" Analysis

CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Fall 2010

Copyright © 2010 by Clifford A. Shaffer

Fall 2010 1/299

Countable vs. Uncountably Infinite
Sets

Two sets have the same cardinality if there is a bijection
between them.

Notation: |A| = |B].
This concept can also be applied to infinite sets.

Example: Let Odd and Even be the sets of odd and even
natural numbers, respectively.

Then, |Odd| = |Even| because the function f : |Odd — Even|
defined by f(x) = x — 1 is a bijection.

How about |Even| = |N|?

" Analysis Fall2010 290/299

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N]|.
If a set is not countable, then it is uncountable .
If A is a finite alphabet, then A* is countably infinite.

Proof: Arrange the strings in order by length, and within a
given length by alphabetical order. This provides a bijection.

As a corollary, the set of all computer programs is countable.

" Analysis Fall2010 291/299

More Functions than Programs

@ Consider set of functions f(x) =y for x,y natural
numbers.

@ The set of such functions is uncountable.
@ Diagonalization argument
@ Not all functions on natural numbers are computable.

1 2 3 4 5

x |fi(x)] x fa(x)| x|fs(x)| x |fa(x) X [fpew(X)
1 (Ot 71115 12
2 <1> 2| @+—2+9+—211 23
311 | 3|3 | 3|@)+—3+=* 312
401 | 4| 4| 4| 3] 4| ® 414
5/!1 | 5|5 | 5[15| 5| 2 O 5

6|1 | 6|6 | 6[17| 6|7 6

" Analysis Fall2010 292/299

Halting Problem for Programs

Does the following terminate?

while (n > 1)

if (ODD(n))
n=3=*n+ 1;
el se

n=n/l 2

Can a C++ program be written to solve the following
problem?

Halting Problem :
@ Input: A program P and input X.
@ Output: “Halts” if P halts when run with X as input.
“Does not Halt” otherwise.

" Analysis

Fall 2010

293/299

Halting Problem Proof

Theorem : There is no program to solve the Halting Problem.

Proof : (by contradiction).

Assumption: There is a C++ program that solves the Halting

Problem.

bool halt(char* prog, charx input)
{
Code to solve halting problem
if (prog does halt on input) then
return(TRUE) ;
el se
return(FALSE) ;

" Analysis

Fall 2010

294 /299

Two More Procedures

bool selfhalt(char *prog) {
/1l Return TRUE if program halts
/'l when given itself as input.
if (halt(prog, prog))
ret ur n(TRUE)
el se
return(FALSE)
}

void contrary(char *prog) {
if (selfhalt(prog))

" Analysis

Fall 2010

while(TRUE); // Go into an infinite | oop

295 /299

The Punchline

What happens when function cont r ar y is run on itself?
@ Case 1: sel f hal t returns TRUE.

» contrary will go into an infinite loop.
» This contradicts the result from sel f hal t .

@ sel f hal t returns FALSE.

» contrary will halt.
» This contradicts the result from sel f hal t .

Either result is impossible.

The only flaw in this argument is the assumption that
hal t exists.

@ Therefore, hal t cannot exist.

" Analysis Fall2010 296/299

Computability Reduction Proof
Given arbitrary program M, does it halt on the EMPTY input?

This is uncomputable. Proof:

@ Suppose that program M, determines if M halts on the
EMPTY input.

@ Given arbitrary program M and string w, we can create
a new program M,, that operates as follows on empty
input:

» Write w into a static variable.
» Simulate the execution of M.

@ So, we can take arbitrary program M and string w,
create M,,, and invoke My on M,, (with empty input) to
solve the original halting problem.

@ Thus, My must not exist.

" Analysis

Fall 2010 297 /299

Another Reduction Proof

Does there exist ANY input for which an arbitrary program
halts?
Proof that this is uncomputable:

@ Suppose that program My could decide if arbitrary
program M halts on ANY input.

@ We can take an arbitrary program M and string w, and
modify it so that it ignores its input before proceeding.

@ Thus, arbitrary program M is modified to be M’ that
effectively is M operating on the empty input.

@ Thus, we can take arbitrary program M and string w,
modify it to become M’ and feed that to My to solve the
problem of deciding if M halts on the empty input.

@ We already know that is undecidable.

@ Thus, Mg cannot exist.

" Analysis

Fall 2010 298/299

Other Noncomputable Functions

Does a program halt on EVERY input?
Do two programs compute the SAME function?
Does a particular line in a program get executed?

Does a program compute a particular function?

Does a program contain a “computer virus”?

" Analysis Fall 2010

299 /299

