CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Fall 2010

Copyright (C) 2010 by Clifford A. Shaffer

A General Model

Want a general model of computation that is as simple as possible.

- Wish to be able to reason about the model.
- "State machines" are simple.

Necessary features:

- Read
- Write
- Compute

Turing Machines (1)

A tape, divided into squares.
"States"

A single I/O head:

- Read current symbol
- Change current symbol

Control Unit Actions:

- Put the control unit into a new state.
- Either:
(1) Write a symbol in current tape square.
(2) Move I/O head one square left or right.

Turing Machines (2)

Tape has a fixed left end, infinite right end.

- Machine ceases to operate if head moves off left end.
- By convention, input is placed on left end of tape.

A halt state (h) signals end of computation.
"\#" indicates a blank tape square.

Formal definition of Turing Machine

A Turing Machine is a quadruple (K, Σ, δ, s) where

- K is a finite set of states (not including h).
- Σ is an alphabet (containing \#, not L or R).
- $s \in K$ is the initial state.
- δ is a function from $K \times \Sigma$ to $(K \cup\{h\}) \times(\Sigma \cup\{L, R\})$.

If $q \in K, a \in \Sigma$ and $\delta(q, a)=(p, b)$, then when in state q and scanning a, enter state p and
(1) If $b \in \Sigma$ then replace a with b.
(2) Else (b is L or R): move head.

Turing Machine Example 1

$M=(K, \Sigma, \delta, s)$ where

- $K=\left\{q_{0}, q_{1}\right\}$,
- $\Sigma=\{a, \#\}$,
- $s=q_{0}$,

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \#\right)$

- $\delta=q_{0} \#(h, \#)$
$q_{1} \quad a \quad\left(q_{0}, a\right)$
$q_{1} \#\left(q_{0}, R\right)$

Turing Machine Example 2

$M=(K, \Sigma, \delta, s)$ where

- $K=\left\{q_{0}\right\}$,
- $\Sigma=\{a, \#\}$,
- $s=q_{0}$,
- $\delta=$| $\begin{array}{lll}q & \sigma & \delta(q, \sigma) \\ q_{0} & a & \left(q_{0}, L\right) \\ q_{0} & \# & (h, \#)\end{array}$ |
| :--- | :--- | :--- |

Notation

Configuration: (q, aaba\#\#a)

Halted configuration: q is h.

Hanging configuration: Move left from leftmost square.

A computation is a sequence of configurations for some $n \geq 0$. Such a computation is of length n.

Execution

Execution on first machine example.

$$
\begin{aligned}
\left(q_{0}, \text { aaaa }\right) & \vdash_{M} \\
& \left(q_{1}, \# \text { aaa }\right) \\
& \vdash_{M} \\
& \left(q_{0}, \# \text { aaa }\right) \\
& \vdash_{M} \\
& \left(q_{1}, \# \# a a\right) \\
& \vdash_{M} \\
& \left(q_{0}, \# \# a a\right) \\
& \vdash_{M}\left(q_{1}, \# \# \# a\right) \\
& \vdash_{M}\left(q_{1}, \# \# \# a\right) \\
& \vdash_{M}\left(q_{0}, \# \# \# \# \# \#\right) \\
& \vdash_{M}(h, \# \# \# \# \#)
\end{aligned}
$$

Computations

- M is said to halt on input w iff $(s, \# w \#)$ yields some halted configuration.
- M is said to hang on input w if ($s, \# w \#$) yields some hanging configuration.
- Turing machines compute functions from strings to strings.
- Formally: Let f be a function from Σ_{0}^{*} to Σ_{1}^{*}. Turing machine M is said to compute f if for any $w \in \Sigma_{0}^{*}$, if $f(w)=u$ then

$$
(s, \# w \#) \vdash_{M}^{*}(h, \# u \#) .
$$

- f is said to be a Turing-computable function.
- Multiple parameters: $f\left(w_{1}, \ldots, w_{k}\right)=u$, $\left(s, \# w_{1} \# w_{2} \# \ldots \# w_{k} \#\right) \vdash_{M}^{*}(h, \# u \#)$.

Functions on Natural Numbers

- Represent numbers in unary notation on symbol I (zero is represented by the empty string).
- $f: \mathbb{N} \rightarrow \mathbb{N}$ is computed by M if M computes $f^{\prime}:\{I\}^{*} \rightarrow\{I\}^{*}$ where $f^{\prime}\left(I^{n}\right)=I^{f(n)}$ for each $n \in \mathbb{N}$.
- Example: $f(n)=n+1$ for each $n \in \mathbb{N}$.

q	σ	$\delta(q, \sigma)$
q_{0}	l	(h, R)

$q_{0} \#\left(q_{0}, l\right)$

$$
\left(q_{0}, \# I I \#\right) \vdash_{M}\left(q_{0}, \# I I I\right) \vdash_{M}(h, \# I I I \#) .
$$

- In general, $\left(q_{0}, \# I^{n} \#\right) \vdash_{M}^{*}\left(h, \# I^{n+1} \#\right)$.
- What about $n=0$?

Turing-decidable Languages

A language $L \subset \Sigma_{0}^{*}$ is Turing-decidable iff function
$\chi_{L}: \Sigma_{0}^{*} \rightarrow\{\mathrm{Y}, \mathrm{N}\}$ is Turing-computable, where for each $w \in \Sigma_{0}^{*}$,

$$
\chi_{L}(w)= \begin{cases}\boxed{Y} & \text { if } w \in L \\ \overline{\mathrm{~N}} & \text { otherwise }\end{cases}
$$

Ex: Let $\Sigma_{0}=\{a\}$, and let $L=\left\{w \in \Sigma_{0}^{*}:|w|\right.$ is even $\}$.
M erases the marks from right to left, with current parity encode by state. Once blank at left is reached, mark Y or N as appropriate.

Turing-acceptable Languages

M accepts a string w if M halts on input w.

- M accepts a language iff M halts on w iff $w \in L$.
- A language is Turing-acceptable if there is some Turing machine that accepts it.

Ex: $\Sigma_{0}=\{a, b\}, L=\left\{w \in \Sigma_{0}^{*}: w\right.$ contains at least one $\left.a\right\}$.

q	σ	$\delta(q, \sigma)$
q_{0}	a	(h, a)
q_{0}	b	$\left(q_{0}, L\right)$
q_{0}	$\#$	$\left(q_{0}, L\right)$

Every Turing-decidable language is Turing-acceptable.

Combining Turing Machines

Lemma: If

$$
\left(q_{1}, w_{1} \underline{a_{1}} u_{1}\right) \vdash_{M}^{*}\left(q_{2}, w w_{2} \underline{a_{2}} u_{2}\right)
$$

for string w and

$$
\left(q_{2}, w_{2} \underline{a}_{2} u_{2}\right) \vdash_{M}^{*}\left(q_{3}, w_{3} \underline{a_{3}} u_{3}\right),
$$

then

$$
\left(q_{1}, w_{1} \underline{a_{1}} u_{1}\right) \vdash_{M}^{*}\left(q_{3}, w w_{3} \underline{a_{3}} u_{3}\right) .
$$

Insight: Since $\left(q_{2}, w_{2} a_{2} u_{2}\right) \vdash_{M}^{*}\left(q_{3}, w_{3} a_{3} u_{3}\right)$, this computation must take place without moving the head left of w_{2}

- The machine cannot "sense" the left end of the tape

Combining Turing Machines (Cont)

Thus, the head won't move left of w_{2} even if it is not at the left end of the tape.

This means that Turing machine computations can be combined into larger machines:

- M_{2} prepares string as input to M_{1}.
- M_{2} passes control to M_{1} with I/O head at end of input.
- M_{2} retrieves control when M_{1} has completed.

Some Simple Machines

Basic machines:

- $|\Sigma|$ symbol-writing machines (one for each symbol).
- Head-moving machines R and L move the head appropriately.
More machines:
- First do M_{1}, then do M_{2} or M_{3} depending on current symbol.
- (For $\Sigma=\{a, b, c\})$ Move head to the right until a blank is found.
- Find first blank square to left: $L_{\#}$
- Copy Machine: Transform \#w\# into \#w\#w\#.
- Shift a string left or right.

Extensions

The following extensions do not increase the power of Turing Machines.

- 2-way infinite tape
- Multiple tapes
- Multiple heads on one tape
- Two-dimensional "tape"
- Non-determinism

