
Sorted List

Change the model: Assume that the elements
are in ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the
element is greater than X. Why?

Observation: If we look at L[5] and find that X
is bigger, then we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that
X is bigger, then we know in one test that X is
not in L. Great!

• What is wrong here?

63



Jump Search

What is the right amount to jump?

Algorithm:

• Check every k’th element (L[k], L[2k], ...).

• If X is greater, then go on.

• If X is less, then use linear search on the k
elements.

This is called Jump Search.

64



Analysis of Jump Search

If mk ≤ n < (m + 1)k, then the total cost is at
most m + k − 1 3-way comparisons.

f(n, k) = m + k − 1 =
⌊
n

k

⌋
+ k − 1.

What should k be?

min
1≤k≤n

{⌊
n

k

⌋
+ k − 1

}

Take the derivative and solve for f ′(x) = 0 to
find the minimum.

This is a minimum when k =
√

n.

What is the worst case cost?

Roughly 2
√

n.

65



Lessons

We want to balance the work done while
selecting a sublist with the work done while
searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?

• We’d jump to get a sublist, then jump to
get a sub-sublist, then do sequential search

• While it might make sense to do a two-level
algorithm (like jump search), it almost never
makes sense to do a three-level algorithm

• Instead, we resort to recursion

66



Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

67



Worst Case for Binary Search

f(n) =

{
1 n = 1
f(bn/2c) + 1 n > 1

Since n/2 ≥ bn/2c, and since f(n) is assumed to
be non-decreasing (why?), we can use

f(n) = f(n/2) + 1.

Alternatively, assume n is a power of 2.

Expand the recurrence:

f(n) = f(n/2) + 1

= {f(n/4) + 1}+ 1

= {{f(n/8) + 1}+ 1}+ 1

Collapse to

f(n) = f(n/2i) + i = logn + 1

Now, prove it with induction.

f(n/2) + 1 = (log(n/2) + 1) + 1

= (logn− 1 + 1) + 1

= logn + 1 = f(n).

68



Lower Bound

How does n compare to
√

n compare to logn?

Can we do better?

Model an algorithm for the problem using a
decision tree.

• Consider only comparisons with X.

• Branch depending on the result of
comparing X with L[i].

• There must be at least n nodes in the tree.
(Why?)

• Some path must be at least logn deep.
(Why?)

Thus, binary search has optimal worst cost
under this model.

69



Average Cost of Binary Search

An estimate given these assumptions:

• X is in L.

• X is equally likely to be in any position.

• n = 2k for some non-negative integer k.

Cost?

• One chance to hit in one probe.

• Two chances to hit in two probes.

• 2i−1 to hit in i probes.

• i ≤ k.

What is the equation?

70



Average Cost (cont.)

1× 1 + 2× 2 + 3× 4 + ... + logn2logn−1

n

=
1

n

logn∑
i=1

i2i−1

k∑
i=1

i2i−1 =
k−1∑
i=0

(i + 1)2i

=
k−1∑
i=0

i2i +
k−1∑
i=0

2i

= 2
k−1∑
i=0

i2i−1 + 2k − 1

= 2
k∑

i=1

i2i−1 − k2k + 2k − 1

Now what? Subtract from the original!

k∑
i=1

i2i−1 = k2k − 2k + 1 = (k − 1)2k + 1.

71



Result

1

n

logn∑
i=1

i2i−1 =
(logn− 1)2logn + 1

n

=
n(logn− 1) + 1

n
≈ logn− 1

So the average cost is only about one or two
comparisons less than the worst cost.

If we want to relax the assumption that n = 2k,
we get:

f(n) =



0 n = 0
1 n = 1
dn
2e−1
n f(dn

2e − 1) + 1
n0 +

bn
2c
n f(bn

2c) + 1 n > 1

72



Average Cost Lower Bound

Use decision trees again.

Total Path Length: Sum of the level for each
node.

The cost of an outcome is the level of the
corresponding node plus 1.

The average cost of the algorithm is the
average cost of the outcomes (total path
length/n).

What is the tree with the least average depth?

This is equivalent to the tree that corresponds
to binary search.

Thus, binary search is optimal.

73


