CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Fall 2010

Copyright (C) 2010 by Clifford A. Shaffer

Parallel Algorithms

- Running time: $T(n, p)$ where n is the problem size, p is number of processors.
- Speedup: $S(p)=T(n, 1) / T(n, p)$.
- A comparison of the time for a (good) sequential algorithm vs. the parallel algorithm in question.
- Problem: Best sequential algorithm may not be the same as the best algorithm for p processors, which may not be the best for ∞ processors.
- Efficiency: $E(n, p)=S(p) / p=T(n, 1) /(p T(n, p))$.
- Ratio of the time taken for 1 processor vs. the total time required for p processors.
- Measure of how much the p processors are used (not wasted).
- Optimal efficiency $=1=$ speedup by factor of p.

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.

- Would need a new algorithm for every p!

Approach (2): Pick best algorithm for $p=\infty$, then convert to run on p processors.

Hopefully, if $T(n, p)=X$, then $T(n, p / k) \approx k X$ for $k>1$.

Using one processor to emulate k processors is called the parallelism folding principle.

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of processors.

$$
\begin{aligned}
T(n, 1) & =n \\
T(n, n) & =\log n \\
S(n) & =n / \log n \\
E(n, n) & =1 / \log n
\end{aligned}
$$

For $p=256, n=1024$.
$T(1024,256)=4 \log 1024=40$.
For $p=16$, running time $=1024 / 16 * \log 1024=640$.
Speedup <2, efficiency $=1024 /(16 * 640)=1 / 10$.

Amdahl's Law

Think of an algorithm as having a parallelizable section and a serial section.

Example: 100 operations.

- 80 can be done in parallel, 20 must be done in sequence.

Then, the best speedup possible leaves the 20 in sequence, or a speedup of $100 / 20=5$.

Amdahl's law:

$$
\begin{aligned}
\text { Speedup } & =(\mathcal{S}+\mathcal{P}) /(\mathcal{S}+\mathcal{P} / N) \\
& =1 /(\mathcal{S}+\mathcal{P} / N) \leq 1 / \mathcal{S},
\end{aligned}
$$

for $\mathcal{S}=$ serial fraction, $\mathcal{P}=$ parallel fraction, $\mathcal{S}+\mathcal{P}=1$,

Amdahl's Law Revisited

However, this version of Amdahl's law applies to a fixed problem size.

What happens as the problem size grows? Hopefully, $\mathcal{S}=f(n)$ with \mathcal{S} shrinking as n grows.

Instead of fixing problem size, fix execution time for increasing number N processors (and thus, increasing problem size).

$$
\begin{aligned}
\text { Scaled Speedup } & =(\mathcal{S}+\mathcal{P} \times N) /(\mathcal{S}+\mathcal{P}) \\
& =\mathcal{S}+\mathcal{P} \times N \\
& =\mathcal{S}+(1-\mathcal{S}) \times N \\
& =N+(1-N) \times \mathcal{S}
\end{aligned}
$$

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)

- All processors operate the same instruction in step.
- Example: Vector processor.

Pipelined Processing:

- Stream of data items, each pushed through the same sequence of several steps.

Multiple Instruction Multiple Data (MIMD)

- Processors are independent.

MIMD Communications (1)

Interconnection network:

- Each processor is connected to a limited number of neighbors.
- Can be modeled as (undirected) graph.
- Examples: Array, mesh, N-cube.
- It is possible for the cost of communications to dominate the algorithm (and in fact to limit parallelism).
- Diameter: Maximum over all pairwise distances between processors.
- Tradeoff between diameter and number of connections.

MIMD Communications (2)

Shared memory:

- Random access to global memory such that any processor can access any variable with unit cost.
- In practice, this limits number of processors.
- Exclusive Read/Exclusive Write (EREW).
- Concurrent Read/Exclusive Write (CREW).
- Concurrent Read/Concurrent Write (CRCW).

Addition

Problem: Find the sum of two n-bit binary numbers.
Sequential Algorithm:

- Start at the low end, add two bits.
- If necessary, carry bit is brought forward.
- Can't do ith step until $i-1$ is complete due to uncertainty of carry bit (?).

Induction: (Going from $n-1$ to n implies a sequential algorithm)

Parallel Addition

Divide and conquer to the rescue:

- Do the sum for top and bottom halves.
- What about the carry bit?

Strengthen induction hypothesis:

- Find the sum of the two numbers with or without the carry bit.

After solving for $n / 2$, we have L, L_{c}, R, and R_{c}.
Can combine pieces in constant time.

Parallel Addition (2)

The $n / 2$-size problems are independent. Given enough processors,

$$
T(n, n)=T(n / 2, n / 2)+O(1)=O(\log n) .
$$

We need only the EREW memory model.

Maximum-finding Algorithm: EREW

"Tournament" algorithm:

- Compare pairs of numbers, the "winner" advances to the next level.
- Initially, have $n / 2$ pairs, so need $n / 2$ processors.
- Running time is $O(\log n)$.

That is faster than the sequential algorithm, but what about efficiency?

$$
E(n, n / 2) \approx 1 / \log n .
$$

Why is the efficiency so low?

More Efficient EREW Algorithm

Divide the input into $n / \log n$ groups each with $\log n$ items.

Assign a group to each of $n / \log n$ processors.
Each processor finds the maximum (sequentially) in $\log n$ steps.

Now we have $n / \log n$ "winners".

Finish tournament algorithm.
$T(n, n / \log n)=O(\log n)$.
$E(n, n / \log n)=O(1)$.

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors to actions is predefined.

- We know in advance, for each step i of the algorithm and for each processor p_{j}, the operation and operands p_{j} uses at step i.

This maximum-finding algorithm is static.

- All comparisons are pre-arranged.

Brent's Lemma

Lemma 12.1: If there exists an EREW static algorithm with $T(n, p) \in O(t)$, such that the total number of steps (over all processors) is s, then there exists an EREW static algorithm with $T(n, s / t) \in O(t)$.

Proof:

- Let $a_{i}, 1 \leq i \leq t$, be the total number of steps performed by all processors in step i of the algorithm.
- $\sum_{i=1}^{t} a_{i}=s$.
- If $a_{i} \leq s / t$, then there are enough processors to perform this step without change.
- Otherwise, replace step i with $\left\lceil a_{i} /(s / t)\right\rceil$ steps, where the s / t processors emulate the steps taken by the original p processors.

Brent's Lemma (2)

- The total number of steps is now

$$
\begin{aligned}
\sum_{i=1}^{t}\left\lceil a_{i} /(s / t)\right\rceil & \leq \sum_{i=1}^{t}\left(a_{i} t / s+1\right) \\
& =t+(t / s) \sum_{i=1}^{t} a_{i}=2 t
\end{aligned}
$$

Thus, the running time is still $O(t)$.
Intuition: You have to split the s work steps across the t time steps somehow; things can't always be bad!

Maximum-finding: CRCW

- Allow concurrent writes to a variable only when each processor writes the same thing.
- Associate each element x_{i} with a variable v_{i}, initially " 1 ".
- For each of $n(n-1) / 2$ processors, processor $p_{i j}$ compares elements i and j.
- First step: Each processor writes " 0 " to the v variable of the smaller element.
- Now, only one v is " 1 ".
- Second step: Look at all $v_{i}, 1 \leq i \leq n$.
- The processor assigned to the max element writes that value to MAX.

Efficiency of this algorithm is very poor!

- "Divide and crush."

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:

- Given: n processors.
- Find maximum for each of $n / 2$ pairs in constant time.
- Find max for $n / 8$ groups of 4 elements (using 8 proc/group) each in constant time.
- Square the group size each time.
- Total time: $O(\log \log n)$.

Parallel Prefix

- Let • be any associative binary operation.
- Ex: Addition, multiplication, minimum.
- Problem: Compute $x_{1} \cdot x_{2} \ldots x_{k}$ for all $k, 1 \leq k \leq n$.
- Define $\operatorname{PR}(\mathrm{i}, \mathrm{j})=\mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{i}+1} \cdot \ldots \cdot \mathrm{x}_{\mathrm{j}}$. We want to compute $\operatorname{PR}(1, \mathrm{k})$ for $1 \leq k \leq n$.
- Sequential alg: Compute each prefix in order
- $O(n)$ time required (using previous prefix)
- Approach: Divide and Conquer
- IH: We know how to solve for $n / 2$ elements.
(1) $\operatorname{PR}(1, \mathrm{k})$ and $\operatorname{PR}(\mathrm{n} / 2+1, \mathrm{n} / 2+\mathrm{k})$ for $1 \leq k \leq n / 2$.
(2) $\operatorname{PR}(1, m)$ for $n / 2<m \leq n$ comes from $\operatorname{PR}(1, \mathrm{n} / 2) \cdot \operatorname{PR}(\mathrm{n} / 2+1, \mathrm{~m})-$ from IH .

Parallel Prefix (2)

- Complexity: (2) requires $n / 2$ processors and CREW for parallelism (all read middle position).
- $T(n, n)=O(\log n) ; \quad E(n, n)=O(1 / \log n)$. Brent's lemma no help: $O(n \log n)$ total steps.

Better Parallel Prefix

- E is the set of all $x_{i} s$ with i even.
- If we know $\operatorname{PR}(1,2 \mathrm{i})$ for $1 \leq i \leq n / 2$ then $\operatorname{PR}(1,2 \mathrm{i}+1)=\operatorname{PR}(1,2 \mathrm{i}) \cdot \mathrm{x}_{2 \mathrm{i}+1}$.
- Algorithm:
- Compute in parallel $x_{2 i}=x_{2 i-1} \cdot x_{2 i}$ for $1 \leq i \leq n / 2$.
- Solve for E (by induction).
- Compute in parallel $x_{2 i+1}=x_{2 i} \cdot x_{2 i+1}$.
- Complexity:
$T(n, n)=O(\log n) . \quad S(n)=S(n / 2)+n-1$, so
$S(n)=O(n)$.
for $S(n)$ the total number of steps required to process n elements.
- So, by Brent's Lemma, we can use $O(n / \log n)$ processors for $O(1)$ efficiency.

Routing on a Hypercube

Goal: Each processor P_{i} simultaneously sends a message to processor $P_{\sigma(i)}$ such that no processor is the destination for more than one message.

Problem:

- In an n-cube, each processor is connected to n other processors.
- At the same time, each processor can send (or receive) only one message per time step on a given connection.
- So, two messages cannot use the same edge at the same time - one must wait.

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is $\Omega\left(2^{n^{a}}\right)$ for some $a>0$, where 2^{n} is the number of messages.

A node i (and its corresponding message) has binary representation $i_{1} i_{2} \cdots i_{n}$.

Randomization approach:
(a) Route each message from i to j to a random processor r (by a randomly selected route).
(b) Continue the message from r to j by the shortest route.

Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin
for ($k=1$ to n)
$\mathrm{T}[\mathrm{i}, \mathrm{k}]=\operatorname{RANDOM}(0,1)$;
for $(k=1$ to $n)$
if (T[i, k] = 1)
Transmit i along dimension k;
coend;

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin

$$
\begin{aligned}
& \text { for }(k=1 \text { to } n) \\
& \quad T[i, k]=
\end{aligned}
$$

Current[i, k] EXCLUSIVE_OR Dest[i, k];
for ($k=1$ to n)
if (T[i, k] = 1)
Transmit i along dimension k;
coend;

Randomized Switching (4)

With high probability, each phase completes in $O(\log n)$ time.

- It is possible to get a really bad random routing, but this is unlikely.
- In contrast, it is very possible for any correlated group of messages to generate a bottleneck.

Sorting on an array

Given: n processors labeled $P_{1}, P_{2}, \cdots, P_{n}$ with processor P_{i} initially holding input x_{i}.
P_{i} is connected to P_{i-1} and P_{i+1} (except for P_{1} and P_{n}).

- Comparisons/exchanges possible only for adjacent elements.

```
Algorithm ArraySort(X, n) {
    do in parallel ceil(n/2) times {
        Exchange-compare(P[2i-1], P[2i]); // Odd
        Exchange-compare(P[2i], P[2i+1]); // Even
    }
}
```

A simple algorithm, but will it work?

Parallel Array Sort

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the numbers are sorted.

Proof: By induction on n.
Base Case: 1 or 2 elements are sorted with one comparison/exchange.

Induction Step:

- Consider the maximum element, say x_{m}.
- Assume m odd (if even, it just won't exchange on first step).
- This element will move one step to the right each step until it reaches the rightmost position.

Correctness (2)

- The position of x_{m} follows a diagonal in the array of element positions at each step.
- Remove this diagonal, moving comparisons in the upper triangle one step closer.
- The first row is the nth step; the right column holds the greatest value; the rest is an $n-1$ element sort (by induction).

Sorting Networks

When designing parallel algorithms, need to make the steps independent.

Ex: Mergesort split step can be done in parallel, but the join step is nearly serial.

- To parallelize mergesort, we must parallelize the merge.

Batcher's Algorithm

For n a power of 2 , assume $a_{1}, a_{2}, \cdots, a_{n}$ and $b_{1}, b_{2}, \cdots, b_{n}$ are sorted sequences.

Let $x_{1}, x_{2}, \cdots, x_{2 n}$ be the final merged order.
Need to merge disjoint parts of these sequences in parallel.

- Split a, b into odd- and even- index elements.
- Merge $a_{\text {odd }}$ with $b_{\text {odd }}, a_{\text {even }}$ with $b_{\text {even }}$, yielding $o_{1}, o_{2}, \cdots, o_{n}$ and $e_{1}, e_{2}, \cdots, e_{n}$ respectively.

Batcher's Sort Image

Batcher's Algorithm Correctness

Theorem 12.3: For all i such that $1 \leq i \leq n-1$, we have $x_{2 i}=\min \left(o_{i+1}, e_{i}\right)$ and $x_{2 i+1}=\max \left(o_{i+1}, e_{i}\right)$.

Proof:

- Since e_{i} is the i th element in the sorted even sequence, it is \geq at least i even elements.
- For each even element, e_{i} is also \geq an odd element.
- So, $e_{i} \geq 2 i$ elements, or $e_{i} \geq x_{2 i}$.
- In the same way, $o_{i+1} \geq i+1$ odd elements, \geq at least $2 i$ elements all together.
- So, $o_{i+1} \geq x_{2 i}$.
- By the pigeonhole principle, e_{i} and o_{i+1} must be $x_{2 i}$ and $x_{2 i+1}$ (in either order).

Batcher Sort Complexity

- Total number of comparisons for merge:

$$
T_{M}(2 n)=2 T_{M}(n)+n-1 ; \quad T_{M}(1)=1 .
$$

Total number of comparisons is $O(n \log n)$, but the depth of recursion (parallel steps) is $O(\log n)$.

- Total number of comparisons for the sort is:

$$
T_{S}(2 n)=2 T_{S}(n)+O(n \log n), \quad T_{S}(2)=1
$$

So, $T_{S}(n)=O\left(n \log ^{2} n\right)$.

- The circuit requires n processors in each column, with depth $O\left(\log ^{2} n\right)$, for a total of $O\left(n \log ^{2} n\right)$ processors and $O\left(\log ^{2} n\right)$ time.
- The processors only need to do comparisons with two inputs and two outputs.

Matrix-Vector Multiplication

Problem: Find the product $x=A \mathbf{b}$ of an m by n matrix A with a column vector \mathbf{b} of size n.

Systolic solution:

- Use n processor elements arranged in an array, with processor P_{i} initially containing element b_{i}.
- Each processor takes a partial computation from its left neighbor and a new element of A from above, generating a partial computation for its right neighbor.

