
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 227



Numbers
Examples of problems:

Raise a number to a power.
Find common factors for two numbers.
Tell whether a number is prime.
Generate a random integer.
Multiply two integers.

These operations use all the digits, and cannot use floating
point approximation.

For large numbers, cannot rely on hardware (constant time)
operations.

Measure input size by number of binary digits.
Multiply, divide become expensive.

CS 4104: Data and Algorithm
Analysis Fall 2010 191 / 227



Analysis of Number Problems

Analysis problem: Cost may depend on properties of the
number other than size.

It is easy to check an even number for primeness.

Considering cost over all k -bit inputs, cost grows with k .

Features:
Arithmetical operations are not cheap.
There is only one instance of value n.
There are 2k instances of length k or less.
The size (length) of value n is log n.
The cost may decrease when n increases in value, but
generally increases when n increases in size (length).

CS 4104: Data and Algorithm
Analysis Fall 2010 192 / 227



Exponentiation (1)

How do we compute mn?

We could multiply n − 1 times.
Can we do better?

Approaches to divide and conquer:
Relate mn to kn for k < m.
Relate mn to mk for k < n.

If n is even, then mn = mn/2mn/2.

If n is odd, then mn = m⌊n/2⌋m⌊n/2⌋m.
CS 4104: Data and Algorithm

Analysis Fall 2010 193 / 227



Exponentiation (2)

int Power(int base, int exp) {
int half, total;
if exp = 0 return 1;
half = Power(base, exp/2);
total = half * half;
if (odd(exp)) then total = total * base;
return total;

}

CS 4104: Data and Algorithm
Analysis Fall 2010 194 / 227



Analysis of Power

f (n) =

{

0 n = 1
f (⌊n/2⌋) + 1 + n mod 2 n > 1

Solution: f (n) = ⌊log n⌋ + β(n) − 1
where β is the number of 1’s in binary representation of n.

How does this cost compare with the problem size?

Is this the best possible? What if n = 15?

What if n stays the same but m changes over many runs?

In general, finding the best set of multiplications is expensive
(probably exponential).

CS 4104: Data and Algorithm
Analysis Fall 2010 195 / 227



Largest Common Factor (1)

The largest common factor of two numbers is the largest
integer that divides both evenly.

Observation: If k divides n and m, then k divides n − m.

So, f (n, m) = f (n − m, n) = f (m, n − m) = f (m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = ⌊n/m⌋m + n mod m.

So, f (n, m) = f (m, l) = f (m, n mod m).
CS 4104: Data and Algorithm

Analysis Fall 2010 196 / 227



Largest Common Factor (2)

f (n, m) =

{

n m = 0
f (m, n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

CS 4104: Data and Algorithm
Analysis Fall 2010 197 / 227



Analysis of LCF

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2⌊n/m⌋ > n/m

⇒ m⌊n/m⌋ > n/2

⇒ n − n/2 > n − m⌊n/m⌋ = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.

Total cost:
CS 4104: Data and Algorithm

Analysis Fall 2010 198 / 227



Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A × B.

cij =
n

∑

k=1

aikbkj .

Straightforward algorithm:

Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).

CS 4104: Data and Algorithm
Analysis Fall 2010 199 / 227



Another Approach

Compute: m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

Then: c11 = m1 + m2 − m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 − m3 + m5 − m7

7 multiplications and 18 additions/subtractions.
CS 4104: Data and Algorithm

Analysis Fall 2010 200 / 227



Strassen’s Algorithm (1)

(1) Trade more additions/subtractions for fewer
multiplications in 2 × 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 × 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
CS 4104: Data and Algorithm

Analysis Fall 2010 201 / 227



Strassen’s Algorithm (2)

Divide and conquer step:

Assume n is a power of 2.

Express C = A × B in terms of n
2 × n

2 matrices.
[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

CS 4104: Data and Algorithm
Analysis Fall 2010 202 / 227



Strassen’s Algorithm (3)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 × n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)

Open question: Can matrix multiplication be done in O(n2)
time?

CS 4104: Data and Algorithm
Analysis Fall 2010 203 / 227



Divide and Conquer Recurrences (1)

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.

CS 4104: Data and Algorithm
Analysis Fall 2010 204 / 227



Divide and Conquer Recurrences (2)

Expand the sum; assume n = bm.

T (n) = a(aT (n/b2) + c(n/b)k ) + cnk

= amT (1) + am−1c(n/bm−1)k + · · · + ac(n/b)k + cnk

= cam
m

∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.
CS 4104: Data and Algorithm

Analysis Fall 2010 205 / 227



D & C Recurrences (3)

(1) r < 1
m

∑

i=0

r i < 1/(1 − r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1
m

∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)

CS 4104: Data and Algorithm
Analysis Fall 2010 206 / 227



D & C Recurrences (4)

(3) r > 1
m

∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam
∑

r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

CS 4104: Data and Algorithm
Analysis Fall 2010 207 / 227



Summary

Theorem 3.4:

T (n) =







Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3, b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).
CS 4104: Data and Algorithm

Analysis Fall 2010 208 / 227



Prime Numbers

How do we tell if a number is prime?

One approach is the prime sieve: Test all prime up to ⌊
√

n⌋.

This requires up to ⌊
√

n⌋ − 1 divisions.
How does this compare to the input size?

Note that it is easy to check the number of times 2 divides n
for the binary representation

What about 3?
What if n is represented in trinary?

Is there a polynomial time algorithm?
CS 4104: Data and Algorithm

Analysis Fall 2010 209 / 227



Facts about Primes

Some useful theorems from Number Theory:

Prime Number Theorem: The number of primes less
than n is (approximately)

n
ln n

◮ The average distance between primes is ln n.

Prime Factors Distribution Theorem: For large n, on
average, n has about ln ln n different prime factors with a
standard deviation of

√
ln ln n.

To prove that a number is composite, need only one factor.
What does it take to prove that a number is prime?
Do we need to check all

√
n candidates?

CS 4104: Data and Algorithm
Analysis Fall 2010 210 / 227



Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.

CS 4104: Data and Algorithm
Analysis Fall 2010 211 / 227



Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.
With probability 1/ ln n, Prime(n) = TRUE.

CS 4104: Data and Algorithm
Analysis Fall 2010 211 / 227



Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.
With probability 1/ ln n, Prime(n) = TRUE.
Pick a number m between 2 and

√
n. Say n is prime iff

m does not divide n.

CS 4104: Data and Algorithm
Analysis Fall 2010 211 / 227



Probablistic Algorithms

Some probablistic algorithms:
Prime(n) = FALSE.
With probability 1/ ln n, Prime(n) = TRUE.
Pick a number m between 2 and

√
n. Say n is prime iff

m does not divide n.
Using number theory, can create cheap test that determines
a number to be composite (if it is) 50% of the time.

Prime(n) {
for(i=0; i<COMFORT; i++)
if !CHEAPTEST(n)

return FALSE;
return TRUE;

}

Of course, this does nothing to help you find the factors!
CS 4104: Data and Algorithm

Analysis Fall 2010 211 / 227



Random Numbers
Which sequences are random?

1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2, 7, 1, 8, 2, 8, 1, 8, 2, ...

Meanings of “random”:
Cannot predict the next item: unpredictable.
Series cannot be described more briefly than to
reproduce it: equidistribution.

There is no such thing as a random number sequence, only
“random enough” sequences.

A sequence is pseudorandom if no future term can be
predicted in polynomial time, given all past terms.

CS 4104: Data and Algorithm
Analysis Fall 2010 212 / 227



A Good Random Number Generator
Most computer systems use a deterministic algorithm to
select pseudorandom numbers.

Linear congruential method:
Pick a seed r(1). Then,

r(i) = (r(i − 1) × b) mod t .

Resulting numbers must be in range: What happens if

r(i) = r(j)?

Must pick good values for b and t .
t should be prime.

CS 4104: Data and Algorithm
Analysis Fall 2010 213 / 227



Random Number examples

r(i) = 6r(i − 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i − 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i − 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1.
CS 4104: Data and Algorithm

Analysis Fall 2010 214 / 227



Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
CS 4104: Data and Algorithm

Analysis Fall 2010 215 / 227



Introduction to the Sliderule (2)

The sliderule does exactly this!

It is essentially two rulers in log scale.

Slide the scales to add the lengths of the two numbers
(in log form).

The third scale shows the value for the total length.

CS 4104: Data and Algorithm
Analysis Fall 2010 216 / 227



Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1
∑

i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation.

Finding the coefficients for the polynomial given the
values at n points is called interpolation.

CS 4104: Data and Algorithm
Analysis Fall 2010 217 / 227



Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:

Evaluate polynomials A and B at enough points.

Pairwise multiplications of resulting values.

Interpolation of resulting values.

CS 4104: Data and Algorithm
Analysis Fall 2010 218 / 227



Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

CS 4104: Data and Algorithm
Analysis Fall 2010 219 / 227



An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

CS 4104: Data and Algorithm
Analysis Fall 2010 220 / 227



Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:
For n = 4, ω = i or ω = −i .

CS 4104: Data and Algorithm
Analysis Fall 2010 221 / 227



Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .

CS 4104: Data and Algorithm
Analysis Fall 2010 222 / 227



Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









Let a = [a0, a1, ..., an−1]
T be a vector.

The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

CS 4104: Data and Algorithm
Analysis Fall 2010 223 / 227



Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i

CS 4104: Data and Algorithm
Analysis Fall 2010 224 / 227



Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

CS 4104: Data and Algorithm
Analysis Fall 2010 225 / 227



Fast Polynomial Multiplication

Polynomial multiplication of A and B:

Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

Perform DFT on representations for A and B.

Pairwise multiply results to get 2n − 1 values.

Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.

CS 4104: Data and Algorithm
Analysis Fall 2010 226 / 227



FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin

if n=1 then V[0] = a0;
else

FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do

V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

CS 4104: Data and Algorithm
Analysis Fall 2010 227 / 227


