CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Fall 2010

Copyright (C) 2010 by Clifford A. Shaffer

Fibonacci Revisited (1)

Consider again the recursive function for computing the nth Fibonacci number.

```
int Fibr(int n) {
    if (n <= 1) return 1; // Base case
    return Fibr(n-1) + Fibr(n-2); // Recursive call
}
```

Cost is Exponential. Why?

Fibonacci Revisited (2)

If we could eliminate redundancy, cost is greatly reduced.

- Keep a table

```
int Fibrt(int n, int* Values) {
    // Assume Values has at least n slots, and all
    // slots are initialized to 0
    if (n <= 1) return 1; // Base case
    if (Values[n] == 0) // Compute and store
        Values[n] = Fibrt(n-1, Values)
        + Fibrt(n-2, Values);
    return Values[n];
}
```

Cost?
We don't need table, only last 2 values.

- Key is working bottom up.

Dynamic Programming (1)

The issue of avoiding recomputation of subproblems comes up frequently.

- General solution: Store a table to avoid recomputation.
- Can work bottom up (fill table from smallest to largest)
- Can work top down (recursively), remembering any subproblems that happen to be solved (check table first).

This approach is called Dynamic Programming

- Name comes from the field of dynamic control systems
- There, the act of storing precomputed values is referred to as "programming".

Dynamic Programming (2)

Dynamic Programming is an alternative to Divide and Conquer

- D\&C: Split problem into subproblems, solve independently, and recombine.
- DP: Pay bookkeeping costs to remember solutions to shared subproblems.

A Knapsack Problem

Problem: Given an integer capacity K and n items such that item i has integer size k_{i}, find a subset of the n items whose sizes exactly sum to K, if possible.
Formally: Find $S \subset\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in S} k_{i}=K .
$$

Example:

- $K=163$
- 10 items of sizes $4,9,15,19,27,44,54,68,73,101$.
- What if K is 164 ?

Instead of parameterizing problem just by n, parameterize with n and K.

- $P(n, K)$ is the problem with n items and capacity K.

Solving the Knapsack Problem

Think about divide and conquer (alternatively, induction).
What if we know how to solve $P(n-1, K)$?

- If $P(n-1, K)$ has a solution, then it is a solution for $P(n, K)$.
- Otherwise, $P(n, K)$ has a solution $\Leftrightarrow P\left(n-1, K-k_{n}\right)$ has a solution.
What if we know how to solve $P(n-1, k)$ for $0 \leq k \leq K$?
Cost: $T(n)=2 T(n-1)+c$.
$T(n)=\Theta\left(2^{n}\right)$.
BUT... there are only $n(K+1)$ subproblems to solve!

Solution

Clearly, there are many subproblems being solved repeatedly.

Store a $n \times K+1$ matrix to contain the solutions for all $P(i, k)$.

Fill in the rows from $i=0$ to n, left to right.

$$
\begin{aligned}
& \text { If } P(n-1, K) \text { has a solution, } \\
& \text { Then } P(n, K) \text { has a solution } \\
& \text { Else If } P\left(n-1, K-k_{n}\right) \text { has a solution } \\
& \text { Then } P(n, K) \text { has a solution } \\
& \text { Else } P(n, K) \text { has no solution. }
\end{aligned}
$$

Cost: $\Theta(n K)$.

Knapsack Example (1)

$K=10$.

Five items: 9, 2, 7, 4, 1.

	0	1	2	3	4	5	6	7	8	9	10
$k_{1}=9$	0	-	-	-	-	-	-		-	1	-
$k_{2}=2$	0	-	1	-	-	-	-		-	0	-
$k_{3}=7$	0	-	0	-	-	-	-	1	-	1/0	-
$k_{4}=4$	0	-	0	-	1	-	1	0	-	0	-
$k_{5}=1$	0	1	0	1	0	1	0	1/0	1	0	I

Knapsack Example (2)

Key:
$-:$ No solution for $P(i, k)$.
O : Solution(s) for $P(i, k)$ with i omitted.
I: Solution(s) for $P(i, k)$ with i included.
I/O: Solutions for $P(i, k)$ with included AND omitted.

Example: $M(3,9)$ contains O because $P(2,9)$ has a solution. It contains I because $P(2,2)=P(2,9-7)$ has a solution.

How can we find a solution to $P(5,10)$? How can we find ALL solutions to $P(5,10)$?

All Pairs Shortest Paths (1)

For every vertex $u, v \in \mathrm{~V}$, calculate $\mathrm{d}(u, v)$.
Define a k-path from u to v to be any path whose intermediate vertices all have indices less than k.

All Pairs Shortest Paths (2)

```
void Floyd(Graph& G) { // All-pairs shortest paths
    int D[G.n()][G.n()]; // Store distances
    for (int i=0; i<G.n(); i++) // Initialize D
        for (int j=0; j<G.n(); j++)
            D[i][j] = G.weight(i, j);
    for (int k=0; k<G.n(); k++) // Compute all k paths
    for (int i=0; i<G.n(); i++)
        for (int j=0; j<G.n(); j++)
        if (D[i][j] > (D[i][k] + D[k][j]))
            D[i][j] = D[i][k] + D[k][j];
}
```

