
Numbers

Examples of problems:

• Raise a number to a power.

• Find common factors for two numbers.

• Tell whether a number is prime.

• Generate a random integer.

• Multiply two integers.

These operations use all the digits, and cannot
use floating point approximation.

For large numbers, cannot rely on hardware
(constant time) operations.

• Measure input size by number of binary
digits.

• Multiply, divide become expensive.

140



Analysis of Number Problems

Analysis problem: Cost may depend on
properties of the number other than size.

• It is easy to check an even number for
primeness.

If you consider the cost over all k-bit inputs,
cost grows with k.

Features:

• Arithmetical operations are not cheap.

• There is only one instance of value n.

• There are 2k instances of length k or less.

• The size (length) of value n is logn.

• The cost may decrease when n increases in
value, but generally increases when n
increases in size (length).

141



Exponentiation

How do we compute mn?

We could multiply n− 1 times.

Can we do better?

Approaches to divide and conquer:

• Relate mn to kn for k < m.

• Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2.

If n is odd, then mn = mbn/2cmbn/2cm.

Power(base, exp) {

if exp = 0 return 1;

half = Power(base, exp/2);

half = half * half;

if (odd(exp)) then half = half * base;

return half;

}

142



Analysis of Power

f(n) =

{
0 n = 1
f(bn/2c) + 1 + n mod 2 n > 1

Solution:

f(n) = blognc+ β(n)− 1

where β is the number of 1’s in the binary
representation of n.

How does this cost compare with the problem
size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over
many runs?

In general, finding the best set of
multiplications is expensive (probably
exponential).

143



Largest Common Factor

The largest common factor of two numbers is
the largest integer that divides both evenly.

Observation: If k divides n and m, then k
divides n−m.

So,
f(n, m) = f(n−m, n) = f(m, n−m) = f(m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = bn/mcm + n mod m.

So, f(n, m) = f(m, l) = f(m, n mod m).

f(n, m) =

{
n m = 0
f(m, n mod m) m > 0

int LCF(int n, int m) {

if (m == 0) return n;

return LCF(m, n % m);

}

144



Analysis of LCF

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2bn/mc > n/m

⇒ mbn/mc > n/2

⇒ n− n/2 > n−mbn/mc = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more
than 2 iterations.

Total cost:

145



Matrix Multiplication

Given: n× n matrices A and B.

Compute: C = A×B.

cij =
n∑

k=1

aikbkj.

Straightforward algorithm:

• Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication
algorithm: Ω(n2).

146



Another Approach

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.

147



Strassen’s Algorithm

(1) Trade more additions/subtractions for
fewer multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2
case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.

148



Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A×B in terms of n
2 ×

n
2 matrices.

By Strassen’s algorithm, this can be computed
with 7 multiplications and 18
additions/subtractions of n/2× n/2 matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)

Open question: Can matrix multiplication be
done in O(n2) time?

149



Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a
subproblems of size n/b, while cnk is the
amount of work needed to combine the
solutions.

150



Divide and Conquer Recurrences

(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose
sum depends on the ratio

r = bk/a.

There are 3 cases.

151



D & C Recurrences (cont)

(1) r < 1

m∑
i=0

ri < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1

m∑
i=0

ri = m + 1 = logb n + 1

T (n) = Θ(nlogb a logn) = Θ(nk logn)

(3) r > 1

m∑
i=0

ri =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam ∑
ri,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

152



Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk logn) if a = bk

Θ(nk) if a < bk

Apply the theorem:

T (n) = 3T (n/5) + 8n2.

a = 3, b = 5, c = 8, k = 2.

bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

153



Prime Numbers

How do we tell if a number is prime?

One approach is the prime sieve: Test all prime
up to b

√
nc.

This requires up to b
√

nc − 1 divisions.

• How does this compare to the input size?

Note that it is easy to check the number of
times 2 divides n for the binary representation

• What about 3?

• What if n is represented in trinary?

Is there a polynomial time algorithm?

154



Facts about Primes

Some useful theorems from Number Theory:

Prime Number Theorem: The number of
primes less than n is (approximately)

n

lnn

• The average distance between primes is
lnn.

Prime Factors Distribution Theorem: For
large n, on average, n has about ln lnn different
prime factors with a standard deviation of√

ln lnn.

To prove that a number is composite, need
only one factor.

What does it take to prove that a number is
prime?

Do we need to check all
√

n candidates?

155



Probablistic Algorithms

Some probablistic algorithms:

• Prime(n) = FALSE.

• With probability 1/ lnn, Prime(n) = TRUE.

• Pick a number m between 2 and
√

n. Say n
is prime iff m does not divide n.

Using number theory, we can create a cheap
test that will determine that a number is
composite (if it is) 50% of the time.

Algorithm:

Prime(n) {

for(i=0; i<COMFORT; i++)

if !CHEAPTEST(n)

return FALSE;

return TRUE;

}

Of course, this does nothing to help you find
the factors!

156



Random Numbers

Which sequences are random?

• 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

• 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

• 2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:

• Cannot predict the next item:
unpredictable.

• Series cannot be described more briefly
than to reproduce it: equidistribution.

There is no such thing as a random number
sequence, only “random enough” sequences.

A sequence is pseudorandom if no future term
can be predicted in polynomial time, given all
past terms.

157



A Good Random Number Generator

Most computer systems use a deterministic
algorithm to select pseudorandom numbers.

Linear congruential method:

• Pick a seed r(1). Then,

r(i) = (r(i− 1)× b) mod t.

Resulting numbers must be in range:

What happens if r(i) = r(j)?

Must pick good values for b and t.

• t should be prime.

158



Random Number examples

r(i) = 6r(i− 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4,

11, 1, ...

r(i) = 7r(i− 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4,

2, 1, ...

r(i) = 5r(i− 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator:

r(i) = 16807r(i− 1) mod 231 − 1.

159



Introduction to the Slide Rule

Compared to addition, multiplication is hard.

In the physical world, addition is merely
concatenating two lengths.

Observation:

lognm = logn + logm.

Therefore,

nm = antilog(logn + logm).

What if taking logs and antilogs were easy?

The slide rule does exactly this!

• It is essentially two rulers in log scale.

• Slide the scales to add the lengths of the
two numbers (in log form).

• The third scale shows the value for the
total length.

160



Representing Polynomials

A vector a of n values can uniquely represent a
polynomial of degree n− 1

Pa(x) =
n−1∑
i=0

aix
i.

Alternatively, a polynomial can be uniquely
represented by a list of its values at n distinct
points.

• Finding the value for a polynomial at a
given point is called evaluation.

• Finding the coefficients for the polynomial
given the values at n points is called
interpolation.

161



Multiplication of Polynomials

To multiply two n− 1-degree polynomials A
and B normally takes Θ(n2) coefficient
multiplications.

However, if we evaluate both polynomials (at
the same points), we can simply multiply the
corresponding pairs of values to get the
corresponding values for polynomial AB.

Process:

• Evaluate polynomials A and B at enough
points.

• Pairwise multiplications of resulting values.

• Interpolation of resulting values.

This can be faster than Θ(n2) IF a fast way
can be found to do evaluation/interpolation of
2n− 1 points.

• Normally this takes Θ(n2) time. (Why?)

162



An Example

Polynomial A: x2 + 1.

Polynomial B: 2x2 − x + 1.

Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Note that evaluating a polynomial at 0 is easy.

If we evaluate at 1 and -1, we can share a lot
of the work between the two evaluations.

Can we find enough such points to make the
process cheap?

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial
AB. And, we also need to interpolate the 5
values to get the coefficients back.

163



An Observation

In general, we can write Pa(x) = Ea(x) + Oa(x)
where Ea is the even powers and Oa is the odd
powers. So,

Pa(x) =
n/2−1∑
i=0

a2ix
2i +

n/2−1∑
i=0

a2i+1x2i+1

The significance is that when evaluating the
pair of values x and −x, we get

Ea(x) + Oa(x) = Ea(x)−Oa(−x)

Oa(x) = −Oa(−x)

Thus, we only need to compute the E’s and O’s
once instead of twice to get both evaluations.

164



Nth Root of Unity

The key to fast polynomial multiplication is
finding the right points to use for
evaluation/interpolation to make the process
efficient.

Complex number z is a
primitive nth root of unity if

1. zn = 1 and

2. zk 6= 1 for 0 < k < n.

z0, z1, ..., zn−1 are the nth roots of unity.

Example: For n = 4, z = i or z = −i.

Identity: eiπ = −1.

In general, zj = e2πij/n = −12j/n.

• Significance: We can find as many points
on the circle as we need.

165



Evaluation

Define an n× n matrix Az with row i and
column j as

Az = (zij).

Example: n = 4, z = i:

Az =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]
T be a vector.

We can evaluate the polynomial at the nth
roots of unity:

Fz = Aza = b.

bi =
n−1∑
k=0

akzik.

166



Another Example

For n = 8, z =
√

i. So,

Az =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i

1 i
√

i −i
√

i −1 −i
√

i i −
√

i
1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i

1 −i
√

i −i −
√

i −1 i
√

i i
√

i

We still have two problems:

1. We need to be able to do this fast. Its still
n2 multiplies to evaluate.

2. If we multiply the two sets of evaluations
(cheap), we still need to be able to reverse
the process (interpolate).

167



Interpolation

The interpolation step is nearly identical to the
evaluation step.

F−1
z = A−1

z b′ = a′.

What is A−1
z ? This turns out to be simple to

compute.

A−1
z =

1

n
A1/z

In other words, do the same computation as
before but substitute 1/z for z (and multiply by
1/n at the end).

So, if we can do one fast, we can do the other
fast.

168



Fast Polynomial Multiplication

An efficient divide and conquer algorithm exists
to perform both the evaluation and the
interpolation in Θ(n logn) time.

• This is called the
Discrete Fourier Transform (DFT).

• It is a recursive function that decomposes
the matrix multiplications, taking advantage
of the symmetries made available by doing
evaluation at the nth roots of unity.

Polynomial multiplication of A and B:

• Represent an n− 1-degree polynomial as
2n− 1 coefficients:

[a0, a1, ..., an−1,0, ...,0]

• Perform DFT on representations for A and
B

• Pairwise multiply results to get 2n− 1
values.

• Perform inverse DFT on result to get
2n− 1 degree polynomial AB.

169



Discrete Fourier Transform

Fourier_Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], Odd[n/2], List1[n/2], List2[n/2];

if (n==1) return Polynomial[0];
for (j=0; j<=n/2-1; j++) {

Even[j] = Polynomial[2j];
Odd[j] = Polynomial[2j+1];

}
List1 = Fourier_Transform(Even, n/2);
List2 = Fourier_Transform(Odd, n/2);
for (j=0; j<=n-1, j++) {

Imaginary z = pow(E, 2*i*PI*j/n);
k = j % (n/2);
Polynomial[j] = List1[k] + z*List2[k];

}
return Polynomial;

}

This just does the transform on one of the two
polynomials. The full process is:

1. Transform each polynomial.

2. Multiply resulting values (O(n) multiplies).

3. Do the inverse transformation on the result.

Cost: Θ(n logn)

170


