
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 190



Changing the Model (1)

What if we settle for the “approximate best?”

Types of guarentees, given that the algorithm produces X
and the best is Y :

1 X = Y .
2 X ’s rank is “close to” Y ’s rank:

rank(X ) ≤ rank(Y ) + “small”.

3 X is “usually” Y .

P(X = Y ) ≥ “large”.

4 X ’s rank is “usually” “close” to Y ’s rank.
CS 4104: Data and Algorithm

Analysis Fall 2010 165 / 190



Changing the Model (2)

We often give such algorithms names:
1 Exact or deterministic algorithm.
2 Approximation algorithm.
3 Probabilistic algorithm.
4 Heuristic.

We can also sacrifice reliability for speed:
1 We find the best, “usually” fast.
2 We find the best fast, or we don’t get an answer at all

(but fast).

CS 4104: Data and Algorithm
Analysis Fall 2010 166 / 190



Examples for Findmax

Choose m elements at random, and pick the best.

For large n, if m = log n, the answer is pretty good.

Cost is m − 1.

Rank is mn
m+1 .

CS 4104: Data and Algorithm
Analysis Fall 2010 167 / 190



Probabilistic Algorithms

Probabilistic algorithms include steps that are affected by
random events.

Problem: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee.

CS 4104: Data and Algorithm
Analysis Fall 2010 168 / 190



Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability
1 − 2−k .

Monte Carlo Algorithm: Good running time, result not
guaranteed.

Las Vegas Algorithm: Result guaranteed, but not running
time.

CS 4104: Data and Algorithm
Analysis Fall 2010 169 / 190



Sorting

Initial model:
Sort key has a linear order (comparable).
We have an array of elements.
We wish to sort the elements in the array.
We get information about elements only by comparison
of two elements.
We can preserve order information only by swapping a
pair of elements.

To simplify analysis:
Assume all elements are unique.
For analysis purposes, consider the input to be a
permutation of the values 1 to n.

What if the ALGORITHM could make this assumption?
CS 4104: Data and Algorithm

Analysis Fall 2010 170 / 190



Swap Sorts (1)

Repeatedly scan input, swapping any out-of-order elements.

Bubble sort: O(n2) in worst case.

Inversions of an element: the number of smaller elements
to the right of the element.

The sum of inversions for all elements is the number of
swaps required by bubblesort.

ANY algorithm that removes one inversion per swap requires
at least this many swaps.

CS 4104: Data and Algorithm
Analysis Fall 2010 171 / 190



Swap Sorts (2)

Worst number of inversions:

Best number of inversions:

Average number of inversions:

Note that the sum of the total inversions for any
permutation and its reverse is n(n−1)

2 .

Alternative view: every one of the n(n−1)
2 possible

inversions occurs in a given permutation or its reverse.

CS 4104: Data and Algorithm
Analysis Fall 2010 172 / 190



Heap Sort (1)

Heap: complete binary tree with the value of any node at
least as large as its two children.

Algorithm:
Build the heap.
Repeat n times:

◮ Remove the root.
◮ Repair the heap.

This gives us list in reverse sorted order.

Since the heap is a complete binary tree, it can be stored in
an array.

CS 4104: Data and Algorithm
Analysis Fall 2010 173 / 190



Heap Sort (2)

To delete max element:

Swap the last element in the heap with the first (root).

Repeatedly swap the placeholder with larger of its two
children until done.

CS 4104: Data and Algorithm
Analysis Fall 2010 174 / 190



Building the heap

To build a heap, first heapify the two subheaps, then push
down the root to its proper position.

Cost: f (n) ≤ 2f (n/2) + 2 log n.

Alternatively: Start at first internal node and, moving up the
array, siftdown each element.

Cost:

f (n) =

log n
∑

i=1

(i − 1)
n
2i

=
n
2

log n−1
∑

i=1

i
2i

< 2
n
2

= n.

CS 4104: Data and Algorithm
Analysis Fall 2010 175 / 190



Quicksort

Algorithm:

Pick a pivot value.

Split the array into elements less than the pivot and
elements greater than the pivot.

Recursively sort the sublists.

Worst case:

Pick the pivot at random, so that no particular input has bad
performance.

CS 4104: Data and Algorithm
Analysis Fall 2010 176 / 190



Quicksort Average Cost (1)

f (n) =

{

0 n ≤ 1
n − 1 + 1

n

∑n−1
i=0 (f (i) + f (n − i − 1)) n > 1

Since the two halves of the summation are identical,

f (n) =

{

0 n ≤ 1
n − 1 + 2

n

∑n−1
i=0 f (i) n > 1

Multiplying both sides by n yields

nf (n) = n(n − 1) + 2
n−1
∑

i=0

f (i).

CS 4104: Data and Algorithm
Analysis Fall 2010 177 / 190



Average Cost (2)

Get rid of the full history by subtracting nf (n) from
(n + 1)f (n + 1)

nf (n) = n(n − 1) + 2
n−1
∑

i=1

f (i)

(n + 1)f (n + 1) = (n + 1)n + 2
n

∑

i=1

f (i)

(n + 1)f (n + 1) − nf (n) = 2n + 2f (n)

(n + 1)f (n + 1) = 2n + (n + 2)f (n)

f (n + 1) =
2n

n + 1
+

n + 2
n + 1

f (n).

CS 4104: Data and Algorithm
Analysis Fall 2010 178 / 190



Average Cost (3)

Note that 2n
n+1 ≤ 2 for n ≥ 1. Expanding the recurrence, we

get

f (n+1) ≤ 2 +
n + 2
n + 1

f (n)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n
f (n − 1)

)

= 2 +
n + 2
n + 1

(

2 +
n + 1

n

(

2 +
n

n − 1
f (n − 2)

))

= 2 +
n + 2
n + 1

(

2 + · · · +
4
3

(2 +
3
2

f (1))

)

CS 4104: Data and Algorithm
Analysis Fall 2010 179 / 190



Average Cost (3)

= 2
(

1 +
n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·

+
n + 2
n + 1

n + 1
n

· · ·
3
2

)

= 2
(

1 + (n + 2)

(

1
n + 1

+
1
n

+ · · · +
1
2

))

= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n log n).

CS 4104: Data and Algorithm
Analysis Fall 2010 180 / 190



Lower Bound for Sorting (1)

What is the smallest number of comparisons needed to sort
n values?

Clearly, sorting is as hard as finding the min and max
element: ⌈3n/2⌉ − 2.

Why?

Information theory says that, if an algorithm uses only
binary decisions to distinguish between n possibilities, then it
must use at least log n such decisions on average.

How is this relevant?
CS 4104: Data and Algorithm

Analysis Fall 2010 181 / 190



Lower Bound for Sorting (2)

There are n! permutations to the input array.

So, by information theory, we need at least
log n! = Θ(n log n) comparisons.

Using the decision tree model, what is the average depth of
a node?

This is also Θ(log n!).

CS 4104: Data and Algorithm
Analysis Fall 2010 182 / 190



Linear Insert Sort

Put the element i into a sorted list of the first i − 1 elements.

Worst case cost:

Best case cost:

Average case cost:

What if we use binary search? (This is called binary insert
sort.)

CS 4104: Data and Algorithm
Analysis Fall 2010 183 / 190



Optimal Sorting (1)

If we count ONLY comparisons, binary insert sort is pretty
good.

What is the absolute minimum number of comparisons
needed to sort?

For n = 5, how many comparisons do we need for binary
insert sort?

Binary search is best for what values of n?

Binary search is worst for what values of n?
CS 4104: Data and Algorithm

Analysis Fall 2010 184 / 190



Optimal Sorting (2)

Build the following poset:

Now, put in the fifth element (B) into the chain of 3.

Now, put in the off-element (A).

Total cost?

CS 4104: Data and Algorithm
Analysis Fall 2010 185 / 190



Ten Elements

Pair the elements: 5 comparisons.

Sort the winners of the pairings, using the previous
algorithm: 7 comparisons.

Now, all we need to do is to deal with the original losers.

General algorithm:

Pair up all the nodes with ⌊n
2⌋ comparisons.

Recursively sort the winners.

Fold in the losers.
CS 4104: Data and Algorithm

Analysis Fall 2010 186 / 190



Finishing the Sort (1)

We will use binary insert to place the losers.

However, we are free to choose best ordering for inserting.

Recall that binary search is best for 2k − 1 items.

CS 4104: Data and Algorithm
Analysis Fall 2010 187 / 190



Finishing the Sort (2)

Pick the order of inserts to optimize the binary searches.

3 (2 compares: size 3)

4 (2 compares: size 3)

1 (3 compares: size 7)

2 (3 compares: size 7)

We can form an algorithm: Binary Merge.

This sort is called merge insert sort

CS 4104: Data and Algorithm
Analysis Fall 2010 188 / 190



Optimal Sort Algorithm?

Merge insert sort is pretty good, but is it optimal?
It does not match the information theoretic lower bound
for n = 12.

◮ Merge insert sort gives 30 instead of 29 comparison.
BUT, exhaustive search shows the information theoretic
bound is an underestimate for n = 12. 30 is best.
Call the optimal worst cost for n elements S(n).

◮ S(n + 1) ≤ S(n) + ⌈log(n + 1)⌉.
Otherwise, we would sort n elements and binary insert
the last.

◮ For all n and m, S(n + m) ≤ S(n) + S(m) + M(m, n) for
M(m, n) the best time to merge two sorted lists.

◮ For n = 47, we can do better by splitting into pieces of
size 5 and 42, then merging.

CS 4104: Data and Algorithm
Analysis Fall 2010 189 / 190



A Truly Optimal Algorithm

Pick the best set of comparisons for size 2.

Then for size 3, 4, 5, ...

Combine them together into one program with a big case
statement.

Is this an algorithm?

CS 4104: Data and Algorithm
Analysis Fall 2010 190 / 190


