" Analysis

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

Fall 2010 1/227

Numbers

Examples of problems:
@ Raise a number to a power.
@ Find common factors for two numbers.
@ Tell whether a number is prime.
@ Generate a random integer.
@ Multiply two integers.

These operations use all the digits, and cannot use floating
point approximation.

For large numbers, cannot rely on hardware (constant time)
operations.

@ Measure input size by number of binary digits.

@ Multiply, divide become expensive.

" Analysis

Fall 2010 191/ 227

Analysis of Number Problems

Analysis problem: Cost may depend on properties of the
number other than size.

@ Itis easy to check an even number for primeness.

Considering cost over all k-bit inputs, cost grows with k.

Features:
@ Arithmetical operations are not cheap.
@ There is only one instance of value n.
@ There are 2¥ instances of length k or less.
@ The size (length) of value n is log n.
@ The cost may decrease when n increases in value, but
generally increases when n increases in size (length).

" Analysis Fall2010 192/227

Exponentiation (1)
How do we compute m"?

We could multiply n — 1 times.
Can we do better?

Approaches to divide and conquer:
@ Relate m" to k" for k < m.
@ Relate m" to m* for k < n.

If n is even, then m"™ = m"/2mn/2,

If n is odd, then m" = m"/2iml/2Im,

" Analysis Fall 2010

193/ 227

Exponentiation (2)

i nt Power (int base, int exp) {
int half, total;
if exp =0 return 1;
hal f = Power (base, exp/2);
total = half * half;
I f (odd(exp)) then total = total =* base;
return total;

" Analysis Fall2010 194/227

Analysis of Power

0 n=1
f(n):{ f(ln/2))+1+nmod2 n>1

Solution: f(n) = [logn| + G(n) — 1
where [is the number of 1's in binary representation of n.

How does this cost compare with the problem size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over many runs?

In general, finding the best set of multiplications is expensive

(probably exponential).

" Analysis Fall2010 195/227

Largest Common Factor (1)

The largest common factor of two numbers is the largest
integer that divides both evenly.

Observation: If k divides n and m, then k divides n — m.
So, f(n,m)=f(n—m,n) =f(m,n—m) =f(m,n).

Observation: There exists k and | such that

n=km-+Iwherem>1>0.

n=|n/m|m+n mod m.

780, f(n,m)="f(m,l) =f(m,n mod m).

" Analysis

Fall 2010 196 / 227

Largest Common Factor (2)

int LCF(int n,

int m {
if (m==20) return n;
return LCF(m n % m;

}

" Analysis

Fall 2010

197/ 227

Analysis of LCF

How big is n mod m relative to n?

n/m>1

2|n/m| >n/m

m{n/m| >n/2
n—n/2>n—-m{n/m|=nmodm
n/2 >nmodm

P4 e

Y

The first argument must be halved in no more than 2
iterations.

7 Total cost:

" Analysis Fall 2010

198/ 227

Matrix Multiplication

Given: n x n matrices A and B.

Compute: C = A x B.

n
Cj = Z ik b -
k=1

Straightforward algorithm:
@ O(n3®) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Q(n?).

" Analysis Fall2010 199/227

Another Approach

Compute: mp = (a2 — az)(ba + bz)
my = (i1 +az)(bi + bz2)
my = (@11 —ax)(bi1 + b12)
m; = (a1 +az)bx
ms = agi(biz —b22)

Mg = ax(bo —bi1)
m; = (a1 +azx)bn

Then: Ci1 = My+My—mMg+mg

Ciz2 = Mg+Ms
C1 = Mg+ My
C2 = M2 —M3+ M5 — My

7 multlpllcatlons and 18 additions/subtractions.

" Analysis Fall2010 200/227

Strassen’s Algorithm (1)

(1) Trade more additions/subtractions for fewer
multiplications in 2 x 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 x 2 case is:

C11 = anbyy +aphx
C12 = a11b12 + 1202
Co1 = Ax1b11 + axbxn
Co2 = Az bi1 + @by

Requires 8 multiplications and 4 additions,

" Analysis

Fall 2010

201/ 227

Strassen’s Algorithm (2)

Divide and conquer step:
Assume n is a power of 2.

Express C = A x B in terms of § x § matrices.

|:C11 C12 :| _ |:A11 A12 :| |: Bll BlZ :|
C21 C22

A21 A22 BZl BZZ

" Analysis Fall 2010

202/ 227

Strassen’s Algorithm (3)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 x n/2
matrices.

Recurrence:

T(n) = 7T(n/2)+18(n/2)?
T(n) = ©(n%:") =0(n%%).

Current “fastest” algorithm is ©(n?376)

Open question: Can matrix multiplication be done in O(n?)
time?

" Analysis Fall2010 203/227

Divide and Conquer Recurrences (1)

These have the form:

T(n) = aT(n/b)+cn®
T(1) = ¢

... Wwhere a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cn¥ is the amount of work needed to combine the
solutions.

" Analysis Fall2010 204/227

Divide and Conquer Recurrences (2)

Expand the sum; assume n = b™.

T(n) = a(aT(n/b?)+c(n/b)¥) + cnk
= a"T(1)+a™ c(n/b™)X +... +ac(n/b)X + cnk

= ca™ i(b"/a)i
i—0

am = aIogbn — n'ogs @
The summation is a geometric series whose sum depends
on the ratio
r =b*/a.
There are 3 cases.

Fall 2010

" Analysis

205/ 227

D & C Recurrences (3)

Qr<1
m .
d r'<1/(1-r), aconstant,
i=0

T(n) = ©(a™) = O(n'%?),

2)r=1
m .
> r'=m+1=log,n+1
i=0

T(n) = ©(n%2logn) = ©(n*logn)

o F

" Analysis

Fall 2010 206 / 227

D & C Recurrences (4)

B)r>1
Zr rm+1 1 =0o(r™m
So, from T(n) =ca™>_r',
T(n) = ©@"rm)
= o(a"(b"/a)")
= O(b*M)
= O(n")

Fall 2010

207/ 227

Summary

Theorem 3.4:
O(n'%a) ifa > bk
T(n) =< ©(nklogn) ifa=Db*
O(n¥) if a < b¥

Apply the theorem:
T(n)=3T(n/5) + 8n2,
a=3b=5c=8k=2.
bk /a = 25/3.

Case (3) holds: T(n) = ©(n?).

" Analysis Fall 2010

208/ 227

Prime Numbers

How do we tell if a number is prime?
One approach is the prime sieve: Test all prime up to |v/n].

This requires up to [/n] — 1 divisions.
@ How does this compare to the input size?

Note that it is easy to check the number of times 2 divides n
for the binary representation

@ What about 37

@ What if n is represented in trinary?
Is there a polynomial time algorithm?

" Analysis Fall2010 209/227

Facts about Primes

Some useful theorems from Number Theory:

@ Prime Number Theorem: The number of primes less
than n is (approximately)

Inn
» The average distance between primes is Inn.
@ Prime Factors Distribution Theorem: For large n, on

average, n has about InIn n different prime factors with a
standard deviation of vInInn.

To prove that a number is composite, need only one factor.
What does it take to prove that a number is prime?
Do we need to check all y/n candidates?

" Analysis Fall2010 210/227

Probablistic Algorithms

Some probablistic algorithms:
@ Prime(n) = FALSE.

" Analysis

Fall 2010 211/ 227

Probablistic Algorithms
Some probabilistic algorithms:

@ Prime(n) = FALSE.

@ With probability 1/Inn, Prime(n) = TRUE.

" Analysis

Fall 2010 211/ 227

Probablistic Algorithms

Some probabilistic algorithms:
@ Prime(n) = FALSE.
@ With probability 1/Inn, Prime(n) = TRUE.
@ Pick a number m between 2 and /n. Say n is prime iff
m does not divide n.

" Analysis Fall2010 211/227

Probablistic Algorithms

Some probabilistic algorithms:
@ Prime(n) = FALSE.
@ With probability 1/Inn, Prime(n) = TRUE.
@ Pick a number m between 2 and /n. Say n is prime iff
m does not divide n.
Using number theory, can create cheap test that determines
a number to be composite (if it is) 50% of the time.
Prime(n) {
for(i=0; i<COVFORT; i ++)
i f | CHEAPTEST(n)

return FALSE;
return TRUE;

}
Of course, this does nothing to help you find the factors!

" Analysis Fall2010 211/227

Random Numbers

Which sequences are random?
@ 1,1,1,1,1,1,1,1,1, ..

0 1,23/45/6,7,8,9, ..
®2,7,18,28,1,8,2,..

Meanings of “random”:
@ Cannot predict the next item: unpredictable.
@ Series cannot be described more briefly than to
reproduce it: equidistribution.
There is no such thing as a random number sequence, only
“random enough” sequences.

A sequence is pseudorandom if no future term can be
predicted in polynomial time, given all past terms.

" Analysis Fall2010 212/227

A Good Random Number Generator

Most computer systems use a deterministic algorithm to
select pseudorandom numbers.

Linear congruential method:
@ Pick a seed r(1). Then,

r(i)=(r(i—1) x b) mod t.

Resulting numbers must be in range: What happens if

Must pick good values for b and t.
@ t should be prime.

" Analysis

Fall 2010 213/ 227

Random Number examples

r(i)==6r(i —1) mod 13 =
.. 1,6,10,8,9,2,12,7,3,5,4,11, 1, ...

r(i)="7r(i —1) mod 13 =
.. 1,7,10,5,9,11,12,6,3,8,4,2, 1, ...

r(i) =5r(i —1) mod 13 =
. 1,5,12,8,1, ...
. 2,10,11,3,2, ...
e 4,7,9,6,4, ...
0,0, ...

Suggested generator: r(i) = 16807r(i — 1) mod 23! — 1.

Fall 2010

" Analysis

214/ 227

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
lognm = logn + logm.

Therefore,
nm = antilog(logn + logm).

What if taking logs and antilogs were easy?

" Analysis

Fall 2010 215/ 227

Introduction to the Sliderule (2)

The sliderule does exactly this!
@ It is essentially two rulers in log scale.
@ Slide the scales to add the lengths of the two numbers
(in log form).
@ The third scale shows the value for the total length.

" Analysis Fall2010 216/227

Representing Polynomials

A vector a of n values can uniquely represent a polynomial

of degreen — 1
n—-1
Pa(x) =) ax"
i=0

Alternatively, a degree n — 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

@ Finding the value for a polynomial at a given point is
called evaluation.

@ Finding the coefficients for the polynomial given the
values at n points is called interpolation.

" Analysis Fall2010 217/227

Multiplication of Polynomials

To multiply two n — 1-degree polynomials A and B normally
takes ©(n?) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
@ Evaluate polynomials A and B at enough points.
@ Pairwise multiplications of resulting values.
@ Interpolation of resulting values.

" Analysis Fall2010 218/227

Multiplication of Polynomials (2)

This can be faster than ©(n?) IF a fast way can be found to
do evaluation/interpolation of 2n — 1 points (normally this
takes ©(n?) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

" Analysis Fall2010 219/227

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x? — x + 1.
Polynomial AB: 2x* — x2 4 3x2 — x + 1.

Notice:

AB(-1) = (8
AB(0) = (1)(1)=1
AB(1) = (4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

" Analysis

Fall 2010 220/ 227

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number w is a primitive nth root of unity if
O ."=1and
Q@ N A£1for0<k <n.

W2 Wt ..., w""1 are the nth roots of unity.

Example:
@ Forn=4,w=iorw=—i.

" Analysis

Fall 2010 221/ 227

Nth Root of Unity (cont)

Fall 2010

222/ 227

Discrete Fourier Transform

Define an n x n matrix V (w) with row i and column j as

V(w) = ().
Example: n =4, w =1i:
1 1 1 1
1 i -1 —i
VW=11 -1 1 21
1 —-i -1 [

Leta = [ap, a1, ...,an_1]" be a vector.

The Discrete Fourier Transform (DFT) of a is:
F,=V(w)a=V.

This is equivalent to evaluating the polynomial at the nth

roots of unity.

" Analysis

Fall 2010 223/ 227

Array example

Vi, V(w) =

Forn =8, w

1 1
—i —iﬁ

1
Vi

1
ivi -1

1
I

—i =i -1

1 —ivi

b »
F 2,
E ©
k C
h <<

224 | 227

Fall 2010

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

Fol=a=[V()]* V.

w

V@)= V()

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in ©(nlgn) time.

" Analysis Fall 2010

225/ 227

Fast Polynomial Multiplication

Polynomial multiplication of A and B:

@ Represent an n — 1-degree polynomial as 2n — 1
coefficients:
[@0,a1, ...,an-1,0, ..., 0]

@ Perform DFT on representations for A and B.
@ Pairwise multiply results to get 2n — 1 values.

@ Perform inverse DFT on result to get 2n — 1 degree
polynomial AB.

" Analysis Fall 2010

226/ 227

FFT Algorithm

FFT(n, a0, al, ..., an-1, onega, var V);
Qutput: V[O0..n-1] of output el enents.
begi n
If n=1 then V[0] = a0;
el se
FFT(n/2, a0, a2, ... an-2, onega™2, U);
FFT(n/2, al, a3, ... an-1, onega™2, W;

for j=0 to n/2-1 do
Vi1 = Ujl + omegarj Wjl;
Mj+n/2] = Uj] - onega®j Wj];

end

" Analysis Fall 2010

227/ 227

