CS 4104: Data and Algorithm Analysis

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Fall 2010

Copyright (C) 2010 by Clifford A. Shaffer

Factorial Growth (1)

Which function grows faster? $f(n)=2^{n}$ or $g(n)=n$!
How about $h(n)=2^{2 n}$?

Factorial Growth (1)

Which function grows faster? $f(n)=2^{n}$ or $g(n)=n!$
How about $h(n)=2^{2 n}$?

	n	1	2	3	4	5	6	7	8
$g(n)$	$n!$	1	2	6	24	120	720	5040	40320
$f(n)$	2^{n}	2	4	8	16	32	64	128	256
$h(n)$	$2^{2 n}$	4	16	64	256	1024	4096	16384	65536

Factorial Growth (1)

Consider the recurrences:

$$
\begin{aligned}
& h(n)= \begin{cases}4 & n=1 \\
4 h(n-1) & n>1\end{cases} \\
& g(n)= \begin{cases}1 & n=1 \\
n g(n-1) & n>1\end{cases}
\end{aligned}
$$

I hope your intuition tells you the right thing.
But, how do you PROVE it?
Induction? What is the base case?

Using Logarithms (1)

$n!\geq 2^{2 n}$ iff $\log n!\geq \log 2^{2 n}=2 n$. Why?

Using Logarithms (1)

$n!\geq 2^{2 n}$ iff $\log n!\geq \log 2^{2 n}=2 n$. Why?

$$
\begin{aligned}
n! & =n \times(n-1) \times \cdots \times \frac{n}{2} \times\left(\frac{n}{2}-1\right) \times \cdots \times 2 \times 1 \\
& \geq \frac{n}{2} \times \frac{n}{2} \times \cdots \times \frac{n}{2} \times 1 \times \cdots \times 1 \times 1 \\
& =\left(\frac{n}{2}\right)^{n / 2}
\end{aligned}
$$

Using Logarithms (1)

$n!\geq 2^{2 n}$ iff $\log n!\geq \log 2^{2 n}=2 n$. Why?

$$
\begin{aligned}
n! & =n \times(n-1) \times \cdots \times \frac{n}{2} \times\left(\frac{n}{2}-1\right) \times \cdots \times 2 \times 1 \\
& \geq \frac{n}{2} \times \frac{n}{2} \times \cdots \times \frac{n}{2} \times 1 \times \cdots \times 1 \times 1 \\
& =\left(\frac{n}{2}\right)^{n / 2}
\end{aligned}
$$

Therefore

$$
\log n!\geq \log \left(\frac{n}{2}\right)^{n / 2}=\left(\frac{n}{2}\right) \log \left(\frac{n}{2}\right) .
$$

Need only show that this grows to be bigger than 2 n .

Using Logarithms (2)

So, $n!\geq 2^{2 n}$ once $n \geq 32$.

Now we could prove this with induction, using 32 for the base case.

- What is the tightest base case?
- How did we get such a big over-estimate?

Logs and Factorials

We have proved that $n!\in \Omega\left(2^{2 n}\right)$.
We have also proved that $\log n!\in \Omega(n \log n)$.
From here, its easy to prove that $\log n!\in O(n \log n)$, so $\log n!=\Theta(n \log n)$.

This does not mean that $n!=\Theta\left(n^{n}\right)$.

- Note that $\log n=\Theta\left(\log n^{2}\right)$ but $n \neq \Theta\left(n^{2}\right)$.
- The log function is a "flattener" when dealing with asymptotics.

A Simple Sum (1)

```
sum = 0; inc= 0;
for (i=1; i<=n; i++)
    for (j=1; j<=i; j++) {
    sum = sum + inc;
    inc++;
    }
```

Use summations to analyze this code fragment. The number of assignments is:

$$
2+\sum_{i=1}^{n}\left(\sum_{j=1}^{i} 2\right)=2+\sum_{i=1}^{n} 2 i=2+2 \sum_{i=1}^{n} i
$$

A Simple Sum (2)

Give a good estimate.

- Observe that the biggest term is $2+2 n$ and there are n terms, so its at most:

A Simple Sum (2)

Give a good estimate.

- Observe that the biggest term is $2+2 n$ and there are n terms, so its at most: $2 n+2 n^{2}$

A Simple Sum (2)

Give a good estimate.

- Observe that the biggest term is $2+2 n$ and there are n terms, so its at most: $2 n+2 n^{2}$
- Actually, most terms are much less, and its a linear ramp, so a better estimate is:

A Simple Sum (2)

Give a good estimate.

- Observe that the biggest term is $2+2 n$ and there are n terms, so its at most: $2 n+2 n^{2}$
- Actually, most terms are much less, and its a linear ramp, so a better estimate is: about n^{2}.

A Simple Sum (2)

Give a good estimate.

- Observe that the biggest term is $2+2 n$ and there are n terms, so its at most: $2 n+2 n^{2}$
- Actually, most terms are much less, and its a linear ramp, so a better estimate is: about n^{2}.

Give the exact solution.

- Of course, we all know the closed form solution for $\sum_{i=1}^{n} i$.
- And we should all know how to prove it using induction.
- But where did it come from?

A Problem-Specific Approach

Observe that we can "pair up" the first and last terms, the 2nd and ($n-1$)th terms, and so on. Each pair sums to:

A Problem-Specific Approach

Observe that we can "pair up" the first and last terms, the 2nd and ($n-1$)th terms, and so on. Each pair sums to: $n+1$.

The number of pairs is:

A Problem-Specific Approach

Observe that we can "pair up" the first and last terms, the 2 nd and ($n-1$)th terms, and so on. Each pair sums to: $n+1$.

The number of pairs is: $n / 2$.
Thus, the solution is:

A Problem-Specific Approach

Observe that we can "pair up" the first and last terms, the 2 nd and ($n-1$)th terms, and so on. Each pair sums to: $n+1$.

The number of pairs is: $n / 2$.
Thus, the solution is: $(n+1)(n / 2)$.

A Little More General

Since the largest term is n and there are n terms, the summation is less than n^{2}.

If we are lucky, the solution is a polynomial.
Guess: $f(n)=c_{1} n^{2}+c_{2} n+c_{3}$. $f(0)=0$ so $c_{3}=0$.
For $f(1)$, we get $c_{1}+c_{2}=1$.
For $f(2)$, we get $4 c_{1}+2 c_{2}=3$.
Setting this up as a system of 2 equations on 2 variables, we can solve to find that $c_{1}=1 / 2$ and $c_{2}=1 / 2$.

More General (2)

So, if it truely is a polynomial, it must be

$$
f(n)=n^{2} / 2+n / 2+0=\frac{n(n+1)}{2} .
$$

Use induction to prove. Why is this step necessary?

Why is this not a universal approach to solving summations?

An Even More General Approach

Subtract-and-Guess or Divide-and-Guess strategies.
To solve sum f, pick a known function g and find a pattern in terms of $f(n)-g(n)$ or $f(n) / g(n)$.

Find the closed form solution for

$$
f(n)=\sum_{i=1}^{n} i .
$$

Guessing (cont.)

Examples: $\operatorname{Try} g_{1}(n)=n ; g_{2}(n)=f(n-1)$.

n	1	2	3	4	5	6	7	8
$f(n)$	1	3	6	10	15	21	28	36
$g_{1}(n)$	1	2	3	4	5	6	7	8
$f(n) / g_{1}(n)$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	$6 / 2$	$7 / 2$	$8 / 2$	$9 / 2$
$g_{2}(n)$	0	1	3	6	10	15	21	28
$f(n) / g_{2}(n)$		$3 / 1$	$4 / 2$	$5 / 3$	$6 / 4$	$7 / 5$	$8 / 6$	$9 / 7$

What are the patterns?
$\frac{f(n)}{g_{1}(n)}=$
$\frac{f(n)}{g_{2}(n)}=$

Solving Summations (cont.)

Use algebra to rearrange and solve for $f(n)$

$$
\begin{gathered}
\frac{f(n)}{n}=\frac{n+1}{2} \\
\frac{f(n)}{f(n-1)}=\frac{n+1}{n-1}
\end{gathered}
$$

Solving Summations (cont.)

$$
\begin{aligned}
\frac{f(n)}{f(n-1)} & =\frac{n+1}{n-1} \\
f(n)(n-1) & =(n+1) f(n-1) \\
f(n)(n-1) & =(n+1)(f(n)-n) \\
n f(n)-f(n) & =n f(n)+f(n)-n^{2}-n \\
2 f(n) & =n^{2}+n=n(n+1) \\
f(n) & =\frac{n(n+1)}{2}
\end{aligned}
$$

Important Note: This is not a proof that $f(n)=n(n+1) / 2$. Why?

Growth Rates

Two functions of n have different growth rates if as n goes to infinity their ratio either goes to infinity or goes to zero.

Estimating Growth Rates

Exact equations relating program operations to running time require machine-dependent constants.

Sometimes, the equation for exact running time is complicated to compute.

Usually, we are satisfied with knowing an approximate growth rate.

Example: Given two algorithms with growth rate $c_{1} n$ and $c_{2} 2^{n!}$, do we need to know the values of c_{1} and c_{2} ?

Consider n^{2} and $3 n$. PROVE that n^{2} must eventually become (and remain) bigger.

Proof by Contradiction

Assume there are some values for constants r and s such that, for all values of n,

$$
n^{2}<r n+s .
$$

Then, $n<r+s / n$.
But, as n grows, what happens to s / n ?
Since n grows toward infinity, the assumption must be false.

Some Growth Rates (1)

Since n^{2} grows faster than n,

- $2^{n^{2}}$ grows faster than 2^{n}.
- n^{4} grows faster than n^{2}.
- n grows faster than \sqrt{n}.
- $2 \log n$ grows no slower than $\log n$.

Some Growth Rates (2)

Since $n!$ grows faster than 2^{n},

- $n!$! grows faster than 2^{n} !.
- $2^{n!}$ grows faster than $2^{2^{n}}$.
- $n!^{2}$ grows faster than $2^{2 n}$.
- $\sqrt{n!}$ grows faster than $\sqrt{2^{n}}$.
- $\log n$! grows no slower than n.

Some Growth Rates (3)

If f grows faster than g, then

- Must \sqrt{f} grow faster than \sqrt{g} ?
- Must $\log f$ grow faster than $\log g$?
$\log n$ is related to n in exactly the same way that n is related to 2^{n}.
- $2^{\log n}=n$

Fibonacci Numbers (Iterative)

$$
f(n)=f(n-1)+f(n-2) \text { for } n \geq 2 ; f(0)=f(1)=1 .
$$

```
long Fibi(int n) {
    long past, prev, curr;
    past = prev = curr = 1; // curr holds Fib(i)
    for (int i=2; i<=n; i++) { // Compute next value
            past = prev; prev = curr; // past holds Fib(i-2)
        curr = past + prev; // prev holds Fib(i-1)
    }
    return curr;
}
```

The cost of Fibi is easy to compute:

Fibonacci Numbers (Recursive)

```
int Fibr(int n) {
    if ((n <= 1) return 1; // Base case
    return Fibr(n-1) + Fibr(n-2); // Recursive call
}
```

What is the cost of Fibr?

Analysis of Fibr

Use divide-and-guess with $f(n-1)$.

n	1	2	3	4	5	6	7
$f(n)$	1	2	3	5	8	13	21
$f(n) / f(n-1)$	1	2	1.5	1.666	1.625	1.615	1.619

Following this out, it appears to settle to a ratio of 1.618.
Assuming $f(n) / f(n-1)$ really tends to a fixed value x, let's verify what x must be.

$$
\frac{f(n)}{f(n-2)}=\frac{f(n-1)}{f(n-2)}+\frac{f(n-2)}{f(n-2)} \rightarrow x+1
$$

Analysis of Fibr (cont.)

For large n,

$$
\frac{f(n)}{f(n-2)}=\frac{f(n)}{f(n-1)} \frac{f(n-1)}{f(n-2)} \rightarrow x^{2}
$$

If x exists, then $x^{2}-x-1 \rightarrow 0$.
Using the quadratic equation, the only solution greater than one is

$$
x=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

What does this say about the growth rate of f ?

Order Notation

little oh big oh Theta

$$
\begin{aligned}
& f(n) \in O(g(n))<\lim f(n) / g(n)=0 \\
& f(n) \in O(g(n)) \leq \\
& f(n)=\Theta(g(n))=f=O(g) \text { and } \\
&
\end{aligned}
$$

Big Omega $\quad f(n) \in \Omega(g(n)) \geq$ Little Omega $f(n) \in \omega(g(n))>\lim g(n) / f(n)=0$
I prefer " $f \in O\left(n^{2}\right)$ " to " $f=O\left(n^{2}\right)$ "

- While $n \in O\left(n^{2}\right)$ and $n^{2} \in O\left(n^{2}\right), O(n) \neq O\left(n^{2}\right)$.

Note: Big oh does not say how good an algorithm is - only how bad it CAN be.

If $\mathcal{A} \in O(n)$ and $\mathcal{B} \in O\left(n^{2}\right)$, is \mathcal{A} better than \mathcal{B} ?
Perhaps... but perhaps better analysis will show that $\mathcal{A}=\Theta(n)$ while $\mathcal{B}=\Theta(\log n)$.

Limitations on Order Notation

Statement: Algorithm \mathcal{A} 's resource requirements grow slower than Algorithm \mathcal{B} 's resource requirements.

Is \mathcal{A} better than \mathcal{B} ?
Potential problems:

- How big must the input be?
- Some growth rate differences are trivial
- Example: $\Theta\left(\log ^{2} n\right)$ vs. $\Theta\left(n^{1 / 10}\right)$.
- It is not always practical to reduce an algorithm's growth rate
- Shaving a factor of n reduces cost by a factor of a million for input size of a million.
- Shaving a factor of $\log \log n$ saves only a factor of 4-5.

Practicality Window

In general:

- We have limited time to solve a problem.
- We have a limited input size.

Fortunately, algorithm growth rates are USUALLY well behaved, so that Order Notation gives practical indications.

