
Searching

Assumptions for search problems:

• Target is well defined.

• Target is fixed.

• Probes are accurate (hit or miss).

• Search domain is finite.

• We (can) remember all information
gathered during search.

We search for a record with a key.

51



A Search Model

Problem:

Given:

• A list L, of n elements

• A search key X

Solve: Identify one element in L which has key
value X, if any exist.

Model:

• The key values for elements in L are unique.

• Comparison determine <, =, >.

• Comparison is our only way to find ordering
information.

• Every comparison costs the same.

Goal: Solve the problem using the minimum
number of comparisons.

• Cost model: Number of comparisons.

• (Implication) Access to every item in L
costs the same (array).

Is this a reasonable model and goal?

52



Linear Search

General algorithm strategy: Reduce the
problem.

• Compare X to the first element.

• If not done, then solve the problem for
n− 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else return linear_search(L, lower+1, upper, X);

}

What equation represents the worst case cost?

53



Worst Cost Upper Bound

f(n) =

{
1 n = 1
f(n− 1) + 1 n > 1

Reasonable to guess that f(n) = n.

Prove by induction:

Basis step: f(1) = 1, so f(n) = n when n = 1.

Induction hypothesis: For k < n, f(k) = k.

Induction step: From recurrence,

f(n) = f(n− 1) + 1

= (n− 1) + 1

= n

Thus, the worst case cost for n elements is
linear.

Induction is great for verifying a hypothesis.

54



Approach #2

What if we couldn’t guess a solution?

Try: Substitute and Guess.

• Iterate a few steps of the recurrence, and
look for a summation.

f(n) = f(n− 1) + 1

= {f(n− 2) + 1}+ 1

= {{f(n− 3) + 1}+ 1}+ 1}

Now what? Guess f(n) = f(n− i) + i.

When do we stop? When we reach a value for
f that we know.

f(n) = f(n− (n− 1))+ n− 1 = f(1)+ n− 1 = n

Now, go back and test the guess using
induction.

55



Approach #3

Guess and Test: Guess the form of the
solution, then solve the resulting equations.

Guess: f(n) is linear.

f(n) = rn + s for some r, s.

What do we know?

• f(1) = r(1) + s = r + s = 1.

• f(n) = r(n) + s = r(n− 1) + s + 1.

Solving these two simultaneous equations,
r = 1, s = 0.

Final form of guess: f(n) = n.

Now, prove using induction.

56



Lower Bound on Problem

Theorem: Lower bound (in the worst case) for
the problem is n comparisons.

Proof: By contradiction.

• Assume an algorithm A exists that requires
only n− 1 (or less) comparisons of X with
elements of L.

• Since there are n elements of L, A must
have avoided comparing X with L[i] for
some value i.

• We can feed the algorithm an input with X
in position i.

• Such an input is legal in our model, so the
algorithm is incorrect.

Is this proof correct?

57



Fixing the Proof

Error #1: An algorithm need not consistently
skip position i.

Fix:

• On any given run of the algorithm, some
element i gets skipped.

• It is possible that X is in position i at that
time.

Error #2: Must allow comparisons between
elements of L.

Fix:

• Include the ability to “preprocess” L.

• View L as initially consisting of n “pieces.”

• A comparison can join two pieces (without
involving X).

• The total of these comparisons is k.

• We must have at least n− k pieces.

• A comparison of X against a piece can
reject the whole piece.

• This requires n− k comparisons.

• The total is still at least n comparisons.

58



Average Cost

How many comparisons does linear search do
on average?

We must know the probability of occurrence for
each possible input.

(Must X be in L?)

Ignore everything except the position of X in L.
Why?

What are the n + 1 events?

P(X /∈ L) = 1−
n∑

i=1

P(X = L[i]).

59



Average Cost Equation

Let ki = i be the number of comparisons when
X = L[i].

Let k0 = n be the number of comparisons when
X /∈ L.

Let pi be the probability that X = L[i].

Let p0 be the probability that X /∈ L[i] for any i.

f(n) = k0p0 +
n∑

i=1

kipi

= np0 +
n∑

i=1

ipi

What happens to the equation if we assume all
pi’s are equal (except p0)?

60



Computation

f(n) = p0n +
n∑

i=1

ip

= p0n + p
n∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1− p0

n

n(n + 1)

2

=
n + 1 + p0(n− 1)

2

Depending on the value of p0,
n+1
2 ≤ f(n) ≤ n.

61



Problems with Average Cost

• Average cost is usually harder to determine
than worst cost.

• We really need also to know the variance
around the average.

• Our computation is only as good as our
knowledge (guess) on distribution.

62


