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Divide and Conquer Algorithms

Study three divide and conquer algorithms:
I Counting inversions.
I Finding the closest pair of points.
I Integer multiplication.

First two problems use clever conquer strategies.

Third problem uses a clever divide strategy.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Motivation

Collaborative filtering: match one user’s preferences to those of other
users, e.g., purchases, books, music.
Meta-search engines: merge results of multiple search engines into a
better search result.
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Fundamental Question

How do we compare a pair of rankings?
I My ranking of songs: ordered list of integers from 1 to n.
I Your ranking of songs: a1, a2, . . . , an, a permutation of the integers

from 1 to n.

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10
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Comparing Rankings

1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 6 8 5 3 9 7 11 12 10

Suggestion: two rankings of songs are very similar if they have few
inversions.

I The second ranking has an inversion if there exist i , j such that i < j
but ai > aj .

I The number of inversions s is a measure of the difference between the
rankings.

Question also arises in statistics: Kendall’s rank correlation of two
lists of numbers is 1− 2s/ (n(n − 1)).
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Counting Inversions

Count Inversions

INSTANCE: A list L = x1, x2, . . . , xn of distinct integers between
1 and n.

SOLUTION: The number of pairs (i , j), 1 ≤ i < j ≤ n such
xi > xj .
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Counting Inversions: Algorithm

How many inversions can be there in a list of n numbers?

Ω(n2). We
cannot afford to compute each inversion explicitly.
Sorting removes all inversions in O(n log n) time. Can we modify the
Mergesort algorithm to count inversions?
Candidate algorithm:

1 Partition L into two lists A and B of size n/2 each.
2 Recursively count the number of inversions in A.
3 Recursively count the number of inversions in B.
4 Count the number of inversions involving one element in A and one

element in B.

4 1 2 6 8 5 3 9 7 11 12 10
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Counting Inversions: Conquer Step

4 1 2 6 8 5 3 9 7 11 12 10

Given lists A = a1, a2, . . . , am and B = b1, b2, . . . bm, compute the
number of pairs ai and bj such ai > bj .

Key idea: problem is much easier if A and B are sorted!
Merge

-and-Count

procedure:
1 Maintain a current pointer for each list.

2 Maintain a variable count initialised to 0.

3 Initialise each pointer to the front of the list.
4 While both lists are nonempty:

1 Let ai and bj be the elements pointed to by the current pointers.
2 Append the smaller of the two to the output list.

3 If bj < ai , increment count by the number of elements remaining in A.

4 Advance current in the list containing the smaller element.
5 Append the rest of the non-empty list to the output.
6 Return

count and

the merged list.

Running time of this algorithm is O(m).
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Counting Inversions: Final Algorithm

Running time T (n) of the algorithm is O(n log n) because
T (n) ≤ 2T (n/2) + O(n).
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Counting Inversions: Correctness of Sort-and-Count

Prove by induction. Strategy: every inversion in the data is counted
exactly once.

Base case: n = 1.

Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.

Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c:

xk , xl ∈ A, counted in rA.

I k, l ≥ dn/2e:

xk , xl ∈ B, counted in rB .

I k ≤ bn/2c, l ≥ dn/2e:

xk ∈ A, xl ∈ B. Is this inversion counted by
Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.
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xk ∈ A, xl ∈ B. Is this inversion counted by
Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.
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exactly once.
Base case: n = 1.
Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.
Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count?

Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
Prove by induction. Strategy: every inversion in the data is counted
exactly once.
Base case: n = 1.
Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.
Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.

I Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
Prove by induction. Strategy: every inversion in the data is counted
exactly once.
Base case: n = 1.
Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.
Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion?

When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count
Prove by induction. Strategy: every inversion in the data is counted
exactly once.
Base case: n = 1.
Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n − 1 or fewer numbers.
Inductive step: Pick an arbitrary k and l such that k < l but xk > xl .
When is this inversion counted by the algorithm?

I k, l ≤ bn/2c: xk , xl ∈ A, counted in rA.
I k, l ≥ dn/2e: xk , xl ∈ B, counted in rB .
I k ≤ bn/2c, l ≥ dn/2e: xk ∈ A, xl ∈ B. Is this inversion counted by

Merge-and-Count? Yes, when xl is output.
I Why is no non-inversion counted, i.e., Why does every pair counted

correspond to an inversion? When xl is output, it is smaller than all
remaining elements in A, since A is sorted.

count = 5

41 2 6 85 3 97 11 1210

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Integer Multiplication

Multiply Integers
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

Multiply two n-digit integers.
Result has at most 2n digits.
Algorithm we learnt in school takes

O(n2) operations. Size of the
input is not 2 but 2n,
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Divide-and-Conquer Idea

Let us use divide and conquer

by splitting each number into first n/2
bits and last n/2 bits.

Let x be split into x0 (lower-order bits) and x1 (higher-order bits) and
y into y0 (lower-order bits) and y1 (higher-order bits).

xy =

(x12n/2 + x0)(y12n/2 + y0)

=

x1y1 2n + ( x1y0 + x0y1 )2n/2 + x0y0

n bits n/2 bits
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Divide-and-Conquer Algorithm

xy = x1y1 2n + ( x1y0 + x0y1 )2n/2 + x0y0

n bits n/2 bits

Algorithm:
1 Compute x1y1, x1y0, x0y1, and x0y0 recursively.
2 Merge the answers, i.e,.,

1 Multiple x1y1 by 2n

2 Add x1y0 and x0y1 and multiple this sum by 2n/2

3 Add these two numbers to x0y0
What is the running time of the conquer step?

I Each of x1, x0, y1, y0 has n/2 bits, so we can add their products in O(n)
time.

What is the running time T (n)?

T (n) ≤ 4T (n/2) + cn ≤ O(n2)
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Improving the Algorithm

Four sub-problems lead to an O(n2) algorithm.

How can we reduce the number of sub-problems?

I No need to compute x1y0 and x0y1 independently; we just need their
sum.

(x0 + x1)(y0 + y1) = x1y1 + (x1y0 + x0y1) + x0y0

(x1y0 + x0y1) = (x0 + x1)(y0 + y1) − x1y1 − x0y0

Need this sum n/2 bits

Compute x1y1, x0y0 and (x0 + x1)(y0 + y1) recursively and then
compute (x1y0 + x0y1) by subtraction.

Strategy: simple arithmetic manipulations.
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Final Algorithm

We have three sub-problems of size n/2.
What is the running time T (n)?

T (n) ≤ 3T (n/2) + cn

≤ O(nlog2 3) = O(n1.59)
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Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Computational Geometry

Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, ldots.

Started in 1975 by Shamos and Hoey.

Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, . . .

Closest Pair of Points

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

At first glance, it seems any algorithm must take Ω(n2) time.

Shamos and Hoey figured out an ingenious O(n log n) divide and
conquer algorithm.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Set-up

Let P = {p1, p2, . . . , pn} with pi = (xi , yi ).

Use d(pi , pj) to denote the Euclidean distance between pi and pj . For
a specific pair of points, can compute d(pi , pj) in O(1) time.

Goal: find the pair of points pi and pj that minimise d(pi , pj).

How do we solve the problem in 1D?

I Sort: closest pair must be adjacent in the sorted order.
I Divide and conquer after sorting:

closest pair must be closest of
1 closest pair in left half: distance δl .
2 closest pair in right half: distance δr .
3 closest among pairs that span the left and right halves and are at most

min(δl , δr ) apart. How many such pairs do we need to consider?

Just
one!

Generalize the second idea to 2D.
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Closest Pair: Algorithm Skeleton
1 Divide P into two sets Q and R of n/2 points such that each point in

Q has x-coordinate less than any point in R.
2 Recursively compute closest pair in Q and in R, respectively.

3 Let δQ be the distance computed for Q, δR be the distance computed
for R, and δ = min(δQ , δR).

4 Compute pair (q, r) of points such that q ∈ Q, r ∈ R, d(q, r) < δ
and d(q, r) is the smallest possible.
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Closest Pair: Proof Sketch

Prove by induction: Let (s, t) be the closest pair.
(i) both are in Q: computed correctly by recursive call.
(ii) both are in R: computed correctly by recursive call.
(iii) one is in Q and the other is in R: computed correctly in O(n) time by

the procedure we will discuss.

Strategy: Pairs of points for which we do not compute the distance
between cannot be the closest pair.
Overall running time is O(n log n).
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Closest Pair: Conquer Step

Line L passes through right-most point in Q.
Let S be the set of points within distance δ of L. (In image, δ = δR .)

Claim: There exist q ∈ Q, r ∈ R such that d(q, r) < δ if and only if
q, r ∈ S .
Corollary: If t ∈ Q − S or u ∈ R − S , then (t, u) cannot be the
closest pair.
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Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Packing Argument
Intuition: “too many” points in S that are closer than δ to each other
⇒ there must be a pair in Q or in R that are less than δ apart.

Let Sy denote the set of points in S sorted by increasing y -coordinate
and let sy denote the y -coordinate of a point s ∈ S .

Claim: If there exist s, s ′ ∈ S such that
d(s, s ′) < δ then s and s ′ are at most
15 indices apart in Sy .

Converse of the claim: If there exist
s, s ′ ∈ S such that s ′ appears 16 or
more indices after s in Sy , then
s ′y − sy ≥ δ.

Use the claim in the algorithm: For
every point s ∈ Sy , compute distances
only to the next 15 points in Sy .

Other pairs of points cannot be
candidates for the closest pair.
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Counting Inversions Integer Multiplication Closest Pair of Points

Closest Pair: Proof of Packing Argument

Claim: If there exist s, s ′ ∈ S such that
s ′ appears 16 or more indices after s in
Sy , then s ′y − sy ≥ δ.

Pack the plane with squares of side δ/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the
packing below s has a y -coordinate at
least δ more than sy .

We get a count of 12 or more indices
(textbook says 16).
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Closest Pair: Final Algorithm
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