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Reductions
A reduction is a transformation of one problem to another.

Purposes: To compare the difficulty of two problems.
Use one algorithm to solve another problem (upper
bound).
Compare the relative difficulty of two problems (lower
bound).

Notation: A problem is a mapping of inputs to outputs.
Format looks as follows:
SORTING:

Input: A sequence of integers x0, x1, ..., xn−1.
Output: A permutation y0, y1, ..., yn−1 of the sequence
such that yi ≤ yj whenever i < j .
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PAIRING
PAIRING:

Input: Two sequences of integers X = (x0, x1, ..., xn−1)
and Y = (y0, y1, ..., yn−1).
Output: A pairing of the elements in the two sequences
such that the least value in X is paired with the least
value in Y , and so on.

How can we solve this?

One algorithm:
Sort X .
Sort Y .
Now, pair xi with yi for 0 ≤ i < n.

Terminology: We say that PAIRING is reduced to
SORTING, since SORTING is used to solve PAIRING.
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PAIRING Reduction Process

The reduction of PAIRING to SORTING requires 3 steps:

Convert an instance of PAIRING to two instances of
SORTING.

Run SORTING (twice).

CONVERT the output for the two instances of SORTING
to an output for the original PAIRING instance.

What do we require about the transformations to make them
useful?

What is the cost of this algorithm?
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PAIRING Lower Bound (1)

We have an upper bound for PAIRING equal to that of
SORTING.

What is the lower bound for PAIRING?

Pretend that there is a O(n) time algorithm for PAIRING.
Consider this algorithm for SORTING:

Transform SORTING to PAIRING with X being the input
sequence for SORTING, and Y a sequence containing
the values 0 through n − 1
Run the O(n) time PAIRING algorithm.
Take the pairs output by PAIRING and use a simple
binsort to order them by the second value of the pair.
The first items of the pair will be the sorted list.
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PAIRING Lower Bound (2)

What is the cost of this algorithm?

What does this say about the existence of an O(n) time
algorithm for PAIRING?
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Reduction Process
Consider any two problems for which a suitable reduction
from one to the other can be found.

The first problem P1 takes input instance I and transforms
that to solution S.

The second problem P2 takes input instance I′ and
transforms that to solution S′.

A reduction is the following three-step process:
Transform an arbitrary instance I of problem P1 and
transform it to a (possibly special) instance I′ of P2.
Apply an algorithm for P2 to I′, yielding S′.
Transform S′ to a solution for P1 (S). Note that S MUST
BE THE CORRECT SOLUTION for I!
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Reduction Process (Cont.)

Note that reduction is NOT an algorithm for either problem.

It does mean, given “cheap” transformations, that:

The upper bound for P1 is at most the upper bound for
P2.

The lower bound for P2 is at least the lower bound for
P1.
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General Black Box Diagram

Transform 1

Problem A: I

Problem B

Transform 2

I’

SLN’

SLN
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Notation Summary

Problem A has input I, solution SLN
Problem B has input I’, solution SLN’
Problem A is reduced to Problem B
Problem A is solved by reducing to Problem B (which
has known upper bound)
We prove a lower bound on B by a reduction from
Problem A (which has known lower bound)
Transformations 1 and 2 must be “cheap”
We must be able to accept the full range of inputs I to
Problem A.
However, I’ may be a restricted subset of all possible
inputs to B.
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PAIRING Reduction Black Box
I
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PAIRING Notation

Transform 1 takes input I and produces output I’.
I is a sequence S.
I’ is two sequences: S and the set of numbers from 0 to
n − 1.
Transform 1 takes a sequence as input, and produces
the two sequences as output.
Transform 2 takes SLN’ as input and produces output
SLN.
SLN’ is a pairing.
SLN is a sorted sequence
Transform 2 takes the pairing and runs a binsort on it to
generate the sorted sequence.
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Another Reduction Example

How much does it cost to multiply two n-digit numbers?
Naive algorithm requires Θ(n2) single-digit
multiplications.
Faster (but more complicated) algorithms are known,
but none so fast as to be O(n).

Is it faster to square an n-digit number than it is to multiply
two n-digit numbers?

This is a special case, so might go faster.
Answer: No, because

X × Y =
(X + Y )2 − (X − Y )2

4
.

If a fast algorithm can be found for squaring, then it could be
used to make a fast algorithm for multiplying.

CS 4104: Data and Algorithm
Analysis Fall 2010 250 / 306



Matrix Multiplication

Standard matrix multiplication for two n × n matrices
requires Θ(n3) multiplications.

Faster algorithms are known, but none so fast as to be
O(n2).

A symmetric matrix is one in which Mij = Mji .

Can we multiply symmetric matrices faster than regular
matrices?

[

0 A
AT 0

] [

0 BT

B 0

]

=

[

AB 0
0 ATBT

]

.
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Some Puzzles
1. A hiker leaves at 8:00 AM and hikes over the mountain.
The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.
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The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?
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1. A hiker leaves at 8:00 AM and hikes over the mountain.
The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?

These puzzles have the quality that, while their answers may
be hard to FIND, they are easy to CHECK.
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Some Puzzles
1. A hiker leaves at 8:00 AM and hikes over the mountain.
The next day, she again leaves at 8:00 AM and returns to
her starting point along the same path. Prove that there is a
point on the path such that she was at that point at the same
time on both days.

2. Take a chessboard and cover it with dominos (a domino
covers two adjacent squares of the board). Now, remove the
upper left and lower right corners of the board. Now, can it
still be covered with dominos?

These puzzles have the quality that, while their answers may
be hard to FIND, they are easy to CHECK.

3. Is 667 composite or prime?
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Complexity and Computability (1)

Complexity:

How cheaply can this be computed?

How hard is this to compute?

Computability:

When can this be computed?

Can this be computed at all?
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Complexity and Computability (2)

Types of “hard” problems:
Hard to understand (or specify) the problem

◮ Software Engineering

Hard to design a solution
◮ Artificial Intelligence

Hard to compute in reasonable time
◮ Complexity Theory

Hard (impossible) to do at all
◮ Computability Theory
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Hard Problems (1)

We say that a problem is computationally “hard” if the
running time of the best known algorithm is exponential on
the size of its input.

Support:
Polynomials are closed under composition and addition.

◮ Doing polynomial time operations in series is polynomial.
All computers today are polynomially related.

◮ If it takes polynomial time on one computer, it will take
polynomial time on any other computer.

Polynomial time is (generally) feasible, while exponential
time is (generally) infeasible.

◮ An empirical observation: For most polynomial-time
algorithms, the polynomial is of low degree.
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Hard Problems (2)

Note that for a faster machine, the size of problem that can
be run in a fixed amount of time

grows by a multiplicative factor for a polynomial-time
algorithm.

grows by an additive factor for an exponential-time
algorithm.
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Nondeterminism
Imagine a computer that works by guessing the correct
solution from among all possible solutions to a problem.
Alternative: Super parallel machine that tests all
possible solutions simultaneously.
It might solve some problems more quickly than a
regular computer.
Consider a problem which, when given a proposed
solution, we can check in polynomial time if the solution
is correct.
Even if the number of guesses is exponential, checking
(in this case) is polynomial.
Conversely: if you can’t guess an answer and check in
polynomial time, there can be no polynomial time
algorithm!
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Nondeterministic Algorithm

An algorithm is nondeterministic if it works by guessing the
right answer from among a finite number of choices.

Alternatively, imagine a tree of choices, polynomial levels
deep.

A super parallel machine follows all branches of the tree
in parallel.
If any single branch reaches a solution, the problem is
solved.

A problem that can be solved in polynomial time by a
nondeterministic machine is said to be “in NP.”

Is Towers of Hanoi in NP?
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Traveling Salesman Problem

TRAVELING SALESMAN (1):

Input: A complete, directed graph G with distances
assigned to each edge in the graph.

Output: Shortest simple cycle that includes every vertex.

Problem: How to tell if a proposed solution is shortest?
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Traveling Salesman (Cont.)

Decision problem : A problem with a YES or NO answer.

TRAVELING SALESMAN (2):

Input: A complete, directed graph G with distances
assigned to each edge in the graph, and an integer K .

Output: YES if there is a simple cycle with total distance
≤ K containing every vertex in G, and NO otherwise.

In NP: We can guess a cycle, and quickly check if it meets
the requirements.
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NP-complete Problems (1)

Many problems are like traveling salesman:
They are in NP.
Nobody knows a polynomial time algorithm.
Is there any relationship between them?

A problem X is said to be NP-hard if ANY problem in NP
can be reduced to X in polynomial time.

X is AS HARD AS any problem in NP.

A problem X is said to be NP-complete if
1 It is in NP.
2 It is NP-hard.
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NP-complete Problems (2)

To start the process we need to prove just one problem H is
NP-complete.

To show that X is NP-hard, just reduce H to X .

DON’T GET IT BACKWARDS!
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Why Care about NP-Completeness?

Your boss asks you to write a fast program for TRAVELING
SALESMAN.

Its obviously an easy problem to understand.
She can easily see some algorithm to solve the problem.
It must be easy to speed up!
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Why Care about NP-Completeness?

Your boss asks you to write a fast program for TRAVELING
SALESMAN.

Its obviously an easy problem to understand.
She can easily see some algorithm to solve the problem.
It must be easy to speed up!

If you can’t do the job, what do you tell her?
I can’t do it.
I can’t find evidence that anyone can do it.
Nobody has been able to do it, despite the fact that
many people have tried. Furthermore, if anyone solved
any of this long list of problems, then they would be able
to do this problem too.
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Satisfiability

Let E be a Boolean expression over variables x1, x2, ..., xn in
Conjunctive Normal form:

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

SATISFIABILITY (SAT):
INPUT: A Boolean expression E over variables x1, x2, ...
in Conjunctive Normal Form.
OUTPUT: YES if there is an assignment to the variables
that makes E true, NO otherwise.

This is the “grand-daddy” NP-complete problem.

Cook’s Theorem: SAT is NP-complete.
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NP-completeness Proof Model

Implication: If a polynomial time algorithm can be found for
ANY problem that is NP-complete, then by a chain of
polynomial time reductions, ALL NP-complete problems can
be solved in polynomial time.

To show that a decision problem X is NP-complete:
1 Show that X is in NP.

◮ Give a polynomial-time, nondeterministic algorithm.
2 Show that X is NP-hard.

◮ Choose a known NP-complete problem, A.
◮ Describe a polynomial-time transformation that takes an

ARBITRARY instance I of A to an instance I′ of X .
◮ Describe a polynomial-time transformation from S′ to S

such that S is the solution for I.
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Cook’s Proof Outline
1 Any decision problem can be recast as a language

acceptance problem: F (I) = YES ⇔ L(I ′) = ACCEPT.
2 Turing machines are a simple model of computation for

writing programs that are language acceptors.
3 There is a “universal” Turing machine that can take as

input a description for a Turing machine, and an input
string, and return the result of the execution of that
machine on that string.

4 This in turn can be cast as a boolean expression such
that the expression is satisfiable if and only if the Turing
machine yields ACCEPT for that string.

5 Thus, any decision problem that is performable by the
Turing machine is transformable to SAT: This is
NP-hard.
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The World of Exponential-time(?)
Problems

Question: Does P = NP?
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3-SATISFIABILITY (3 SAT)

Input : Boolean expression E in CNF such that each clause
contains exactly 3 literals.
Output : YES if expression can be satisfied, NO otherwise.

A special case of SAT.
Is 3 SAT easier than SAT?

Theorem : 3 SAT is NP-complete.
Proof :

3 SAT is in NP.
◮ Guess (nondeterministically) values for the variables.
◮ The correctness of the guess can be verified in

polynomial time.
3 SAT is NP-hard, by a reduction from SAT to 3 SAT.
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3 SAT is NP-hard

Find a polynomial time reduction from SAT to 3 SAT.

Let E = C1 · C2 · ... · Ck by any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = x1 + x2 + ... + xj where x1, ..., xj are literals.
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Replacement (1)

1 j = 1, so Ci = x1. Replace Ci with

(x1 + v + w) · (x1 + v + w) · (x1 + v + w) · (x1 + v + w)

where v and w are new variables.
2 j = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable.
3 j > 3. Replace Ci with

(x1 + x2 + z1) · (x3 + z1 + z2) · (x4 + z2 + z3) · ...

·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.
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Replacement (2)

After appropriate replacements have been made for each Ci ,
a Boolean expression results that is an instance of 3 SAT.

Each replacement is satisfiable if and only if the original
clause is satisfiable.

The reduction is clearly polynomial time.
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Third Case
If E is satisfiable, then E ′ is satisfiable:

Assume xm is assigned true.
Assign zt , t ≤ m − 2 as true and zk , t ≥ m − 1 as false.
Then all clauses in Case (3) are satisfied.

If E ′ is satisfiable, then E is satisfiable:
Proof by contradiction.
If x1, x2, ..., xj are all false, then z1, z2, ..., zj−3 are all true.
But then (xj−1 + xj−2 + zj−3) is false, a contradiction.

(Not necessary for proof, but may help insight.)
Conversely, if E is not satisfiable, then E ′ is not satisfiable.

E not satisfiable means all xi are false.
This leaves E ′ as

(z1) · (z1 + z2) · ... · (zj−4 + zj−3) · (zj−3)

which is NOT satisfiable.
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Two Problems (1)

VERTEX COVER:
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of vertices in G of size k or
less such that every edge in the graph has at least one of its
ends in the subset; NO otherwise.

K-CLIQUE :
Input : An undirected graph G and an integer k .
Output : YES if there is a subset of the vertices of size k or
greater that is a complete graph (a clique).
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Two Problems (2)

We can reduce either problem to the other by switching G to
its inverse G′.

If edge (i , j) is in G, it is NOT in G′.

If edge (i , j) is NOT in G, it IS in G′.
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K CLIQUE is NP-Complete (1)

Easy to show that K CLIQUE is in NP.

Reduce SAT to K CLIQUE.

An instance of SAT is a Boolean expression

B = C1 · C2 · ... · Cm

where
Ci = y [i , 1] + y [i , 2] + ... + y [i , ki ].

Transform this to an instance of K CLIQUE as follows.

V = {v [i , j ]|1 ≤ i ≤ m, 1 ≤ j ≤ ki}.
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K CLIQUE is NP-Complete (2)

All vertices v [i1, j1] and v [i2, j2] have an edge between them
UNLESS they are two literals within the same clause (i1 = i2)
OR they are opposite values for the same variable.

Set k = m.
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Example

B = (y1 + y2) · (y1 + y2 + y3).

B is satisfiable if and only if G has a clique of size ≥ k .
B satisfiable implies there is a truth assignment such
that y [i , ji ] is true for each i .
But then, v [i , ji ] must be in a clique of size k = m.
If G has clique of size ≥ k , then clique must have size
exactly k with one vertex v [i , ji ] in clique for each i .
There is a truth assignment making each y [i , ji ] true.
That truth assignment satisfies B.

Conclude that K CLIQUE is NP-hard, therefore
NP-complete.
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Coping with NP-Completeness

1 Organize to reduce costs.
◮ Dynamic programming.
◮ Backtracking.
◮ Branch and Bounds.

2 Find subproblems of the original problem that have
polynomial-time solutions.

◮ Significant special cases that are useful to answer.
3 Approximation algorithms.
4 Randomized algorithms.
5 Use heuristics.

◮ Greedy algorithms.
◮ Simulated Annealing.
◮ Genetic Algorithms.
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Knapsack Analysis Revisited

Fact: Knapsack is NP-complete.
But we have a Θ(nK ) algorithm!!

Question: How big is K ?
Input size is typically O(n log K ) since the item sizes are
smaller than K .
Thus, Θ(nK ) is exponential on input size.

This algorithm is tractable if the numbers are “reasonable.”
nK can be thousands.
This is different from TRAVELING SALESMAN which
cannot handle n = 100.

Such an algorithm is called a pseudo-polynomial time
algorithm.
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Subproblems and Special Cases

Some restricted cases of NP-complete problems are useful,
and not NP-complete.

VERTEX COVER and K CLIQUE have polynomial time
algorithms for bipartite graphs.

2-SATISFIABILITY has a polynomial time solution.

Several geometric problems are polynomial-time in two
dimensions, but not in three or more.

KNAPSACK is polynomial if the numbers are “small.”
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Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on quality of the solution.

For VERTEX COVER:
Let M be a maximal (not necessarily maximum)
matching in G.

◮ A matching pairs vertices (with connecting edges) so
that no vertex is paired with more than one match.

◮ Maximal means pick as many pairs as possible.
If OPT is the size of a minimum vertex cover, then

|M| ≤ 2 · OPT

because at least one endpoint of every matched edge
must be in ANY vertex cover.
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BIN PACKING (1)

INPUT: Numbers x1, x2, ..., xn between 0 and 1, and an
unlimited supply of bins of size 1.

OUTPUT: An assignment of numbers to bins that requires
the fewest possible number of bins (no bin can hold numbers
whose sum exceeds 1).

This problem is NP-complete.

CS 4104: Data and Algorithm
Analysis Fall 2010 282 / 306



BIN PACKING (2)

Heuristic: First fit
Place a number in the first bin that fits.
The number of bins used is no more than twice the sum
of the numbers.
First fit can be much worse than optimal.
Consider 6 of 1/7 + ǫ, 6 of 1/3 + ǫ, 6 of 1/2 + ǫ.

Better is 6 bins containing one of each size.

Better Heuristic: Decreasing first fit
Sort the items, then use first fit.
This can be proven to yield no more than 11/9 the
optimal number of bins.
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Summary

The theory of NP-completeness gives a technique for
separating tractable from (probably) untractable problems.

When faced with a new problem, we might alternate
between:

Check if it is tractable (find a fast solution).

Check if it is intractable (prove the problem is
NP-complete).

If the problem is in NP-complete, then use one of the
“coping” strategies.
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