Searching

Assumptions for search problems:

- Target is well defined.
- Target is fixed.
- Probes are accurate (hit or miss).
- Search domain is finite.
- We (can) remember all information gathered during search.

We search for a record with a key.

A Search Model

Problem:

Given:

- A list L, of n elements
- A search key X

Solve: Identify one element in L which has key value X, if any exist.

Model:

- The key values for elements in L are unique.
- Comparison determine $<,=,>$.
- Comparison is our only way to find ordering information.
- Every comparison costs the same.

Goal: Solve the problem using the minimum number of comparisons.

- Cost model: Number of comparisons.
- (Implication) Access to every item in L costs the same (array).

Is this a reasonable model and goal?

Linear Search

General algorithm strategy: Reduce the problem.

- Compare X to the first element.
- If not done, then solve the problem for $n-1$ elements.

```
Position linear_search(L, lower, upper, X) {
    if L[lower] = X then
        return lower;
    else if lower = upper then
        return -1;
    else return linear_search(L, lower+1, upper, X);
}
```

What equation represents the worst case cost?

Worst Cost Upper Bound

$$
f(n)= \begin{cases}1 & n=1 \\ f(n-1)+1 & n>1\end{cases}
$$

Reasonable to guess that $f(n)=n$.
Prove by induction:
Basis step: $f(1)=1$, so $f(n)=n$ when $n=1$.
Induction hypothesis: For $k<n, f(k)=k$.
Induction step: From recurrence,

$$
\begin{aligned}
f(n) & =f(n-1)+1 \\
& =(n-1)+1 \\
& =n
\end{aligned}
$$

Thus, the worst case cost for n elements is linear.

Induction is great for verifying a hypothesis.

Approach \#2

What if we couldn't guess a solution?
Try: Substitute and Guess.

- Iterate a few steps of the recurrence, and look for a summation.

$$
\begin{aligned}
f(n) & =f(n-1)+1 \\
& =\{f(n-2)+1\}+1 \\
& =\{\{f(n-3)+1\}+1\}+1\}
\end{aligned}
$$

Now what? Guess $f(n)=f(n-i)+i$.
When do we stop? When we reach a value for f that we know.

$$
f(n)=f(n-(n-1))+n-1=f(1)+n-1=n
$$

Now, go back and test the guess using induction.

Approach \#3

Guess and Test: Guess the form of the solution, then solve the resulting equations.

Guess: $f(n)$ is linear.

$$
f(n)=r n+s \text { for some } r, s
$$

What do we know?

- $f(1)=r(1)+s=r+s=1$.
- $f(n)=r(n)+s=r(n-1)+s+1$.

Solving these two simultaneous equations, $r=1, s=0$.

Final form of guess: $f(n)=n$.
Now, prove using induction.

Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem is n comparisons.

Proof: By contradiction.

- Assume an algorithm A exists that requires only $n-1$ (or less) comparisons of X with elements of L.
- Since there are n elements of L, A must have avoided comparing X with $L[i]$ for some value i.
- We can feed the algorithm an input with X in position i.
- Such an input is legal in our model, so the algorithm is incorrect.

Is this proof correct?

Fixing the Proof

Error \#1: An algorithm need not consistently skip position i.
Fix:

- On any given run of the algorithm, some element i gets skipped.
- It is possible that X is in position i at that time.

Error \#2: Must allow comparisons between elements of L.
Fix:

- Include the ability to "preprocess" L.
- View L as initially consisting of n "pieces."
- A comparison can join two pieces (without involving X).
- The total of these comparisons is k.
- We must have at least $n-k$ pieces.
- A comparison of X against a piece can reject the whole piece.
- This requires $n-k$ comparisons.
- The total is still at least n comparisons.

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each possible input.
(Must X be in L ?)
Ignore everything except the position of X in L. Why?

What are the $n+1$ events?

$$
\mathbf{P}(X \notin L)=1-\sum_{i=1}^{n} \mathbf{P}(X=L[i])
$$

Average Cost Equation

Let $k_{i}=i$ be the number of comparisons when $X=L[i]$.
Let $k_{0}=n$ be the number of comparisons when $X \notin L$.

Let p_{i} be the probability that $X=L[i]$. Let p_{0} be the probability that $X \notin L[i]$ for any i.

$$
\begin{aligned}
f(n) & =k_{0} p_{0}+\sum_{i=1}^{n} k_{i} p_{i} \\
& =n p_{0}+\sum_{i=1}^{n} i p_{i}
\end{aligned}
$$

What happens to the equation if we assume all p_{i} 's are equal (except p_{0})?

Computation

$$
\begin{aligned}
f(n) & =p_{0} n+\sum_{i=1}^{n} i p \\
& =p_{0} n+p \sum_{i=1}^{n} i \\
& =p_{0} n+p \frac{n(n+1)}{2} \\
& =p_{0} n+\frac{1-p_{0}}{n} \frac{n(n+1)}{2} \\
& =\frac{n+1+p_{0}(n-1)}{2}
\end{aligned}
$$

Depending on the value of $p_{0}, \frac{n+1}{2} \leq f(n) \leq n$.

Problems with Average Cost

- Average cost is usually harder to determine than worst cost.
- We really need also to know the variance around the average.
- Our computation is only as good as our knowledge (guess) on distribution.

