" Analysis

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

Fall 2010 1/115

Searching

Assumptions for search problems:

@ Target is well defined.
@ Target is fixed.
@ Search domain is finite.

@ We (can) remember all information gathered during
search.

We search for a record with a ke;y.

" Analysis Fall 2010 70/115

A Search Model (1)

Problem :
Given:

@ AlistL, of n elements
@ A search key X

Solve: Identify one element in L which has key value X, if
any exist.

" Analysis Fall 2010 71/115

A Search Model (1)

Problem :
Given:

@ AlistL, of n elements
@ A search key X

Solve: Identify one element in L which has key value X, if
any exist.

Model:
@ The key values for elements in L are unique.
@ One comparison determines <, =, >.
@ Comparison is our only way to find ordering information.
@ Every comparison costs the same.

Fall 2010 71/115

" Analysis

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

@ Cost model: Number of comparisons.

@ (Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?

" Analysis Fall 2010 72/115

Linear Search

General algorithm strategy: Reduce the problem.
@ Compare X to the first element.
@ If not done, then solve the problem for n — 1 elements.

Position |inear_search(L, |ower, upper, X {
if L[lower] = X then
return | ower;
else if |ower = upper then
return -1;
el se
return |inear_search(L, |ower+1, upper, X);

}

What equation represents the worst case cost?

" Analysis

Fall 2010 73/115

Worst Cost Upper Bound

f(n) = 1 n=1
1 fn-1)+1 n>1
Reasonable to guess that f(n) = n.
Prove by induction:
Basis step : f(1) =1, sof(n) =nwhenn = 1.
Induction hypothesis : For k < n, f(k) = k.
Induction step : From recurrence,
fn) = f(n-1)+1
= (n-1)+1
=n
Thus, the worst case cost for n elements is linear.
Induction is great for verifying a hypothesis.

" Analysis

Fall 2010

74 /115

Approach #2

@ What if we couldn’t guess a solution?
@ Try: Substitute and Guess.
» lterate a few steps of the recurrence, and look for a
summation.

f(n) = f(n-1)+1
= {fn—-2)+1}+1
= {{f{th-3)+1}+1}+1}
@ Now what? Guess f(n) =f(n —i) +i.

@ When do we stop? When we reach a value for f that we
know.

f(n)=fh—(n—-1)+n—-1=f(1)+n—-1=n
@ Now, go back and test the guess using induction.

" Analysis Fall 2010 75/115

Approach #3

Guess and Test : Guess the form of the solution, then solve

the resulting equations.

Guess: f(n) is linear.
f(n) =rn+ s for somer,s.

What do we know?
@ f(l)=r(1)+s=r+s=1.
@ f(n)=r(n)+s=r(n—1)+s+1.
Solving these two simultaneous equations, r =1, s = 0.

Final form of guess: f(n) = n.

Now, prove using induction.

" Analysis

Fall 2010

76 /115

Lower Bound on Problem

Theorem : Lower bound (in the worst case) for the problem
IS N comparisons.

Proof : By contradiction.
@ Assume an algorithm A exists that requires only n — 1
(or less) comparisons of X with elements of L.
@ Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i.

@ We can feed the algorithm an input with X in position i.

@ Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?

" Analysis

Fall 2010

771115

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i.
Fix:
@ On any given run of the algorithm, some element i gets
skipped.

@ It is possible that X is in position i at that time.

" Analysis Fall 2010 78/115

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:
@ Include the ability to “preprocess” L.
@ View L as initially consisting of n “pieces.”
@ A comparison can join two pieces (without involving X).
@ The total of these comparisons is k.
@ We must have at least n — k pieces.
]

A comparison of X against a piece can reject the whole
piece.

@ This requires n — k comparisons.
@ The total is still at least n comparisons.

" Analysis Fall 2010 79/115

Average Cost
How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?) Ignore everything except the position of X
in L. Why?

What are the n + 1 events?

n

PX ¢L)=1-> P(X = L[i).

i=1

" Analysis Fall 2010 80/115

Average Cost Equation

Let ki = i be the number of comparisons when X = L][i].
Let ko = n be the number of comparisons when X ¢ L.

Let p; be the probability that X = L][i].
Let po be the probability that X ¢ L][i] for any i.

f(n) = koPo+ Y kipy

=il
= npo+) _ip,
=il

What happens to the equation if we assume all p;’s are
equal (except pg)?

" Analysis

Fall 2010 81/115

Computation

n
f(n) = p0n+Zip
i=1

n
= pon+p) i
i=1

n(n+1)
2
1—pon(n+1)
n 2
n+1+po(n—1)
2

= Ppon—+p

= Pon+

7Depending on the value of po, ™% < f(n) < n.

" Analysis

Fall 2010 82/115

Problems with Average Cost

@ Average cost is usually harder to determine than worst
cost.

@ We really need also to know the variance around the
average.

@ Our computation is only as good as our knowledge
(guess) on distribution.

" Analysis Fall 2010 83/115

Sorted List

Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X. Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!
@ What is wrong here?

" Analysis Fall 2010 84/115

Jump Search

Algorithm:

@ From the beginning of the array, start making jumps of
size k, checking L[k] then L[2k], and so on.

@ So long as X is greater, keep jumping by k.
@ If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?

" Analysis Fall 2010 85/115

Analysis of Jump Search

@ If mk < n < (m + 1)k, then the total cost is at most
m + k — 1 3-way comparisons.

n

fnk)=m+k—1= b

@ What should k be?

jmin {| 2] +k -1}

@ Take the derivative and solve for f'(x) = 0 to find the
minimum.
@ This is a minimum when k = v/n.
@ What is the worst case cost?
» Roughly 2/n.

" Analysis

J+k—1

Fall 2010

86/115

Lessons

We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
@ We'd jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
@ While it might make sense to do a two-level algorithm

(like jump search), it almost never makes sense to do a

three-level algorithm
@ Instead, we resort to recursion

" Analysis

Fall 2010

87/115

Binary Search

int binary(int K, intx array, int left, int right) {
I/ Return position of element (if any) with value K

int I =left-1;
int r = right+1; /1 | and r beyond array bounds
while (I+1 !'=r) { // Stop when | and r neet
int i = (l+r)/2; [// Mddle of renmaining subarray
if (K<array[i]) r =1i; /1 In left half
if (K==array[i]) returni; // Found it
if (K>array[i]) | =1i; /1 In right half
}

return UNSUCCESSFUL; // Search value not in array

"~ Analysis Fall 2010 88/115

Worst Case for Binary Search (1)

1 n=1
f(”):{ f(In/2))+1 n>1

Since n/2 > |n/2], and since f(n) is assumed to be
non-decreasing (why?), we can use

f(n)=f(n/2) + 1.
Alternatively, assume n is a power of 2.

Expand the recurrence:
f(n) = f(n/2)+1
= {f(n/4)+1}+1
= {{f(n/8)+1}+1}+1

" Analysis Fall 2010

89/115

Worst Case for Binary Search (2)

Collapse to _
f(n)=f(n/2')+i=1logn+1

Now, prove it with induction.

f(n/2)+1 = (log(n/2)+1)+1
= (logn—-1+1)+1
= logn+1=f(n).

Fall 2010

" Analysis

90/115

Lower Bound (for Problem Worst Case)

How does n compare to /n compare to logn?
Can we do better?

Model an algorithm for the problem using a decision tree.
@ Consider only comparisons with X.
@ Branch depending on the result of comparing X with
L[i].
@ There must be at least n leaf nodes in the tree. (Why?)
@ Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this
model.

" Analysis

Fall 2010 91/115

Average Cost of Binary Search (1)

An estimate given these assumptions:
@ XisinL.
@ X is equally likely to be in any position.
@ n = 2¥ for some non-negative integer k.

Cost?

" Analysis Fall 2010

92/115

Average Cost of Binary Search (1)

An estimate given these assumptions:
@ XisinL.
@ X is equally likely to be in any position.
@ n = 2¥ for some non-negative integer k.

Cost?

@ One chance to hit in one probe.
@ Two chances to hit in two probes.
@ 21 to hitini probes.

o i<Kk.

" Analysis Fall 2010

92/115

Average Cost of Binary Search (1)

An estimate given these assumptions:
@ XisinL.
@ X is equally likely to be in any position.
@ n = 2¥ for some non-negative integer k.

Cost?

@ One chance to hit in one probe.
@ Two chances to hit in two probes.
@ 21 to hitini probes.
o i<Kk.

What is the equation?

" Analysis

Fall 2010

92/115

Average Cost (2)

1x14+2x2+3x4+..+logn2logn-1

— 1 '0295 i2i—1
" n i=1
k k—1 K—1 K—1
Siztt = S+ =) i2+) 2
=il i—=0 i—o0 i—o
k—1
= 2) 27ty -1
i=0

i=1
" Analysis

k
2) ittt —k2“ 42— 1

Fall 2010 93/115

Average Cost (3)

Now what? Subtract from the original!
k

i=1

Yo=Kk -2+ 1=(k-1)2¢+1.

" Analysis

Fall 2010 94 /115

Result (1)

1 'Ozgs i1 (logn — 1)2'c9n 11
n
i=1

n

n(logn —1) +1

~
~

n

logn —1
less than the worst cost.

So the average cost is only about one or two comparisons

" Analysis

Fall 2010 95/115

Result (2)

If we want to relax the assumption that n = 2%, we get

0 n=20
1 n=1

f(n) 120 — 1) + L0 +
Llen) 41 n>1

~ Analysis

Fall 2010 96 /115

Average Cost Lower Bound

@ Use decision trees again.
@ Total Path Length : Sum of the level for each node.

@ The cost of an outcome is the level of the corresponding
node plus 1.

@ The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

@ What is the tree with the least average depth?

@ This is equivalent to the tree that corresponds to binary
search.

@ Thus, binary search is optimal.

" Analysis Fall 2010 97/115

Changing the Model

What are factors that might make binary search either
unusable or not optimal?

@ We know something about the distribution.

@ Data are not sorted. (Preprocessing?)

@ Data sorted, but probes not all the same cost (not an
array).

@ Data are static, know all search requests in advance.

"~ Analysis Fall 2010

98/115

Interpolation Search

(Also known as Dictionary Search)

Search L at a position that is appropriate to the value of X.
_ XL
L[] - L[]

Repeat as necessary to recalculate p for future searches.

" Analysis Fall 2010 99/115

Quadratic Binary Search

This is easier to analyze:

@ Compute p and examine L[[pn]].
@ If X < L[[pn]] then sequentially probe

L[[pn —iv/n]],i=1,23, ...

until we reach a value less than or equal to X.

Similar for X > L[[pn]].

We are now within v/n positions of X.

@ ASSUME (for now) that this takes a constant number of
comparisons.

@ Now we have a sublist of size \/n.

@ Repeat the process recursively.

@ What is the cost?

" Analysis

Fall 2010 100/115

QBS Probe Count (1)

Cost is ©(loglogn) IF the number of probes on jump search

is constant.

Number of comparisons needed is:

VR
) iP(need exactly i probes)

i=1

=1P; + 2P, + 3Pz +--- + VNP 5
This is equal to:

A
> P(need at least i probes)

" Analysis

Fall 2010

101/115

QBS Probe Count (2)

5

|
N

P(need at least i probes)

1—|—(1—P1)+(1—P1_P2)++P\m

= (P1+...+P\/ﬁ)+(P2+...+P\/ﬁ)+
(P3+...+Pﬁ)+"'

Isis

1Py + 2P, +3P3+--- + VNP 5

Fall 2010 102 /115

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

N
2+) P(need at least i probes)

i=3

Useful fact (CebySev’s Inequality):
The probability that we need probe i times (P;) is:

P(L—p)n 1
"= 28 S o2p

since p(1 —p) < 1/4.

This assumes uniformly distributed data.

" Analysis

Fall 2010 103/115

QBS Probe Count (4)

Final result:

Is this better than binary search?

What happened to our proof that binary search is optimal?

" Analysis Fall2010 104/115

Comparison (1)

Let's compare loglogn to logn.
n logn loglogn Diff

16 4 2 2
256 8 3 2.7
64K 16 4 4
2% 32 5 6.4

Now look at the actual comparisons used.
@ Binary search ~ logn — 1
@ Interpolation search ~ 2.4loglogn

n logn—1 2.4loglogn Diff

16 3 4.8 worse
256 7 7.2 ~ same
64K 15 9.6 1.6

232 31 12 2.6

" Analysis Fall2010 105/115

Comparison (2)

Not done yet! This is only a count of comparisons!

@ Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

" Analysis Fall 2010

106 /115

Hashing

Assume we can preprocess the data.
@ How should we do it to minimize search?

Put record with key value X in L[X].
If the range is too big, then use hashing.
How much can we get from this?
Simplifying assumptions:
@ We hash to each slot with equal probability
@ We probe to each (new) slot with equal probability

@ This is called uniform hashing

" Analysis

Fall 2010

107 /115

Hashing Insertion Analysis (1)

Define a = N/M (Records stored/Table size)

Insertion cost: sum of costs times probabilities for looking at
1,2,..,N +1slots

@ Probability of collision on insertion? a = N/M

@ Probability of initial collision and another collision when
probing? o?

pzd

i(%)‘MI\; N S a1 - a)

o
Il
o

" Analysis Fall2010 108/115

Hashing Insertion Analysis (2)

Simpler formulation: Always look at least once, look at least
twice with probability «, look at least three times with
probability o2, etc.

= 1
Za':l+a+a2---:
— l1-«

How does this grow?

" Analysis Fall2010 109/115

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
@ Comparisons?
@ “Work?”

What if we add additional pointers?

" Analysis Fall 2010

110/115

" Analysis

head

0

head

=

=

=

(CY

=

“Perfect” Skip List

=

=

oo |
/]

9

f

head

= B & E R E
RERERCNERENERE
5—0—=

[, [3]

=

[[=]

ol
[, [#]

=

NN

0
1
2

(©

NNNE]

Fall 2010

111/115

Building a Skip List

Pick the node size at random (from a suitable probability

distribution). | i -
E ERE
@) (b)
5] [o e
BB IS g I e I e VA
%]
© @
-
LT

Fall 2010 112/115

Skip List Analysis (1)

What distribution do we want for the node depths?

i nt randonievel (void) { // Exponential distrib
for (int |level =0; Random(2) == 0; |evel ++);
return | evel ;

}

What is the worst cost to search in the “perfect” Skip List?
What is the average cost to search in the “perfect” Skip List?
What is the cost to insert?

What is the average cost in the “typical” Skip List?

" Analysis Fall2010 113/115

Skip List Analysis (2)

How does this differ from a BST?
@ Simpler or more complex?
@ More or less efficient?

@ Which relies on data distribution, which on basic laws of
probability?

" Analysis Fall2010 114/115

Other Types of Search

@ Nearest neighbor (if X notin L).
@ Exact Match Query.

@ Range query.

@ Multi-dimensional search.

@ Is L static?

Is linear search on a sorted list ever better than binary
search?

" Analysis Fall2010 115/115

