
CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Fall 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 4104: Data and Algorithm
Analysis Fall 2010 1 / 69



Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

CS 4104: Data and Algorithm
Analysis Fall 2010 43 / 69



Factorial Growth (1)

Which function grows faster? f (n) = 2n or g(n) = n!

How about h(n) = 22n?

n 1 2 3 4 5 6 7 8
g(n) n! 1 2 6 24 120 720 5040 40320
f (n) 2n 2 4 8 16 32 64 128 256
h(n) 22n 4 16 64 256 1024 4096 16384 65536

CS 4104: Data and Algorithm
Analysis Fall 2010 43 / 69



Factorial Growth (1)

Consider the recurrences:

h(n) =

{

4 n = 1
4h(n − 1) n > 1

g(n) =

{

1 n = 1
ng(n − 1) n > 1

I hope your intuition tells you the right thing.

But, how do you PROVE it?

Induction? What is the base case?
CS 4104: Data and Algorithm

Analysis Fall 2010 44 / 69



Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 45 / 69



Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

CS 4104: Data and Algorithm
Analysis Fall 2010 45 / 69



Using Logarithms (1)

n! ≥ 22n iff log n! ≥ log 22n = 2n. Why?

n! = n × (n − 1) × · · · × n
2
× (

n
2
− 1) × · · · × 2 × 1

≥ n
2
× n

2
× · · · × n

2
× 1 × · · · × 1 × 1

= (
n
2

)n/2

Therefore
log n! ≥ log(

n
2

)n/2 = (
n
2

) log(
n
2

).

Need only show that this grows to be bigger than 2n.
CS 4104: Data and Algorithm

Analysis Fall 2010 45 / 69



Using Logarithms (2)

(n
2) log(n

2) ≥ 2n
⇐⇒ log(n

2) ≥ 4
⇐⇒ n ≥ 32

So, n! ≥ 22n once n ≥ 32.

Now we could prove this with induction, using 32 for the
base case.

What is the tightest base case?

How did we get such a big over-estimate?
CS 4104: Data and Algorithm

Analysis Fall 2010 46 / 69



Logs and Factorials

We have proved that n! ∈ Ω(22n).

We have also proved that log n! ∈ Ω(n log n).

From here, its easy to prove that log n! ∈ O(n log n), so
log n! = Θ(n log n).

This does not mean that n! = Θ(nn).

Note that log n = Θ(log n2) but n 6= Θ(n2).

The log function is a “flattener” when dealing with
asymptotics.

CS 4104: Data and Algorithm
Analysis Fall 2010 47 / 69



A Simple Sum (1)

sum = 0; inc = 0;
for (i=1; i<=n; i++)
for (j=1; j<=i; j++) {

sum = sum + inc;
inc++;

}

Use summations to analyze this code fragment. The number
of assignments is:

2 +
n

∑

i=1

(
i

∑

j=1

2) = 2 +
n

∑

i=1

2i = 2 + 2
n

∑

i=1

i

CS 4104: Data and Algorithm
Analysis Fall 2010 48 / 69



A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most:

CS 4104: Data and Algorithm
Analysis Fall 2010 49 / 69



A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

CS 4104: Data and Algorithm
Analysis Fall 2010 49 / 69



A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is:

CS 4104: Data and Algorithm
Analysis Fall 2010 49 / 69



A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

CS 4104: Data and Algorithm
Analysis Fall 2010 49 / 69



A Simple Sum (2)

Give a good estimate.

Observe that the biggest term is 2 + 2n and there are n
terms, so its at most: 2n + 2n2

Actually, most terms are much less, and its a linear
ramp, so a better estimate is: about n2.

Give the exact solution.

Of course, we all know the closed form solution for
∑n

i=1 i .

And we should all know how to prove it using induction.

But where did it come from?
CS 4104: Data and Algorithm

Analysis Fall 2010 49 / 69



A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to:

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 69



A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is:

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 69



A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is:

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 69



A Problem-Specific Approach

Observe that we can “pair up” the first and last terms, the
2nd and (n−1)th terms, and so on. Each pair sums to: n +1.

The number of pairs is: n/2.

Thus, the solution is: (n + 1)(n/2).

CS 4104: Data and Algorithm
Analysis Fall 2010 50 / 69



A Little More General

Since the largest term is n and there are n terms, the
summation is less than n2.

If we are lucky, the solution is a polynomial.

Guess: f (n) = c1n2 + c2n + c3.
f (0) = 0 so c3 = 0.
For f (1), we get c1 + c2 = 1.
For f (2), we get 4c1 + 2c2 = 3.
Setting this up as a system of 2 equations on 2 variables, we
can solve to find that c1 = 1/2 and c2 = 1/2.

CS 4104: Data and Algorithm
Analysis Fall 2010 51 / 69



More General (2)

So, if it truely is a polynomial, it must be

f (n) = n2/2 + n/2 + 0 =
n(n + 1)

2
.

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?

CS 4104: Data and Algorithm
Analysis Fall 2010 52 / 69



An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.

To solve sum f , pick a known function g and find a pattern in
terms of f (n) − g(n) or f (n)/g(n).

Find the closed form solution for

f (n) =
n

∑

i=1

i .

CS 4104: Data and Algorithm
Analysis Fall 2010 53 / 69



Guessing (cont.)

Examples: Try g1(n) = n; g2(n) = f (n − 1).

n 1 2 3 4 5 6 7 8
f (n) 1 3 6 10 15 21 28 36

g1(n) 1 2 3 4 5 6 7 8
f (n)/g1(n) 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2

g2(n) 0 1 3 6 10 15 21 28
f (n)/g2(n) 3/1 4/2 5/3 6/4 7/5 8/6 9/7

What are the patterns?
f (n)

g1(n)
=

f (n)
g2(n)

=
CS 4104: Data and Algorithm

Analysis Fall 2010 54 / 69



Solving Summations (cont.)

Use algebra to rearrange and solve for f (n)

f (n)

n
=

n + 1
2

f (n)

f (n − 1)
=

n + 1
n − 1

CS 4104: Data and Algorithm
Analysis Fall 2010 55 / 69



Solving Summations (cont.)

f (n)

f (n − 1)
=

n + 1
n − 1

f (n)(n − 1) = (n + 1)f (n − 1)

f (n)(n − 1) = (n + 1)(f (n) − n)

nf (n) − f (n) = nf (n) + f (n) − n2 − n

2f (n) = n2 + n = n(n + 1)

f (n) =
n(n + 1)

2

Important Note: This is not a proof that f (n) = n(n + 1)/2.
Why?

CS 4104: Data and Algorithm
Analysis Fall 2010 56 / 69



Growth Rates
Two functions of n have different growth rates if as n goes
to infinity their ratio either goes to infinity or goes to zero.

CS 4104: Data and Algorithm
Analysis Fall 2010 57 / 69



Estimating Growth Rates

Exact equations relating program operations to running time
require machine-dependent constants.

Sometimes, the equation for exact running time is
complicated to compute.

Usually, we are satisfied with knowing an approximate
growth rate.

Example: Given two algorithms with growth rate c1n and
c22n!, do we need to know the values of c1 and c2?

Consider n2 and 3n. PROVE that n2 must eventually become
(and remain) bigger.

CS 4104: Data and Algorithm
Analysis Fall 2010 58 / 69



Proof by Contradiction

Assume there are some values for constants r and s such
that, for all values of n,

n2 < rn + s.

Then, n < r + s/n.

But, as n grows, what happens to s/n?

Since n grows toward infinity, the assumption must be false.

CS 4104: Data and Algorithm
Analysis Fall 2010 59 / 69



Some Growth Rates (1)

Since n2 grows faster than n,

2n2
grows faster than 2n.

n4 grows faster than n2.

n grows faster than
√

n.

2 log n grows no slower than log n.

CS 4104: Data and Algorithm
Analysis Fall 2010 60 / 69



Some Growth Rates (2)

Since n! grows faster than 2n,

n!! grows faster than 2n!.

2n! grows faster than 22n
.

n!2 grows faster than 22n.√
n! grows faster than

√
2n.

log n! grows no slower than n.

CS 4104: Data and Algorithm
Analysis Fall 2010 61 / 69



Some Growth Rates (3)

If f grows faster than g, then

Must
√

f grow faster than
√

g?

Must log f grow faster than log g?

log n is related to n in exactly the same way that n is related
to 2n.

2log n = n

CS 4104: Data and Algorithm
Analysis Fall 2010 62 / 69



Fibonacci Numbers (Iterative)

f (n) = f (n − 1) + f (n − 2) for n ≥ 2; f (0) = f (1) = 1.

long Fibi(int n) {
long past, prev, curr;
past = prev = curr = 1; // curr holds Fib(i)
for (int i=2; i<=n; i++) { // Compute next value
past = prev; prev = curr; // past holds Fib(i-2)
curr = past + prev; // prev holds Fib(i-1)

}
return curr;

}

The cost of Fibi is easy to compute:
CS 4104: Data and Algorithm

Analysis Fall 2010 63 / 69



Fibonacci Numbers (Recursive)

int Fibr(int n) {
if ((n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursive call

}

What is the cost of Fibr?

CS 4104: Data and Algorithm
Analysis Fall 2010 64 / 69



Analysis of Fibr

Use divide-and-guess with f (n − 1).

n 1 2 3 4 5 6 7
f (n) 1 2 3 5 8 13 21

f (n)/f (n − 1) 1 2 1.5 1.666 1.625 1.615 1.619

Following this out, it appears to settle to a ratio of 1.618.

Assuming f (n)/f (n − 1) really tends to a fixed value x , let’s
verify what x must be.

f (n)

f (n − 2)
=

f (n − 1)

f (n − 2)
+

f (n − 2)

f (n − 2)
→ x + 1

CS 4104: Data and Algorithm
Analysis Fall 2010 65 / 69



Analysis of Fibr (cont.)

For large n,

f (n)

f (n − 2)
=

f (n)

f (n − 1)

f (n − 1)

f (n − 2)
→ x2

If x exists, then x2 − x − 1 → 0.

Using the quadratic equation, the only solution greater than
one is

x =
1 +

√
5

2
≈ 1.618.

What does this say about the growth rate of f?
CS 4104: Data and Algorithm

Analysis Fall 2010 66 / 69



Order Notation
little oh f (n) ∈ o(g(n)) < lim f (n)/g(n) = 0
big oh f (n) ∈ O(g(n)) ≤
Theta f (n) = Θ(g(n)) = f = O(g) and

g = O(f )
Big Omega f (n) ∈ Ω(g(n)) ≥
Little Omega f (n) ∈ ω(g(n)) > lim g(n)/f (n) = 0

I prefer “f ∈ O(n2)” to “f = O(n2)”
While n ∈ O(n2) and n2 ∈ O(n2), O(n) 6= O(n2).

Note: Big oh does not say how good an algorithm is – only
how bad it CAN be.

If A ∈ O(n) and B ∈ O(n2), is A better than B?

Perhaps... but perhaps better analysis will show that
A = Θ(n) while B = Θ(log n).

CS 4104: Data and Algorithm
Analysis Fall 2010 67 / 69



Limitations on Order Notation

Statement: Algorithm A’s resource requirements grow
slower than Algorithm B’s resource requirements.

Is A better than B?

Potential problems:
How big must the input be?
Some growth rate differences are trivial

◮ Example: Θ(log2 n) vs. Θ(n1/10).
It is not always practical to reduce an algorithm’s growth
rate

◮ Shaving a factor of n reduces cost by a factor of a million
for input size of a million.

◮ Shaving a factor of log log n saves only a factor of 4-5.
CS 4104: Data and Algorithm

Analysis Fall 2010 68 / 69



Practicality Window

In general:

We have limited time to solve a problem.

We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well
behaved, so that Order Notation gives practical indications.

CS 4104: Data and Algorithm
Analysis Fall 2010 69 / 69


