ASN.1 “magic” bytes dengang type of hash algorithm SHA-1 diggsrt (20 bytes)

The number of FF bytes varies such that the size of the result is equal to the size of the RSA key.
Confirm that the value you computed above matches this format. It is crucial for implementations
to verify that every bit is exactly as it should be, but sometimes developers can be lazy. ..

8

3.2 Bleichenbacher’s Attack

It’s tempting for an implementer to validate the signature padding as follows: (1) confirm that the
total length equals the key size; (2) strip off the bytes 00 01, followed by any number of FF bytes,
then 00; (3) parse the ASN.1 bytes; (4) verify that the next 20 bytes are the correct SHA-1 digest.

This procedure does not check the length of the FF bytes, nor does it verify that the hash is in the
least significant (rightmost) bytes of the string. As a result, it will accept malformed values that
have “garbage” bytes following the digest, like this example, which has only one FF:

0001 FF 00 3021300906052B0E03021A050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den(‘){ing type of hash algorithm SHA-1 dig;gt (20 bytes) k/8—39 ar‘b,itrary bytes

Convince yourself that this value would be accepted by the incorrect implementation described
above, and that the bytes at the end labeled YY would be ignored. When an implementation uses
this lenient, incorrect parsing, an attacker can easily create forged signatures that it will accept.

This possibility is particularly troubling when RSA is used with e = 3. Consider the case with RSA
encryption: If we encrypt an unpadded message m that is much shorter than k-bits, then m> < n.
Thus, the “encrypted” message ¢ = m® = m> mod n does not “wrap around” the modulus 7. In this
case, RSA doesn’t provide good security, since the attacker can simply take the normal cube root of
the ciphertext to find the plaintext, m = cBes easy to reverse normal exponentiation, as opposed
to modular exponentiation!

Now recall that RSA signature validation is analogous to RSA encryption. If the signature uses
e = 3, the validator calculates s = s> mod n and checks that the result is the correct PKCS-padded
digest of the signed message.

Here comes the attack: For a 2048-bit key, a correctly padded value for an RSA signature using a
SHA-1 hash should have k/8 — 38 = 2048 /8 — 38 = 218 bytes of FFs. But what if there were only
one FF, as in the example shown above? This would leave space for 217 arbitrary bytes at the end
of the value. A correct implementation of signature validation would notice the extra bytes and
reject the signature, but the weak implementation described above would ignore these bytes.

To construct a signature that would validate against such an implementation, the attacker needs to
find a number x such that x> < n and where x> matches the format of the malformed example shown
above. Since the implementation ignores the last 217 bytes, the attacker has enough flexibility to
find a perfect cube of this form. To do this, you can construct an integer whose most significant
bytes have the correct format, including the digest of the target message, and set the last 217 bytes
to 00. Then take the cube root, rounding as appropriate.

Historical fact: This attack was discovered by Daniel Bleichenbacher, who presented it in a lightning
talk at the rump session at the Crypto 2006 conference. His talk is described in this mailing list post:
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1A0kBVj3VgblG1lP63QE. At
the time, many important implementations of RSA signatures were found to be vulnerable to this at-
tack, including OpenSSL. In 2014, the Firefox TLS implementation was also found to be vulnerable
to this type of attack: https://www.mozilla.org/security/advisories/mfsa2014-73/.

https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE
https://www.mozilla.org/security/advisories/mfsa2014-73/

3.3 Constructing Forged Signatures

The National Bank of CS 4264 has a website athttp://courses.cs.vt.edu/cs4264/projectl/
that its employees use to initiate wire transfers between bank accounts. To authenticate each transfer
request, the control panel requires a signature from a particular 2048-bit RSA key that is listed on
the website’s home page. Unfortunately, this control panel is running old, unpatched software that
is vulnerable to signature forgery.

Using the signature forgery technique described above, produce an RSA signature that the National
Bank of CS 4264 site accepts as valid.

What to submit A Python 3.x script called bleichenbacher. py that:

1. Accepts a double-quoted string as a command-line argument.
2. Prints a base64-encoded forged signature of the input string.

You have our permission to use http://courses.cs.vt.edu/cs4264/projectl/ to test your
signatures, but when we grade your program it will not have access to the network.

We have provided a Python library, roots. py, that provides several useful functions that you may
wish to use when implementing your solution. You can download roots.py at http://courses.
cs.vt.edu/cs4264/static/projectl/roots.py. To examine its documentation, run $ pydoc
roots.

To use these functions, you will have to import roots . py. You can start with the following template:

from roots import *
import hashlib
import sys

message = sys.argv[1]

Your code to forge a signature goes here.

print (integer_to_base64(forged_signature))

Part 4. Writeup

1. With reference to the construction of HMAC, explain how changing the design of the API
in Part 1.2 to use token = HMAC 5,5 passwora(user=...) would avoid the length extension
vulnerability.

2. Briefly explain why the technique you explored in Part 2.2 poses a danger to systems that rely
on digital signatures to verify the integrity of programs before they are installed or executed.
Examples include Microsoft Authenticode and most Linux package managers. (You may
assume that these systems sign MDS5 hashes of the programs.)

3. Since 2010, NIST has specified that RSA public exponents (e) should be at least 216 + 1.
Briefly explain why Bleichenbacher’s attack would not work for these keys.

What to submit A text file named writeup.txt containing your answers.

10

http://courses.cs.vt.edu/cs4264/project1/
http://courses.cs.vt.edu/cs4264/project1/
http://courses.cs.vt.edu/cs4264/static/project1/roots.py
http://courses.cs.vt.edu/cs4264/static/project1/roots.py

Submission Checklist

Upload to Canvas a gzipped tarball (.tar.gz) named projectl.pidl.pid2.tar.gz that con-
tains only the files listed below. These will be autograded, so make sure you have the proper
filenames and behaviors. You can generate the tarball at the shell using this command:

tar -zcf projectl.pidl.pid2.tar.gz len_ext_attack.py \
generating collisions.txt good.py evil.py bleichenbacher.py writeup.txt

To aide in formatting, we provide a reference submission that is correctly formatted, but has
incorrect answers: http://courses.cs.vt.edu/cs4264/static/projectl/projectl.pidl.
pid2.tar.gz

Part 1.2

len_ext_attack.py: A Python 3.x script that accepts a URL as a command-line argument,
performs the specified attack, and outputs the server’s response.

Part 2.1

generating collisions.txt: A text file with your answers to the four short questions, using
the provided template.

Part 2.2

good.py and evil.py: Two Python 3.x scripts that share an MDS5 hash, have different SHA-256
hashes, and print the specified messages.

Part 3.3

bleichenbacher.py: A Python 3.x script that accepts a string as a command-line argument and
outputs a forged signature for that string that is considered valid by the bank website.

Part 4

writeup.txt: A text file containing your answers to the three writeup questions.

11

http://courses.cs.vt.edu/cs4264/static/project1/project1.pid1.pid2.tar.gz
http://courses.cs.vt.edu/cs4264/static/project1/project1.pid1.pid2.tar.gz

