
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 299

Countable vs. Uncountably Infinite
Sets

Two sets have the same cardinality if there is a bijection
between them.

Notation: |A| = |B|.

This concept can also be applied to infinite sets.

Example: Let Odd and Even be the sets of odd and even
natural numbers, respectively.
Then, |Odd| = |Even| because the function f : |Odd → Even|
defined by f (x) = x − 1 is a bijection.

How about |Even| = |N|?
CS 4104: Data and Algorithm

Analysis Fall 2010 290 / 299

Counting Infinite Sets

A set C is countable if it is finite or if |C| = |N|.

If a set is not countable, then it is uncountable .

If A is a finite alphabet, then A∗ is countably infinite.

Proof: Arrange the strings in order by length, and within a
given length by alphabetical order. This provides a bijection.

As a corollary, the set of all computer programs is countable.

CS 4104: Data and Algorithm
Analysis Fall 2010 291 / 299

More Functions than Programs

Consider set of functions f (x) = y for x , y natural
numbers.

The set of such functions is uncountable.

Diagonalization argument

Not all functions on natural numbers are computable.

61 2 3 4 5 23121423456 111111 123456 123456 123456 7911131517 15171327 fnew(x)x f1(x) f2(x) f4(x)x x f3(x)1 123456xx12345
CS 4104: Data and Algorithm

Analysis Fall 2010 292 / 299

Halting Problem for Programs

Does the following terminate?

while (n > 1)
if (ODD(n))
n = 3 * n + 1;

else
n = n / 2;

Can a C++ program be written to solve the following
problem?

Halting Problem :
Input: A program P and input X .
Output: “Halts” if P halts when run with X as input.
“Does not Halt” otherwise.

CS 4104: Data and Algorithm
Analysis Fall 2010 293 / 299

Halting Problem Proof

Theorem : There is no program to solve the Halting Problem.

Proof : (by contradiction).

Assumption: There is a C++ program that solves the Halting
Problem.

bool halt(char* prog, char* input)
{
Code to solve halting problem
if (prog does halt on input) then
return(TRUE);

else
return(FALSE);

}

CS 4104: Data and Algorithm
Analysis Fall 2010 294 / 299

Two More Procedures

bool selfhalt(char *prog) {
// Return TRUE if program halts
// when given itself as input.
if (halt(prog, prog))

return(TRUE);
else

return(FALSE);
}

void contrary(char *prog) {
if (selfhalt(prog))

while(TRUE); // Go into an infinite loop
}

CS 4104: Data and Algorithm
Analysis Fall 2010 295 / 299

The Punchline

What happens when function contrary is run on itself?
Case 1: selfhalt returns TRUE.

◮ contrary will go into an infinite loop.
◮ This contradicts the result from selfhalt.

selfhalt returns FALSE.
◮ contrary will halt.
◮ This contradicts the result from selfhalt.

Either result is impossible.

The only flaw in this argument is the assumption that
halt exists.

Therefore, halt cannot exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 296 / 299

Computability Reduction Proof

Given arbitrary program M, does it halt on the EMPTY input?

This is uncomputable. Proof:
Suppose that program M0 determines if M halts on the
EMPTY input.
Given arbitrary program M and string w , we can create
a new program Mw that operates as follows on empty
input:

◮ Write w into a static variable.
◮ Simulate the execution of M.

So, we can take arbitrary program M and string w ,
create Mw , and invoke M0 on Mw (with empty input) to
solve the original halting problem.
Thus, M0 must not exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 297 / 299

Another Reduction Proof
Does there exist ANY input for which an arbitrary program
halts?
Proof that this is uncomputable:

Suppose that program M0 could decide if arbitrary
program M halts on ANY input.
We can take an arbitrary program M and string w , and
modify it so that it ignores its input before proceeding.
Thus, arbitrary program M is modified to be M ′ that
effectively is M operating on the empty input.
Thus, we can take arbitrary program M and string w ,
modify it to become M ′ and feed that to M0 to solve the
problem of deciding if M halts on the empty input.
We already know that is undecidable.
Thus, M0 cannot exist.

CS 4104: Data and Algorithm
Analysis Fall 2010 298 / 299

Other Noncomputable Functions

Does a program halt on EVERY input?

Do two programs compute the SAME function?

Does a particular line in a program get executed?

Does a program compute a particular function?

Does a program contain a “computer virus”?

CS 4104: Data and Algorithm
Analysis Fall 2010 299 / 299

