
Changing the Model

What if we settle for the “approximate best?”

Types of guarentees, given that the algorithm
produces X and the best is Y :

1. X = Y .

2. X’s rank is “close to” Y ’s rank:

rank(X) ≤ rank(Y ) + “small”.

3. X is “usually” Y .

P(X = Y ) ≥ “large”.

4. X’s rank is “usually” “close” to Y ’s rank.

We often give such algorithms names:

1. Exact or deterministic algorithm.

2. Approximation algorithm.

3. Probabilistic algorithm.

4. Heuristic.

We can also sacrifice reliability for speed:

1. We find the best, “usually” fast.

2. We find the best fast, or we don’t get an
answer at all (but fast).

121



Examples for Findmax

Choose m elements at random, and pick the
best.

• For large n, if m = logn, the answer is
pretty good.

• Cost is m − 1.

• Rank is mn
m+1.

122



Probabilistic Algorithms

Probabilistic algorithms include steps that are
affected by random events.

Problem: Pick one number in the upper half of
the values in a set.

1. Pick maximum: n − 1 comparisons.

2. Pick maximum from just over 1/2 of the
elements: n/2 comparisons.

Can we do better? Not if we want a
guarantee.

123



Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability
3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with
probability 1− 2−k.

Monte Carlo Algorithm: Good running time,
result not guaranteed.

Las Vegas Algorithm: Result guaranteed, but
not the running time.

124



Sorting

Initial model:

• Sort key has a linear order (comparable).

• We have an array of elements.

• We wish to sort the elements in the array.

• We get information about elements only by
comparison of two elements.

• We can preserve order information only by
swapping a pair of elements.

To simplify analysis:

• Assume all elements are unique.

• For analysis purposes, consider the input to
be a permutation of the values 1 to n.

What if the ALGORITHM could make this
assumption?

125



Swap Sorts

Repeatedly scan input, swapping any
out-of-order elements.

Bubble sort: O(n2) in worst case.

Inversions of an element: the number of
smaller elements to the right of the element.

The sum of inversions for all elements is the
number of swaps required by bubblesort.

ANY algorithm that removes one inversion per
swap requires at least this many swaps.

Worst number of inversions:

Best number of inversions:

Average number of inversions:

• Note that the sum of the total inversions for
any permutation and its reverse is n(n−1)

2 .

• Alternative view: every one of the n(n−1)
2

possible inversions occurs in a given
permutation or its reverse.

126



Heap Sort

Heap: complete binary tree with the value of
any node at least as large as its two children.

Algorithm:

• Build the heap.

• Repeat n times:

– Remove the root.

– Repair the heap.

This gives us list in reverse sorted order.

Since the heap is a complete binary tree, it can
be stored in an array.

To delete max element:

• Swap the last element in the heap with the
first (root).

• Repeatedly swap the placeholder with larger
of its two children until done.

127



Building the heap

To build a heap, first heapify the two subheaps,
then push down the root to its proper position.

Cost:

f(n) ≤ 2f(n/2) + 2 logn.

Alternatively: Start at first internal node and,
moving up the array, siftdown each element.

Cost:

f(n) =
logn∑
i=1

(i − 1)
n

2i

=
n

2

logn−1∑
i=1

i

2i

< 2
n

2
= n.

128



Quicksort

Algorithm:

• Pick a pivot value.

• Split the array into elements less than the
pivot and elements greater than the pivot.

• Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular
input has bad performance.

129



Quicksort Average Cost

f(n) =

{
0 n ≤ 1
n − 1 + 1

n

∑n−1
i=0(f(i) + f(n − i − 1)) n > 1

Since the two halves of the summation are
identical,

f(n) =

{
0 n ≤ 1

n − 1 + 2
n

∑n−1
i=0 f(i) n > 1

Multiplying both sides by n yields

nf(n) = n(n − 1) + 2
n−1∑
i=0

f(i).

130



Average Cost (cont.)

Get rid of the full history by subtracting nf(n)
from (n + 1)f(n + 1)

nf(n) = n(n − 1) + 2
n−1∑
i=1

f(i)

(n + 1)f(n + 1) = (n + 1)n + 2
n∑

i=1

f(i)

(n + 1)f(n + 1)− nf(n) = 2n + 2f(n)

(n + 1)f(n + 1) = 2n + (n + 2)f(n)

f(n + 1) =
2n

n + 1
+

n + 2

n + 1
f(n).

131



Average Cost (cont.)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the

recurrence, we get

f(n+1) ≤ 2 +
n + 2

n + 1
f(n)

= 2 +
n + 2

n + 1

(
2 +

n + 1

n
f(n − 1)

)
= 2 +

n + 2

n + 1

(
2 +

n + 1

n

(
2 +

n

n − 1
f(n − 2)

))
= 2 +

n + 2

n + 1

(
2 + · · ·+

4

3
(2 +

3

2
f(1))

)
= 2

(
1 +

n + 2

n + 1
+

n + 2

n + 1

n + 1

n
+ · · ·

+
n + 2

n + 1

n + 1

n
· · ·

3

2

)
= 2

(
1 + (n + 2)

(
1

n + 1
+

1

n
+ · · ·+

1

2

))
= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n logn).

132



Lower Bound for Sorting

What is the smallest number of comparisons
needed to sort n values?

Clearly, sorting is as hard as finding the min
and max element: d3n/2e − 2.

• Why?

Information theory says that, if an algorithm
uses only binary decisions to distinguish
between n possibilities, then it must use at
least logn such decisions on average.

How is this relevant?

There are n! permutations to the input array.

So, by information theory, we need at least
logn! = Θ(n logn) comparisons.

Using the decision tree model, what is the
average depth of a node?

This is also Θ(logn!).

133



Linear Insert Sort

Put the element i into a sorted list of the first
i − 1 elements.

Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called
binary insert sort.)

134



Optimal Sorting

If we count ONLY comparisons, binary insert
sort is pretty good.

What is the absolute minimum number of
comparisons needed to sort?

For n = 5, how many comparisons do we need
for binary insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?

Build the following poset:

A
B

or

A

A

Now, put in the fifth element into the chain of
3.

Now, put in the off-element.

Total cost?

135



Ten Elements

Pair the elements: 5 comparisons.

Sort the winners of the pairings, using the
previous algorithm: 7 comparisons.

Now, all we need to do is to deal with the
original losers.

General algorithm:

• Pair up all the nodes with bn
2c comparisons.

• Recursively sort the winners.

• Fold in the losers.

136



Finishing the Sort

We will use binary insert to place the losers.

However, we are free to choose the best
ordering for inserting.

Recall that binary search is best for 2k − 1
items.

1

2

4

3

Pick the order of inserts to optimize the binary
searches.

• 3 (2 compares: size 3)

• 4 (2 compares: size 3)

• 1 (3 compares: size 7)

• 2 (3 compares: size 7)

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

137



Optimal Sort Algorithm?

Merge insert sort is pretty good, but is it
optimal?

It does not match the information theoretic
lower bound for n = 12.

• Merge insert sort gives 30 instead of 29
comparison.

BUT, exhaustive search shows that the
information theoretic bound is an
underestimate for n = 12. 30 is best.

Call the optimal worst cost for n elements S(n).

• S(n + 1) ≤ S(n) + dlog(n + 1)e.
Otherwise, we would sort n elements and
binary insert the last.

• For all n and m,
S(n + m) ≤ S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted
lists.

• For n = 47, we can do better by splitting
into pieces of size 5 and 42, then merging.

138



A Truly Optimal Algorithm

Pick the best set of comparisons for size 2.

Then for size 3, 4, 5, ...

Combine them together into one program with
a big case statement.

Is this an algorithm?

139


