
Find Min and Max

Find them independantly: 2n− 2.

• Can easily modify to get 2n− 3.

Should be able to do better(?)

Try divide and conquer.

Find_Max_Min(ELEM *L, int lower, int upper) {
if (upper == lower) return lower, lower; // n=1
if (upper == lower+1) // n=2

return max(L[upper], L[lower]),
min(L[upper], L[lower]); // Only 1 compare

mid = (lower + upper)/2; // n>2
max1, min1 = Find_Max_Min(L, lower, mid);
max2, min2 = Find_Max_Min(L, mid+1, upper);
return max(L[max1], L[max2]), min(L[min1], L[min2]);

}

Recurrence:

f(n) =

{
2f(n/2) + 2 n > 2
1 n = 2

104



Solving the Recurrence

Assume n = 2k.

Let’s expand the recurrence a bit.

f(n) = 2f(n/2) + 2

= 2[2f(n/4) + 2] + 2

= 4f(n/4) + 4 + 2

= 4[2f(n/8) + 2] + 4 + 2

= 8f(n/8) + 8 + 4 + 2

= 2if(n/2i) +
i∑

j=1

2j

= 2k−1f(n/2k−1) +
k−1∑
j=1

2j

= 2k−1f(2) +
k−1∑
j=1

2j

= 2k−1 +
k−1∑
j=1

2j

= n/2 + 2k − 2

= 3n/2− 2

105



Looking Closer

But its not always true that n = 2k.

The true cost recurrence is:

f(n) =


0 n = 1
1 n = 2
f(bn/2c) + f(dn/2e) + 2 n > 2

Here is what really happens:

n 2 3 4 5 6 7 8 9 10 11
f(n) 1 2 4 6 8 9 10 12 14 16
3n/2− 2 1 2.5 4 5.5 7 8.5 10 11.5 13 14.5

The true cost for f(n) ranges between 3n/2− 2
and 5n/3− 2.

• For what sort of input does the algorithm
work best?

106



Finding a Better Algorithm

What is the cost with six values?

What if we divide into a group of 4 and a
group of 2?

With divide and conquer, we seek to minimize
the work, not necessarily balance the input
sizes.

When does the algorithm do its best?

What about 12? 24?

Lesson: For divide and conquer, pay attention
to what happens for small n.

107



Algorithms from Recurrences

What does this model?

f(n) =

 0 n = 1
1 n = 2
min1≤k≤n−1{f(k) + f(n− k)}+ 2 n > 2

n 1 2 3 4 5 6 7 8
3 3 3
4 5 4 5
5 7 6 6 7
6 9 7 8 7 9
7 11 9 9 9 9 11
8 13 10 11 10 11 10 13
9 15 12 12 12 12 12 12 15

k = 2 looks promising.

f(n) =


0 n = 1
1 n = 2
f(2) + f(n− 2) + 2 n > 2

Cost:

What is the corresponding algorithm?

108



The Lower Bound

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm
must go through: The state space lower
bound.

At any given instant, track the following four
categories:

• Novices: not tested.

• Winners: Won at least once, never lost.

• Losers: Lost at least once, never won.

• Moderates: Both won and lost at least
once.

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

109



Lower Bound (cont.)

Every algorithm must go from (n,0,0,0) to
(0,1,1, n− 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more
efficient than other comparisons, so ignore
them.

If we are in state (i, j, k, l) and we have a
comparison, then:
N : N (i− 2, j + 1, k + 1, l)
W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)
L : N (i− 1, j + 1, k, l)

or (i− 1, j, k, l + 1)
W : N (i− 1, j, k + 1, l)

or (i− 1, j, k, l + 1)
W : L (i, j, k, l)

or (i, j − 1, k − 1, l + 2)

110



Adversarial Argument

What should an adversary do?

• Comparing a winner to a loser is of no
value.

Only the following five transitions are of
interest:
N : N (i− 2, j + 1, k + 1, l)
L : N (i− 1, j + 1, k, l)
W : N (i− 1, j, k + 1, l)
W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)

Only the last two types increase the number of
moderates, so there must be n− 2 of these.

The number of novices must go to 0, and the
first is the most efficient way to do this: dn/2e
are required.

111



Finding the ith Best

We need to find the following poset:

We don’t care about the relative order within
the upper and lower groups.

Can we do better than sorting? (Θ(n logn))

Can we tighten the lower bound beyond n?

What if we want to find the median element?

112



Splitting a List

Given an arbitrary element, split the list into
those elements less and those elements greater.

int Split(ELEM *L, int lower, int upper, int piv_loc) {
ELEM pivot = L[piv_loc];
swap(L[lower], L[piv_loc]);
piv_loc = lower;
for (i=lower+1; i<=upper; i++)

if (pivot > L[i]) {
piv_loc++;
swap(L[i], L[piv_loc]);

}
swap(L[lower], L[piv_loc]);
return piv_loc;

}

If the pivot is ith best, we are done.

If not, solve the subproblem recursively.

113



Cost

What is the worst case cost of this algorithm?

Under what circumstances?

What is the average case cost if we pick the
pivots at random?

Let f(n, i) be the average time to find the ith
best of n elements.

f(n, i) = n− 1 +
1

n

n−i∑
k=1

f(n− k, i) +
1

n
0

+
1

n

n∑
k=n−i+2

f(k − 1, i + k − n− 1).

Set j = n− k + 1.

f(n, i) = n− 1 +
1

n

n∑
j=i+1

f(j − 1, i)

+
1

n

i−1∑
j=1

f(n− j, i− j).

Let f(n) be the cost averaged over all i.

f(n) =
1

n

n∑
i=1

f(n, i).

114



Technique

nf(n) =
n∑

i=1

f(n, i)

= n2 − n +
1

n

n∑
i=1


n∑

j=i+1

f(j − 1, i)+

i−1∑
j=1

f(n− j, i− j)

 .

It turns out that the two double sums are the
same (just going from different directions).

nf(n) = n2 − n +
2

n

n−1∑
j=1

j∑
i=1

f(j, i)

= n2 − n +
2

n

n−1∑
j=1

jf(j)

115



Technique (cont.)

Therefore,

n2f(n) = n3 − n2 + 2
n−1∑
j=1

jf(j).

This is an example of a full history recurrence.

116



Solving the Recurrence

If we subtract the appropriate form of f(n− 1),
most of the terms will cancel out.

n2f(n)− (n− 1)2f(n− 1)

= n3 − n2 + 2
n−1∑
j=1

jf(j)

−(n− 1)3 + (n− 1)2 − 2
n−2∑
j=1

jf(j)

= 3n2 − 5n + 2 + 2(n− 1)f(n− 1)

⇒ n2f(n) = (n2 − 1)f(n− 1) + 3n2 − 5n + 2.

Estimate:

n2f(n) = (n2 − 1)f(n− 1) + 3n2 − 5n + 2

< n2f(n− 1) + 3n2

⇒ f(n) < f(n− 1) + 3

⇒ f(n) < 3n

Therefore, f(n) is in O(n).

Does this mean that the worst case is linear?
117



Improving the Worst Case

Want worst case linear algorithm.

Goal: Pick a pivot that guarentees discarding a
fixed proportion of the elements.

Can’t just choose a pivot at random.

Median would be ideal – too expensive.

Choose a constant c, pick the median of a
sample of size n/c elements.

Will discard at least n/2c elements.

118



Selecting an Approximate Median

Algorithm:

• Choose the n/5 medians for groups of 5
elements of L.

• Recursively, select the median of the n/5
elements.

• Use SPLIT to partition the list into large
and small elements around the “median.”

Now, the algorithm for finding the ith element
uses the median finding algorithm to recursively
reach the goal.

119



Constructive Induction

Is the following recurrence linear?

f(n) ≤ f(dn/5e) + f(d(7n− 5)/10e) + 6dn/5e+ n− 1.

To answer this, assume it is true for some
constant r such that f(n) ≤ rn for all n greater
than some bound.

f(n) ≤ f(d
n

5
e) + f(d

7n− 5

10
e) + 6d

n

5
e+ n− 1

≤ r(
n

5
+ 1) + r(

7n− 5

10
+ 1) + 6(

n

5
+ 1) + n− 1

≤ (
r

5
+

7r

10
+

11

5
)n +

3r

2
+ 5

≤
9r + 22

10
n +

3r + 10

2
.

This is true for r ≥ 23 and n ≥ 380.

Thus, we can use induction to prove that,

∀n ≥ 380, f(n) ≤ 23n.

Actually, this algorithm is not practical.

Better to rely on “luck.”

120


