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Counting Inversions Integer Multiplication Closest Pair of Points

Divide and Conquer Algorithms

@ Study three divide and conquer algorithms:

» Counting inversions.
» Finding the closest pair of points.
> Integer multiplication.

@ First two problems use clever conquer strategies.

@ Third problem uses a clever divide strategy.
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Motivation
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@ Collaborative filtering: match one user’s preferences to those of other
users, e.g., purchases, books, music.

@ Meta-search engines: merge results of multiple search engines into a
better search result.
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Fundamental Question

@ How do we compare a pair of rankings?

» My ranking of songs: ordered list of integers from 1 to n.
» Your ranking of songs: aj, a, ..., a,, a permutation of the integers
from 1 to n.
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Comparing Rankings

1 2 |3 4 |5 16 |7 1]8 |9 J10o|j11}12
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@ Suggestion: two rankings of songs are very similar if they have few
inversions.
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Comparing Rankings

1 2 |3 4 |5 16 |7 1]8 |9 J10o|j11}12
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@ Suggestion: two rankings of songs are very similar if they have few
inversions.
» The second ranking has an inversion if there exist i, such that i < j
but a; > a;.
» The number of inversions s is a measure of the difference between the
rankings.

@ Question also arises in statistics: Kendall’'s rank correlation of two
lists of numbers is 1 — 2s/(n(n — 1)).
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Integer Multiplication Closest Pair of Points

Counting Inversions

COUNT INVERSIONS
INSTANCE: A list L = x1,x», ..., X, of distinct integers between
1 and n.

SOLUTION: The number of pairs (i,/),1 < i < j < nsuch
Xi > Xj.
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Counting Inversions

COUNT INVERSIONS

INSTANCE: A list L = x1, x2, ..., X, of distinct integers between
1 and n.

SOLUTION: The number of pairs (i,/),1 <i < j < n such
Xi > Xj.

|4|1|2|6|8|5|3|9|7|11|12|10|

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions

COUNT INVERSIONS

INSTANCE: A list L = x1, x2, ..., X, of distinct integers between
1 and n.

SOLUTION: The number of pairs (i,/),1 <i < j < n such

Xi > Xj.
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Counting Inversions: Algorithm

@ How many inversions can be there in a list of n numbers?

7 |11|12|10
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Counting Inversions: Algorithm

o How many inversions can be there in a list of n numbers? Q(n?). We
cannot afford to compute each inversion explicitly.

7 |11|12|10
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Counting Inversions: Algorithm

o How many inversions can be there in a list of n numbers? Q(n?). We

cannot afford to compute each inversion explicitly.
@ Sorting removes all inversions in O(nlog n) time. Can we modify the

Mergesort algorithm to count inversions?
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Counting Inversions: Algorithm

o How many inversions can be there in a list of n numbers? Q(n?). We
cannot afford to compute each inversion explicitly.
@ Sorting removes all inversions in O(nlog n) time. Can we modify the
Mergesort algorithm to count inversions?
o Candidate algorithm:
@ Partition L into two lists A and B of size n/2 each.
@ Recursively count the number of inversions in A.
© Recursively count the number of inversions in B.
@ Count the number of inversions involving one element in A and one
element in B.
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o How many inversions can be there in a list of n numbers? Q(n?). We
cannot afford to compute each inversion explicitly.
@ Sorting removes all inversions in O(nlog n) time. Can we modify the
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o Candidate algorithm:
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Counting Inversions: Conquer Step

e

412685'397111210

e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and bj such a; > b;.
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Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and bj such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
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Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE procedure:
@ Maintain a current pointer for each list.

© Initialise each pointer to the front of the list.
© While both lists are nonempty:

@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.

@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.
@ Return the merged list.
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Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.
@ Return count and the merged list.
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).

T. M. Murali March 13 and 15, 2017

CS 4104: Divide and Conquer Algorithms



Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).

T. M. Murali March 13 and 15, 2017

CS 4104: Divide and Conquer Algorithms



Counting Inversions: Conquer Step

1124 ]51]6 8|3 7 19 jJ1oj11 12

e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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Counting Inversions: Conquer Step
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e Given lists A=aj,as,...,an and B = by, by, ... b, compute the
number of pairs a; and b; such a; > b;.
@ Key idea: problem is much easier if A and B are sorted!
@ MERGE-AND-COUNT procedure:
@ Maintain a current pointer for each list.
@ Maintain a variable count initialised to 0.
© Initialise each pointer to the front of the list.
© While both lists are nonempty:
@ Let a; and b; be the elements pointed to by the current pointers.
@ Append the smaller of the two to the output list.
@ If bj < aj, increment count by the number of elements remaining in A.
@ Advance current in the list containing the smaller element.
© Append the rest of the non-empty list to the output.

@ Return count and the merged list.
@ Running time of this algorithm is O(m).
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Integer Multiplication Closest Pair of Points

Counting Inversions: Final Algorithm

Sort—and-Count (L)
If the list has one element then
there are no inversioms
Else
Divide the list into two halves:
A contains the first [n/2] elements
B contains the remaining |n/2| elements
(r4, A) = Sort-and-Count(A)
(rg, B) = Sort-and-Count(B)
(r,L) = Merge-and-Count (A, B)
Endif
Return r=ry+rg+r, and the sorted list L

CS 4104: Divide and Conquer Algorithms
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Integer Multiplication Closest Pair of Points

Counting Inversions: Final Algorithm

Sort—and-Count (L)
If the list has one element then

there are no inversioms
Else
Divide the list into two halves:
A contains the first [n/2] elements
B contains the remaining |n/2| elements
(r4, A) = Sort-and-Count(A)
(rg, B) = Sort-and-Count(B)
(r,L) = Merge-and-Count (A, B)

Endif
Return r=ry+rg+r, and the sorted list L

@ Running time T(n) of the algorithm is O(nlog n) because
T(n) <2T(n/2) + O(n).
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Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
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Integer Multiplication Closest Pair of Points

Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.

@ Base case: n=1.

@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that kK </ but x, > x;.
When is this inversion counted by the algorithm?
» kI <|n/2]:
> k.1 >[n/2]:
» k<|n/2|,1>[n/2]:
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Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
o Base case: n=1.
@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that k < [ but x, > x;.
When is this inversion counted by the algorithm?
> kI < [n/2]: xx,x; € A, counted in ra.
» k,I>[n/2]: xx,x; € B, counted in rg.
» k< |n/2],1>[n/2]:
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Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
o Base case: n=1.
@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that kK </ but x, > x;.
When is this inversion counted by the algorithm?
> kI < [n/2]: xx,x; € A, counted in ra.
» k,I>[n/2]: xx,x; € B, counted in rg.
» k< |n/2|,1>[n/2]: xx € A,x; € B. Is this inversion counted by
MERGE-AND-COUNT?

7N count =5
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@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
o Base case: n=1.
@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that kK </ but x, > x;.
When is this inversion counted by the algorithm?
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Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
o Base case: n=1.
@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that kK </ but x, > x;.
When is this inversion counted by the algorithm?
> kI < [n/2]: xx,x; € A, counted in ra.
» k,I>[n/2]: xx,x; € B, counted in rg.
» k< |n/2|,1>[n/2]: xx € A,x; € B. Is this inversion counted by
MERGE-AND-COUNT? Yes, when x; is output.
» Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion?
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Counting Inversions: Correctness of Sort-and-Count

@ Prove by induction. Strategy: every inversion in the data is counted
exactly once.
o Base case: n=1.
@ Inductive hypothesis: Algorithm counts number of inversions correctly
for all sets of n — 1 or fewer numbers.
@ Inductive step: Pick an arbitrary k and / such that kK </ but x, > x;.
When is this inversion counted by the algorithm?
> kI < [n/2]: xx,x; € A, counted in ra.
» k,I>[n/2]: xx,x; € B, counted in rg.
» k< |n/2|,1>[n/2]: xx € A,x; € B. Is this inversion counted by
MERGE-AND-COUNT? Yes, when x; is output.
» Why is no non-inversion counted, i.e., Why does every pair counted
correspond to an inversion? When x; is output, it is smaller than all
remaining elements in A, since A is sorted.

7N count =5
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Counting Inversions Closest Pair of Points

Integer Multiplication

MurTIPLY INTEGERS
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy
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Counting Inversions Closest Pair of Points

Integer Multiplication

MurTIPLY INTEGERS
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

o Multiply two n-digit integers.
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Counting Inversions Closest Pair of Points

Integer Multiplication

MurTIPLY INTEGERS
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

o Multiply two n-digit integers.
@ Result has at most 2n digits.
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Counting Inversions Closest Pair of Points

Integer Multiplication

MurTIPLY INTEGERS
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

o Multiply two n-digit integers.
@ Result has at most 2n digits.
@ Algorithm we learnt in school takes

1100
x 1101
12 1100
x13 0000
36 1100
12 1100
156 10011100
(@) (b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal
and (b) binary representation.

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Closest Pair of Points

Integer Multiplication

MurTIPLY INTEGERS
INSTANCE: Two n-digit binary integers x and y
SOLUTION: The product xy

o Multiply two n-digit integers.

@ Result has at most 2n digits.

o Algorithm we learnt in school takes O(n?) operations. Size of the
input is not 2 but 2n,

1100
x 1101
12 1100
x13 0000
36 1100
12 1100
156 10011100
(@) (b)

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal
and (b) binary representation.
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Counting Inversions Closest Pair of Points

Divide-and-Conquer ldea

@ Let us use divide and conquer
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Counting Inversions Closest Pair of Points

Divide-and-Conquer ldea

@ Let us use divide and conquer by splitting each number into first n/2
bits and last n/2 bits.

o Let x be split into xp (lower-order bits) and x; (higher-order bits) and
y into yp (lower-order bits) and y; (higher-order bits).
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Counting Inversions Closest Pair of Points

Divide-and-Conquer ldea

@ Let us use divide and conquer by splitting each number into first n/2
bits and last n/2 bits.

o Let x be split into xp (lower-order bits) and x; (higher-order bits) and
y into yo (lower-order bits) and y; (higher-order bits).

xy = (2?4 x0)(»12"2 + o)
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Counting Inversions Closest Pair of Points

Divide-and-Conquer ldea

@ Let us use divide and conquer by splitting each number into first n/2
bits and last n/2 bits.

o Let x be split into xp (lower-order bits) and x; (higher-order bits) and
y into yo (lower-order bits) and y; (higher-order bits).

xy = (a2"?+x0)(n2"* + yo)
= a1 2"+ (xwyvo + xov )2"2 4 xoy0
/ |
n bits n/2 bits |
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Counting Inversions Closest Pair of Points

Divide-and-Conquer Algorithm

xy = xay 2"+ (xwo +. xoy )22+ xov0

7 1 %

n bits n/2 bits ]
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Counting Inversions Closest Pair of Points

Divide-and-Conquer Algorithm

xy = oy 2"+ (ay + xov )2+ xoy0
e 1 %
n bits n/2 bits ]
o Algorithm:

@ Compute x1y1, x1 0, Xoy1, and xpyo recursively.
@ Merge the answers, i.e,.,
@ Multiple x1y1 by 2"
@ Add x1y0 and xpy1 and multiple this sum by on/2
© Add these two numbers to xpyo
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Counting Inversions Closest Pair of Points

Divide-and-Conquer Algorithm

xy = oy 2"+ (ay + xov )2+ xoy0
e 1 %
n bits n/2 bits ]
o Algorithm:

@ Compute x1y1, x1 0, Xoy1, and xpyo recursively.
@ Merge the answers, i.e,.,
@ Multiple x1y1 by 2"
@ Add x1y0 and xpy1 and multiple this sum by on/2
© Add these two numbers to xpyo
@ What is the running time of the conquer step?
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Counting Inversions Closest Pair of Points

Divide-and-Conquer Algorithm

xy = oy 2"+ (ay + xov )2+ xoy0
e 1 %
n bits n/2 bits ]
o Algorithm:

@ Compute x1y1, x1 0, Xoy1, and xpyo recursively.

@ Merge the answers, i.e,.,
@ Multiple x1y1 by 2"
@ Add x1y0 and xpy1 and multiple this sum by on/2
© Add these two numbers to xpyo

@ What is the running time of the conquer step?
» Each of x1, xo, y1, Yo has n/2 bits, so we can add their products in O(n)
time.
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Counting Inversions

Closest Pair of Points

e

n bits

Xy

o Algorithm:
@ Compute x1y1, x1 0, Xoy1, and xpyo recursively.
@ Merge the answers, i.e,.,

@ Multiple x1y1 by 2"

@ Add x1yo and xoy1 and multiple this sum by

x1y1 2"
1

Divide-and-Conquer Algorithm

2n/2 +. X0)Yo

n/2 bits ]

2n/2

© Add these two numbers to xpyo
@ What is the running time of the conquer step?

time.
e What is the running time T(n)?

» Each of x1, xo, y1, Yo has n/2 bits, so we can add their products in O(n)
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Counting Inversions Closest Pair of Points

Divide-and-Conquer Algorithm

xy = oy 2"+ (ay + xov )2+ xoy0
e 1 %
n bits n/2 bits ]
o Algorithm:

@ Compute x1y1, x1 0, Xoy1, and xpyo recursively.
@ Merge the answers, i.e,.,
@ Multiple x1y1 by 2"
@ Add x1yo and xoy1 and multiple this sum by
© Add these two numbers to xpyo
@ What is the running time of the conquer step?
» Each of x1, xo, y1, Yo has n/2 bits, so we can add their products in O(n)
time.

e What is the running time T(n)?

T(n) < 4T(n/2)+cn < O(n?)

2n/2
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Counting Inversions Closest Pair of Points

Improving the Algorithm

o Four sub-problems lead to an O(n?) algorithm.
@ How can we reduce the number of sub-problems?
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Counting Inversions Closest Pair of Points

Improving the Algorithm

o Four sub-problems lead to an O(n?) algorithm.
@ How can we reduce the number of sub-problems?
» No need to compute x3yp and xgy; independently; we just need their

sum.
(x0 +x1)(yo + y1) = x1y1 + (x1y0 + xoy1) + Xo¥o
(xwyo +xy1) = (x0+x1)(yo+y1) — xiy1 — Xoyo
e [
Need this sum n/2 bits |

e Compute xyy1, xo)o and (xo + x1)(vo + y1) recursively and then
compute (x1yo + xoy1) by subtraction.

@ Strategy: simple arithmetic manipulations.
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Counting Inversions Closest Pair of Points

Final Algorithm

Recursive-Multiply(x,y):
Write x=x;-2™2 4 x,
y=y1-2"%+yo
Compute x;+xg and y;+ Yo
p = Recursive-Multiply(x; +x, y;+Yg)
x1y1 = Recursive-Multiply(x;, y;)
Xo¥o = Recursive-Multiply (xg,yo)
Return xpy; - 2" + (p — x1y1 — Xo¥o) - 22 + xq¥p
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Counting Inversions Closest Pair of Points

Final Algorithm

Recursive-Multiply(x,y):
Write x=x;-2™2 4 x,
y=y1-2"%+yo
Compute x;+xg and y;+ Yo
p = Recursive-Multiply(x; +x, y;+Yg)
x1y1 = Recursive-Multiply(x;, y;)
Xo¥o = Recursive-Multiply (xg,yo)
Return xpy; - 2" + (p — x1y1 — Xo¥o) - 22 + xq¥p

@ We have three sub-problems of size n/2.
e What is the running time T(n)?

T(n) < 3T(n/2)+cn
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Counting Inversions Closest Pair of Points

Final Algorithm

Recursive-Multiply(x,y):
Write x=x;-2™2 4 x,
y=y1-2"%+yo
Compute x;+xg and y;+ Yo
p = Recursive-Multiply(x; +x, y;+Yg)
x1y1 = Recursive-Multiply(x;, y;)
Xo¥o = Recursive-Multiply (xg,yo)
Return xpy; - 2" + (p — x1y1 — Xo¥o) - 22 + xq¥p

@ We have three sub-problems of size n/2.
e What is the running time T(n)?

T(n) < 3T(n/2)+cn
< O(nlog23) — O(n1.59)
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Counting Inversions Integer Multiplication

Computational Geometry

@ Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, Idots.

@ Started in 1975 by Shamos and Hoey.

@ Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, ...
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Computational Geometry

@ Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, Idots.

@ Started in 1975 by Shamos and Hoey.

@ Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, ...

CLOSEST PAIR OF POINTS

INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.
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Computational Geometry

@ Algorithms for geometric objects: points, lines, segments, triangles,
spheres, polyhedra, Idots.

@ Started in 1975 by Shamos and Hoey.

@ Problems studied have applications in a vast number of fields:
ecology, molecular biology, statistics, computational finance,
computer graphics, computer vision, ...

CLOSEST PAIR OF POINTS
INSTANCE: A set P of n points in the plane

SOLUTION: The pair of points in P that are the closest to each
other.

o At first glance, it seems any algorithm must take Q(n?) time.
@ Shamos and Hoey figured out an ingenious O(nlog n) divide and
conquer algorithm.
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Counting Inversions Integer Multiplication

Closest Pair: Set-up

o Let P= {plap27' . 7pn} with pi = (Xiayi)'

e Use d(pj, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(pj, pj) in O(1) time.

@ Goal: find the pair of points p; and p; that minimise d(p;, p;).
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Counting Inversions Integer Multiplication

Closest Pair: Set-up

Let P ={p1,p2,...,Ppn} with p; = (x;, yi).

Use d(p;, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(p;, p;) in O(1) time.

Goal: find the pair of points p; and p; that minimise d(p;, p;).

How do we solve the problem in 1D?
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Counting Inversions Integer Multiplication

Closest Pair: Set-up

Let P ={p1,p2,...,Ppn} with p; = (x;, yi).
Use d(p;, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(p;, p;) in O(1) time.
Goal: find the pair of points p; and p; that minimise d(p;, p;).
How do we solve the problem in 1D?
» Sort: closest pair must be adjacent in the sorted order.
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Closest Pair: Set-up

Let P ={p1,p2,...,Ppn} with p; = (x;, yi).

Use d(p;, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(p;, p;) in O(1) time.

Goal: find the pair of points p; and p; that minimise d(p;, p;).

How do we solve the problem in 1D?

» Sort: closest pair must be adjacent in the sorted order.
» Divide and conquer after sorting: closest pair must be closest of
@ closest pair in left half: distance ¢;.
@ closest pair in right half: distance §,.
@ closest among pairs that span the left and right halves and are at most
min(d;,8,) apart. How many such pairs do we need to consider?
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Closest Pair: Set-up

Let P = {pla P2, .. apn} with pi = (Xiuyi)-
Use d(p;, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(p;, p;) in O(1) time.
Goal: find the pair of points p; and p; that minimise d(p;, p;).
How do we solve the problem in 1D?
» Sort: closest pair must be adjacent in the sorted order.
» Divide and conquer after sorting: closest pair must be closest of
@ closest pair in left half: distance ¢;.
@ closest pair in right half: distance §,.
@ closest among pairs that span the left and right halves and are at most
min(d;,8,) apart. How many such pairs do we need to consider? Just
one!
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Closest Pair: Set-up

Let P ={p1,p2,...,Ppn} with p; = (x;, yi).

Use d(p;, pj) to denote the Euclidean distance between p; and p;. For
a specific pair of points, can compute d(p;, p;) in O(1) time.

Goal: find the pair of points p; and p; that minimise d(p;, p;).

How do we solve the problem in 1D?

» Sort: closest pair must be adjacent in the sorted order.
» Divide and conquer after sorting: closest pair must be closest of
@ closest pair in left half: distance ¢;.
@ closest pair in right half: distance §,.
@ closest among pairs that span the left and right halves and are at most
min(d;,8,) apart. How many such pairs do we need to consider? Just
onel!

@ Generalize the second idea to 2D.

Lo
—0-@ = = - - - @
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Counting Inversions Integer Multiplication

Closest Pair: Algorithm Skeleton

@ Divide P into two sets Q and R of n/2 points such that each point in
@ has x-coordinate less than any point in R.
@ Recursively compute closest pair in @ and in R, respectively.
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Counting Inversions Integer Multiplication

Closest Pair: Algorithm Skeleton

@ Divide P into two sets Q and R of n/2 points such that each point in
@ has x-coordinate less than any point in R.

@ Recursively compute closest pair in @ and in R, respectively.

@ Let dg be the distance computed for Q, dr be the distance computed
for R, and 6 = min(dq, IR).

%
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Counting Inversions Integer Multiplication

Closest Pair: Algorithm Skeleton

@ Divide P into two sets Q and R of n/2 points such that each point in
@ has x-coordinate less than any point in R.

@ Recursively compute closest pair in @ and in R, respectively.

@ Let dg be the distance computed for Q, dr be the distance computed
for R, and 6 = min(dq, IR).

© Compute pair (g, r) of points such that g € Q, r € R, d(q,r) <6
and d(g, r) is the smallest possible.

%’
’5&. ® R
qe® o
°
° °
L

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication

Closest Pair: Proof Sketch

@ Prove by induction: Let (s, t) be the closest pair.
(i) both are in Q: computed correctly by recursive call.
(i) both are in R: computed correctly by recursive call.
(iii) oneisin Q and the other is in R: computed correctly in O(n) time by
the procedure we will discuss.
@ Strategy: Pairs of points for which we do not compute the distance
between cannot be the closest pair.

@ Overall running time is O(nlog n).

o{.
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Counting Inversions Integer Multiplication

Closest Pair: Conquer Step

@ Line L passes through right-most point in Q.
o Let S be the set of points within distance ¢ of L. (In image, § = dg.)

—t

d = min(dg, J;) .%.
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Counting Inversions Integer Multiplication

Closest Pair: Conquer Step

@ Line L passes through right-most point in Q.

o Let S be the set of points within distance ¢ of L. (In image, § = dg.)

o Claim: There exist g € Q, r € R such that d(q,r) < § if and only if
q,r€Ss.

—t

d = min(dg, J;) .{.
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Counting Inversions Integer Multiplication

Closest Pair: Conquer Step

Line L passes through right-most point in Q.

o Let S be the set of points within distance ¢ of L. (In image, § = dg.)
o Claim: There exist g € Q, r € R such that d(q,r) < § if and only if
q,r€Ss.
@ Corollary: If t € Q — S orue R—S, then (t, u) cannot be the
closest pair.
6 =min(lq.0r)| @ dn
‘5&. . ‘76
gl °
Siele
_,9'5
o’
. .
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Counting Inversions Integer Multiplication

Closest Pair: Packing Argument

@ Intuition: “too many” points in S that are closer than § to each other
= there must be a pair in @ or in R that are less than § apart.
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Counting Inversions Integer Multiplication

Closest Pair: Packing Argument

@ Intuition: “too many” points in S that are closer than § to each other
= there must be a pair in @ or in R that are less than § apart.

@ Let S, denote the set of points in S sorted by increasing y-coordinate
and let s, denote the y-coordinate of a point s € S.
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Counting Inversions Integer Multiplication

Closest Pair: Packing Argument
@ Intuition: “too many” points in S that are closer than § to each other
= there must be a pair in @ or in R that are less than § apart.
@ Let S, denote the set of points in S sorted by increasing y-coordinate
and let s, denote the y-coordinate of a point s € S.
o Claim: If there exist s,s’ € S such that

d(s,s’) < d then s and s’ are at most Tl
-—

15 indices apart in S,,.
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Closest Pair: Packing Argument

@ Intuition: “too many” points in S that are closer than § to each other
= there must be a pair in @ or in R that are less than § apart.

@ Let S, denote the set of points in S sorted by increasing y-coordinate
and let s, denote the y-coordinate of a point s € S.

o Claim: If there exist s,s’ € S such that

d(s,s’) < d then s and s’ are at most TJ;
15 indices apart in S,. —
@ Converse of the claim: If there exist
/ /
s,s € S such that s’ appears 16 or
more indices after s in S, then .\o ';g.
s}’, -5, > 0.
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Closest Pair: Packing Argument

@ Intuition: “too many” points in S that are closer than § to each other
= there must be a pair in @ or in R that are less than § apart.

@ Let S, denote the set of points in S sorted by increasing y-coordinate
and let s, denote the y-coordinate of a point s € S.

o Claim: If there exist s,s’ € S such that

d(s,s’) < d then s and s’ are at most TJ;

15 indices apart in S,. —
@ Converse of the claim: If there exist

/ /

s,s € S such that s’ appears 16 or

more indices after s in S, then .\o 'Zg.

/

Sy — Sy = 0.
@ Use the claim in the algorithm: For

every point s € S,,, compute distances ® I
only to the next 15 points in S,. ° L

@ Other pairs of points cannot be
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Counting Inversions Integer Multiplication

Closest Pair: Proof of Packing Argument

5/2

e Claim: If there exist 5,5’ € S such that -9

f
s’ appears 16 or more indices after s in 5/2]=
Sy, then s, — s, > 4. '

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication

Closest Pair: Proof of Packing Argument

5/2

e Claim: If there exist 5,5’ € S such that -9

f
s’ appears 16 or more indices after s in 5/2]=

Sy, then s, — s, > 4.

@ Pack the plane with squares of side §/2.
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Counting Inversions Integer Multiplication

Closest Pair: Proof of Packing Argument

5/2

e Claim: If there exist 5,5’ € S such that -9

f
s’ appears 16 or more indices after s in 5/2]:

Sy, then s, — s, > 4.

@ Pack the plane with squares of side §/2.

@ Each square contains at most one point.
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Counting Inversions Integer Multiplication

Closest Pair: Proof of Packing Argument

5/2

e Claim: If there exist 5,5’ € S such that -9

f
s’ appears 16 or more indices after s in 5/2]:

Sy, then s, — s, > 4.

@ Pack the plane with squares of side §/2.

@ Each square contains at most one point.

@ Let s lie in one of the squares. N
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Closest Pair: Proof of Packing Argument

5/2

e Claim: If there exist 5,5’ € S such that P G
s’ appears 16 or more indices after s in 5/2]:
Sy, then s, — s, > 4. '
@ Pack the plane with squares of side §/2. <|>
@ Each square contains at most one point.
. Sal ®
@ Let s lie in one of the squares. {
1
@ Any point in the third row of the > Ol
packing below s has a y-coordinate at i
least § more than s,. -—o--0
\ —'0'-"
!
L
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Closest Pair: Proof of Packing Argument

0/2
Claim: If there exist s,s’ € S such that ‘__L-.r__ -————-
s’ appears 16 or more indices after s in 5/2]:

Sy, then s, — s, > 4.

Pack the plane with squares of side §/2.

Each square contains at most one point.

Let s lie in one of the squares.

Any point in the third row of the )

packing below s has a y-coordinate at

least § more than s,. i
L

We get a count of 12 or more indices
(textbook says 16). i

T. M. Murali March 13 and 15, 2017 CS 4104: Divide and Conquer Algorithms



Counting Inversions Integer Multiplication

Closest Pair: Final Algorithm

Closest-Pair (P)
Construct Py and P, (O(n log n) time)
(g, ) = Closest-Pair-Rec(P,,P,)

Closest-Pair-Rec(Py, Py)
If [Pl < 3 then

find closest pair by measuring all pairvise distances
Endif

Construct Q, Qys Rys Ry (O() time)
(@3,4}) = Closest-Pair-Rec(Qy, Q))
(13,17) = Closest-Pair-Rec(R, )

s = o o .
[ % = maximun x-coordinate of a point im set 0 |
L= () @ x = x)

S = points in P within distance 5 of L.

Construct S, (O(n) time)
For each point s € S, compute distance from s
to each of next 15 points in S,

Let s, & be pair achieving minimun of these distances
©(n) time)

If d(s,s) < & then
Return (s,5)
Else if d(g;

Return (q;
Else

Return (13,r7)
Endif

a}) < d(g,r}) then

e and Conquer Algorithms



Counting Inversions Integer Multiplication

Closest Pair: Final Algorithm

Closest-Pair(P)
Construct P, and P, (O(n log n) time)
(P, p}) = Closest-Pair-Rec(Py,P,)

Closest-Pair-Rec(Py, Py)
If |P| < 3 then

find closest pair by measuring all pairwise distances
Endif

Construct Qy, Qy, Re, Ry (O(n) time)
(g3,q7) = Closest-Pair-Rec(Qy, Q)
(§,r) = Closest-Pair-Rec(R,, R))

§ = min(d(q},q). d@,m)
x* = maximum x-coordinate of a point in set Q

@
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Counting Inversions Integer Multiplication

Closest Pair: Final Algorithm

X® = maximum x—coordinate of a point in set 0
L = {x,)) : x = x%}
S

= points in P within distance § of L.

Construct S, (O(n) time)

For each point s € Sy, compute distance from s
to each of next 15 points in §,
Let s, s be pair achieving minimum of these distances
(O(n) time)

If d(s,s) < & then
Return (s,s)

Else if d(qj,q)) < d(j,r]) then
Return (g,q})

Else
Return (rg,ri")

Endif
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