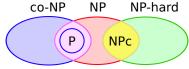
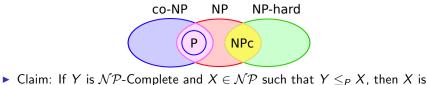
NP-Complete Problems

T. M. Murali

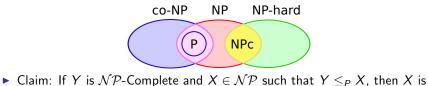
April 21, 26, 2016



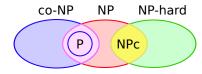
▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.



- $\mathcal{NP} ext{-}\mathsf{Complete}.$
- \triangleright Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is



- $\mathcal{NP} ext{-}\mathsf{Complete}.$
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.



- ▶ Claim: If Y is \mathcal{NP} -Complete and $X \in \mathcal{NP}$ such that $Y \leq_P X$, then X is \mathcal{NP} -Complete.
- ▶ Given a new problem X, a general strategy for proving it \mathcal{NP} -Complete is
 - 1. Prove that $X \in \mathcal{NP}$.
 - 2. Select a problem Y known to be \mathcal{NP} -Complete.
 - 3. Prove that $Y \leq_P X$.
- ▶ To prove X is \mathcal{NP} -Complete, reduce a known \mathcal{NP} -Complete problem Y to X. Do not prove reduction in the opposite direction, i.e., $X \leq_P Y$.

Proving a Problem \mathcal{NP} -Complete with Karp Reduction

- 1. Prove that $X \in \mathcal{NP}$.
- 2. Select a problem Y known to be \mathcal{NP} -Complete.
- 3. Consider an arbitrary input s to problem Y. Show how to construct, in polynomial time, an input t to problem X such that
 - (a) If Y(s) = yes, then X(t) = yes and
 - (b) If X(t) = yes, then Y(s) = yes (equivalently, if Y(s) = no, then X(t) = no).

3-SAT is \mathcal{NP} -Complete

▶ Why is 3-SAT in NP?

trategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT is \mathcal{NP} -Complete

- ► Why is 3-SAT in NP?
- ► CIRCUIT SATISFIABILITY ≤_P 3-SAT.
 - 1. Given an instance of $CIRCUIT\ SATISFIABILITY$, create an instance of SAT, in which each clause has *at most* three variables.
 - 2. Convert this instance of SAT into one of 3-SAT.

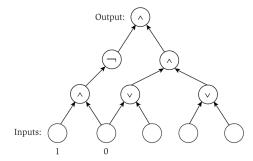


Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Skin proof that CIRCUIT SATISFIARILITY < - 3-SAT

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \lor and edges entering from nodes u and w: ensure $x_v = x_u \lor x_w$ using clauses

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- node v has ¬ and edge entering from node u: guarantee that x_v = x̄_u using clauses (x_v ∨ x_u) and (x̄_v ∨ x̄_u).
 node v has ∨ and edges entering from nodes v and vv ensure x_v = x_v ∨ x_v
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.

- Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.
- Constants at sources: single-variable clauses.

- ▶ Given an arbitrary circuit K, associate each node v with a Boolean variable x_v .
- Encode the requirements of each gate as a clause.
- ▶ node v has \neg and edge entering from node u: guarantee that $x_v = \overline{x_u}$ using clauses $(x_v \lor x_u)$ and $(\overline{x_v} \lor \overline{x_u})$.
- ▶ node v has \vee and edges entering from nodes u and w: ensure $x_v = x_u \vee x_w$ using clauses $(x_v \vee \overline{x_u})$, $(x_v \vee \overline{x_w})$, and $(\overline{x_v} \vee x_u \vee x_w)$.
- ▶ node v has \wedge and edges entering from nodes u and w: ensure $x_v = x_u \wedge x_w$ using clauses $(\overline{x_v} \vee x_u)$, $(\overline{x_v} \vee x_w)$, and $(x_v \vee \overline{x_u} \vee \overline{x_w})$.
- ► Constants at sources: single-variable clauses.
- Output: if o is the output node, use the clause (x_o) .

- ▶ Prove that *K* is equivalent to the input to SAT.
 - ightharpoonup K is satisfiable ightharpoonup clauses are satisfiable.

- ▶ Prove that *K* is equivalent to the input to SAT.
 - ightharpoonup K is satisfiable ightarrow clauses are satisfiable.
 - clauses are satisfiable $\rightarrow K$ is satisfiable.

- Prove that K is equivalent to the input to SAT.
 - K is satisfiable → clauses are satisfiable.
 - Clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.

- Prove that K is equivalent to the input to SAT.
 - K is satisfiable → clauses are satisfiable.
 - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.

- Prove that K is equivalent to the input to SAT.
 - ► K is satisfiable → clauses are satisfiable.
 - ► clauses are satisfiable → K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.
 - Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses

- Prove that K is equivalent to the input to SAT.
 - K is satisfiable → clauses are satisfiable.
 - ightharpoonup clauses are satisfiable ightharpoonup K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.
 - ▶ Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.

- Prove that K is equivalent to the input to SAT.
 - ► K is satisfiable → clauses are satisfiable.
 - ightharpoonup clauses are satisfiable ightharpoonup K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.
 - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$.

- Prove that K is equivalent to the input to SAT.
 - ► K is satisfiable → clauses are satisfiable.
 - ightharpoonup clauses are satisfiable ightharpoonup K is satisfiable. Observe that we have constructed clauses so that the value assigned to a node's variable is precisely what the circuit will compute.
- ▶ Converting instance of SAT to an instance of 3-SAT.
 - ► Create four new variables z_1, z_2, z_3, z_4 such that any satisfying assignment will have $z_1 = z_2 = 0$ by adding clauses $(\overline{z_i} \lor z_3 \lor z_4)$, $(\overline{z_i} \lor \overline{z_3} \lor z_4)$, $(\overline{z_i} \lor z_3 \lor \overline{z_4})$, and $(\overline{z_i} \lor \overline{z_3} \lor \overline{z_4})$, for i = 1 and i = 2.
 - ▶ If a clause has a single term t, replace the clause with $(t \lor z_1 \lor z_2)$.
 - If a clause has a two terms t and t', replace the clause with $t \vee t' \vee z_1$.

More \mathcal{NP} -Complete problems

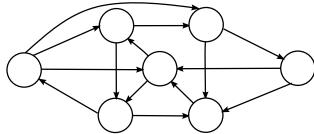
- ightharpoonup CIRCUIT SATISFIABILITY is \mathcal{NP} -Complete.
- ▶ We just showed that CIRCUIT SATISFIABILITY $\leq_P 3$ -SAT.
- ▶ We know that
- $3\text{-SAT} \leq_P \text{Independent Set} \leq_P \text{Vertex Cover} \leq_P \text{Set Cover}$
 - ightharpoonup All these problems are in \mathcal{NP} .
 - ▶ Therefore, INDEPENDENT SET, VERTEX COVER, and SET COVER are $\mathcal{NP}\text{-}\mathsf{Complete}.$

Hamiltonian Cycle

- Problems we have seen so far involve searching over subsets of a collection of objects.
- ▶ Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.

Hamiltonian Cycle

- Problems we have seen so far involve searching over subsets of a collection of objects.
- Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.
- ▶ In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each vertex exactly once.



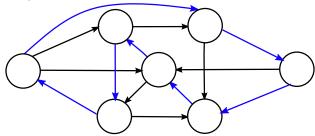
HAMILTONIAN CYCLE

INSTANCE: A directed graph *G*.

QUESTION: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle

- Problems we have seen so far involve searching over subsets of a collection of objects.
- ▶ Another type of computationally hard problem involves searching over the set of all permutations of a collection of objects.
- ▶ In a directed graph G(V, E), a cycle C is a Hamiltonian cycle if C visits each vertex exactly once.



HAMILTONIAN CYCLE

INSTANCE: A directed graph *G*.

QUESTION: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is \mathcal{NP} -**Complete**

▶ Why is the problem in \mathcal{NP} ?

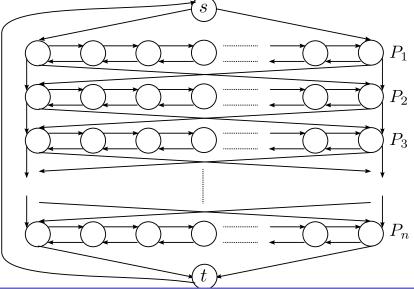
Hamiltonian Cycle is \mathcal{NP} -Complete

- ▶ Why is the problem in \mathcal{NP} ?
- Claim: $3-SAT \leq_P HAMILTONIAN$ CYCLE. Jump to TSP

Hamiltonian Cycle is \mathcal{NP} -**Complete**

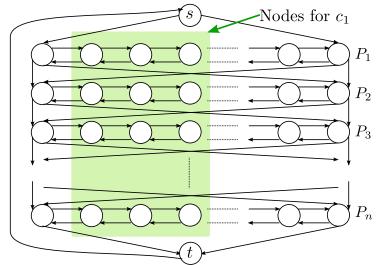
- ▶ Why is the problem in \mathcal{NP} ?
- ► Claim: 3-SAT ≤ HAMILTONIAN CYCLE. Jump to TSP
- ▶ Consider an arbitrary input to 3-SAT with variables $x_1, x_2, ..., x_n$ and clauses $C_1, C_2, ..., C_k$.
- Strategy:
 - 1. Construct a graph G with O(nk) nodes and edges and 2^n Hamiltonian cycles with a one-to-one correspondence with 2^n truth assignments.
 - 2. Add nodes to impose constraints arising from clauses.
 - 3. Construction takes O(nk) time.
- ▶ *G* contains *n* paths $P_1, P_2, ..., P_n$, one for each variable.
- ▶ Each P_i contains b = 3k + 3 nodes $v_{i,1}, v_{i,2}, \dots v_{i,b}$, three for each clause and some extra nodes.

3-SAT \leq_P Hamiltonian Cycle: Constructing G



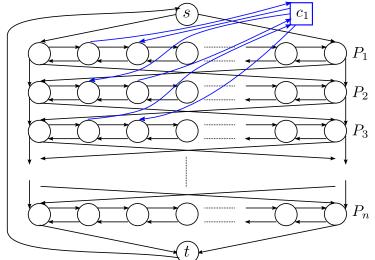
3-SAT \leq_P Hamiltonian Cycle: Modelling clauses

▶ Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.



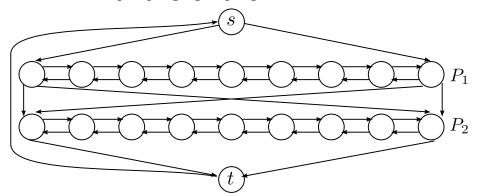
3-SAT \leq_P Hamiltonian Cycle: Modelling clauses

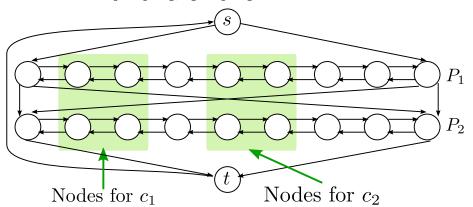
▶ Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.

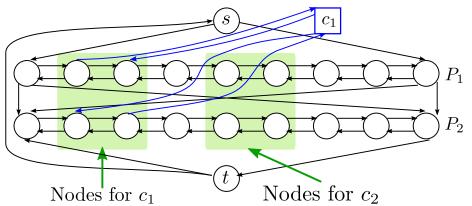


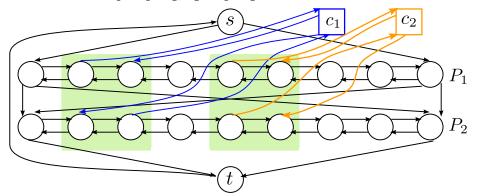
Example

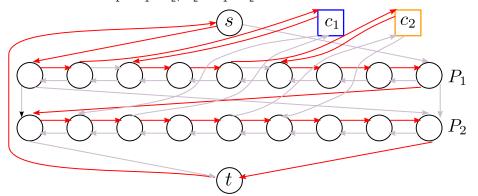
▶ Two clauses $C_1 = x_1 \vee \overline{x_2}$, $C_2 = x_1 \vee x_2$.

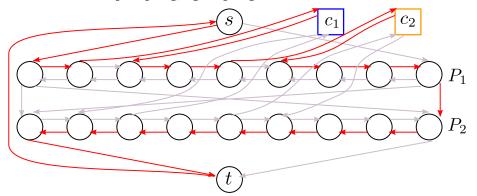




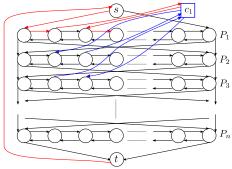






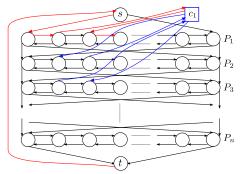


3-SAT \leq_P Hamiltonian Cycle: Proof Part 1



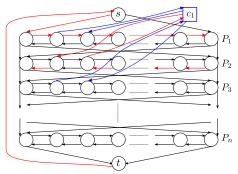
lacktriangledown 3-SAT instance is satisfiable ightarrow G has a Hamiltonian cycle.

3-SAT \leq_P Hamiltonian Cycle: Proof Part 1



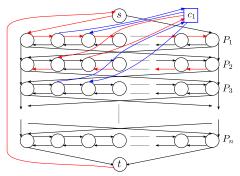
- ▶ 3-SAT instance is satisfiable \rightarrow G has a Hamiltonian cycle.
 - Construct a Hamiltonian cycle C as follows:
 - ▶ If $x_i = 1$, traverse P_i from left to right in C.
 - ▶ Otherwise, traverse P_i from right to left in C.
 - ▶ For each clause C_j , there is at least one term set to 1. If the term is x_i , splice c_j into C using edge from $v_{i,3j}$ and edge to $v_{i,3j+1}$. Analogous construction if term is $\overline{x_i}$.

3-SAT \leq_P Hamiltonian Cycle: Proof Part 2



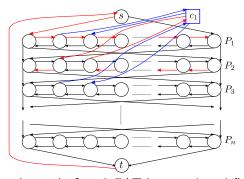
- ▶ G has a Hamiltonian cycle $\mathcal{C} \to 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_i on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3i+1}$.

3-SAT \leq_P Hamiltonian Cycle: Proof Part 2



- ▶ G has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_i on an edge from $v_{i,3j}$, it must leave c_i along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_i on an edge from $v_{i,3j+1}$.
 - ▶ Nodes immediately before and after c_j in C are themselves connected by an edge e in G.

3-SAT \leq_P Hamiltonian Cycle: Proof Part 2



- ▶ *G* has a Hamiltonian cycle $C \rightarrow 3\text{-SAT}$ instance is satisfiable.
 - ▶ If C enters c_j on an edge from $v_{i,3j}$, it must leave c_j along the edge to $v_{i,3j+1}$.
 - ▶ Analogous statement if C enters c_j on an edge from $v_{i,3j+1}$.
 - Nodes immediately before and after c_j in \mathcal{C} are themselves connected by an edge e in G.
 - ▶ If we remove all such edges e from C, we get a Hamiltonian cycle C' in $G \{c_1, c_2, \ldots, c_k\}$.

Use C' to construct truth assignment to variables; prove assignment is

The Traveling Salesman Problem

- ▶ A salesman must visit *n* cities $v_1, v_2, ... v_n$ starting at home city v_1 .
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- ▶ Goal is to find as short a tour as possible.

The Traveling Salesman Problem

- A salesman must visit *n* cities $v_1, v_2, \dots v_n$ starting at home city v_1 .
- Salesman must find a tour, an order in which to visit each city exactly once, and return home.
- Goal is to find as short a tour as possible.
- ▶ For every pair of cities v_i and v_j , $d(v_i, v_j) > 0$ is the distance from v_i to v_j .
- ▶ A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$.
- ▶ The *length* of the tour is $\sum_{i=1}^{n-1} d(v_{i_i} v_{i_{i+1}}) + d(v_{i_n}, v_{i_1})$.

The Traveling Salesman Problem

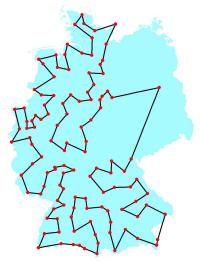
- A salesman must visit *n* cities $v_1, v_2, \dots v_n$ starting at home city v_1 .
- ▶ Salesman must find a *tour*, an order in which to visit each city exactly once, and return home.
- ▶ Goal is to find as short a tour as possible.
- ▶ For every pair of cities v_i and v_j , $d(v_i, v_j) > 0$ is the distance from v_i to v_j .
- A tour is a permutation $v_{i_1} = v_1, v_{i_2}, \dots v_{i_n}$.
- ▶ The *length* of the tour is $\sum_{j=1}^{n-1} d(v_{i_j}v_{i_{j+1}}) + d(v_{i_n}, v_{i_1})$.

TRAVELLING SALESMAN

INSTANCE: A set V of n cities, a function $d: V \times V \to \mathbb{R}^+$, and a number D > 0.

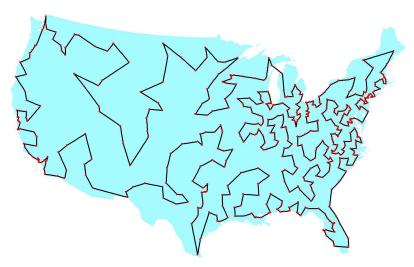
QUESTION: Is there a tour of length at most *D*?

Examples of Travelling Salesman



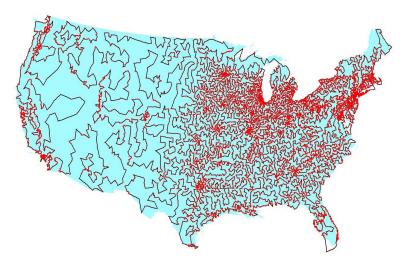
(1977) 120 cities, Groetschel Images taken from http://tsp.gatech.edu

Examples of Travelling Salesman



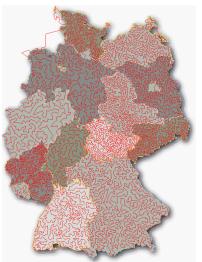
(1987) 532 AT&T switch locations, Padberg and Rinaldi Images taken from http://tsp.gatech.edu

Examples of Travelling Salesman



(1987) 13,509 cities with population \geq 500, Applegate, Bixby, Chváthal, and Cook Images taken from http://tsp.gatech.edu

Examples of Travelling Salesman



(2001) 15,112 cities, Applegate, Bixby, Chváthal, and Cook Images taken from http://tsp.gatech.edu

Examples of Travelling Salesman

(2004) 24978, cities, Applegate, Bixby, Chváthal, Cook, and Helsgaum Images taken from http://tsp.gatech.edu

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Why is the problem \mathcal{NP} -Complete?

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Why is the problem \mathcal{NP} -Complete?
- ► Claim: Hamiltonian Cycle ≤_P Travelling Salesman.

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Why is the problem \mathcal{NP} -Complete?
- ► Claim: HAMILTONIAN CYCLE ≤ P TRAVELLING SALESMAN.

Hamiltonian Cycle	Travelling Salesman
Directed graph $G(V, E)$	Cities
Edges have identical weights	Distances between cities can vary
Not all pairs of nodes are connected in G	Every pair of cities has a distance
(u, v) and (v, u) may both be edges	$d(v_i,v_j) eq d(v_j,v_i)$, in general
Does a cycle exist?	Does a tour of length $\leq D$ exist?

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Why is the problem *NP*-Complete?
- ► Claim: Hamiltonian Cycle ≤_P Travelling Salesman.

Hamiltonian Cycle	Travelling Salesman
Directed graph $G(V, E)$	Cities
Edges have identical weights	Distances between cities can vary
Not all pairs of nodes are connected in G	Every pair of cities has a distance
(u, v) and (v, u) may both be edges	$d(v_i, v_j) \neq d(v_j, v_i)$, in general
Does a cycle exist?	Does a tour of length $\leq D$ exist?

- ▶ Given a directed graph G(V, E) (instance of HAMILTONIAN CYCLE),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_j) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_j) = 2$ if $(i, j) \notin E$.

- ▶ Why is the problem in \mathcal{NP} ?
- Why is the problem NP-Complete?
- ► Claim: Hamiltonian Cycle ≤_P Travelling Salesman.

HAMILTONIAN CYCLE	Travelling Salesman
Directed graph $G(V, E)$	Cities
Edges have identical weights	Distances between cities can vary
Not all pairs of nodes are connected in G	Every pair of cities has a distance
(u, v) and (v, u) may both be edges	$d(v_i,v_j) eq d(v_j,v_i)$, in general
Does a cycle exist?	Does a tour of length $\leq D$ exist?

- ▶ Given a directed graph G(V, E) (instance of HAMILTONIAN CYCLE),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_j) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_j) = 2$ if $(i, j) \notin E$.
- ► Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most

- ▶ Why is the problem in \mathcal{NP} ?
- ▶ Why is the problem NP-Complete?
- ► Claim: Hamiltonian Cycle ≤_P Travelling Salesman.

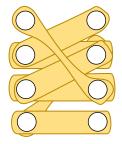
Hamiltonian Cycle	Travelling Salesman
Directed graph $G(V, E)$	Cities
Edges have identical weights	Distances between cities can vary
Not all pairs of nodes are connected in G	Every pair of cities has a distance
(u, v) and (v, u) may both be edges	$d(v_i,v_j) eq d(v_j,v_i)$, in general
Does a cycle exist?	Does a tour of length $\leq D$ exist?

- ▶ Given a directed graph G(V, E) (instance of HAMILTONIAN CYCLE),
 - ▶ Create a city v_i for each node $i \in V$.
 - ▶ Define $d(v_i, v_j) = 1$ if $(i, j) \in E$.
 - ▶ Define $d(v_i, v_j) = 2$ if $(i, j) \notin E$.
- ▶ Claim: *G* has a Hamiltonian cycle iff the instance of Travelling Salesman has a tour of length at most *n*.

Special Cases and Extensions that are \mathcal{NP} -Complete

- ► HAMILTONIAN CYCLE for undirected graphs.
- ► HAMILTONIAN PATH for directed and undirected graphs.
- ► TRAVELLING SALESMAN with symmetric distances (by reducing HAMILTONIAN CYCLE for undirected graphs to it).
- ► TRAVELLING SALESMAN with distances defined by points on the plane.

3-Dimensional Matching



BIPARTITE MATCHING

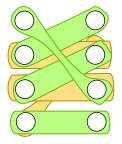
INSTANCE: Disjoint sets X, Y, each of size n, and a set $T \subseteq X \times Y$ of

pairs

QUESTION: Is there a set of n pairs in T such that each element of

 $X \cup Y$ is contained in exactly one of these pairs?

3-Dimensional Matching



BIPARTITE MATCHING

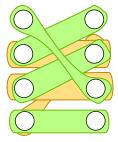
INSTANCE: Disjoint sets X, Y, each of size n, and a set $T \subseteq X \times Y$ of

pairs

QUESTION: Is there a set of n pairs in T such that each element of

 $X \cup Y$ is contained in exactly one of these pairs?

3-Dimensional Matching

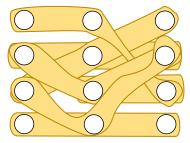


▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.
BIPARTITE MATCHING

INSTANCE: Disjoint sets X, Y, each of size n, and a set $T \subseteq X \times Y$ of pairs

QUESTION: Is there a set of *n* pairs in *T* such that each element of $X \cup Y$ is contained in exactly one of these pairs?

3-Dimensional Matching



- ▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING.
 - 3-Dimensional Matching

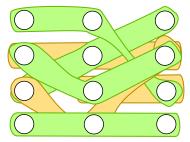
INSTANCE: Disjoint sets X, Y, and Z, each of size n, and a set

 $T \subseteq X \times Y \times Z$ of triples

QUESTION: Is there a set of n triples in T such that each element of

 $X \cup Y \cup Z$ is contained in exactly one of these triples?

3-Dimensional Matching



- ▶ 3-DIMENSIONAL MATCHING is a harder version of BIPARTITE MATCHING. 3-DIMENSIONAL MATCHING
 - **INSTANCE:** Disjoint sets X, Y, and Z, each of size n, and a set $T \subseteq X \times Y \times Z$ of triples
 - **QUESTION:** Is there a set of *n* triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples?
- ▶ Easy to show 3-DIMENSIONAL MATCHING \leq_P SET COVER and 3-DIMENSIONAL MATCHING \leq_P SET PACKING.

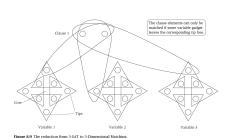
3-Dimensional Matching is \mathcal{NP} -Complete

▶ Why is the problem in \mathcal{NP} ?

3-Dimensional Matching is \mathcal{NP} -Complete

- ▶ Why is the problem in \mathcal{NP} ?
- ► Show that 3-SAT < P 3-DIMENSIONAL MATCHING. Jump to Colouring
- Strategy:
 - Start with an instance of 3-SAT with n variables and k clauses.
 - ▶ Create a gadget for each variable x_i that encodes the choice of truth assignment to x_i .
 - Add gadgets that encode constraints imposed by clauses.

3-SAT \leq_P 3-Dimensional Matching: Variables



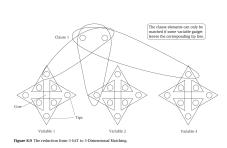
Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips

$$B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}.$$

For each $1 \le j \le 2k$, variable gadget i

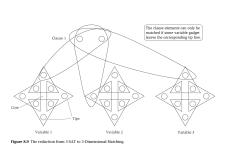
- includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ► A triple (tip) is *even* if *j* is even. Otherwise, the triple (tip) is *odd*.
- ► Only these triples contain elements in *A*_i.

3-SAT \leq_P 3-Dimensional Matching: Variables



- ► Each x_i corresponds to a variable gadget i with 2k core elements $A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$ and 2k tips
- $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}.$ $\blacktriangleright \text{ For each } 1 \le j \le 2k, \text{ variable gadget } i$
- includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ► A triple (tip) is *even* if *j* is even. Otherwise, the triple (tip) is *odd*.
- ▶ Only these triples contain elements in A_i.
- In any perfect matching, we can cover the elements in A_i

3-SAT \leq_P 3-Dimensional Matching: Variables



► Each *x_i* corresponds to a *variable gadget i* with 2*k core* elements

$$A_i = \{a_{i,1}, a_{i,2}, \dots a_{i,2k}\}$$
 and $2k$ tips $B_i = \{b_{i,1}, b_{i,2}, \dots b_{i,2k}\}.$

- ► For each $1 \le j \le 2k$, variable gadget i includes a triple $t_{ij} = (a_{i,j}, a_{i,j+1}, b_{i,j})$.
- ► A triple (tip) is *even* if *j* is even. Otherwise, the triple (tip) is *odd*.
- ▶ Only these triples contain elements in A_i.
- ▶ In any perfect matching, we can cover the elements in A_i either using all the even triples in gadget i or all the odd triples in the gadget.
- ▶ Even triples used, odd tips free $\equiv x_i = 0$; odd triples used, even tips free $\equiv x_i = 1$.

T. M. Murali April 21, 26, 2016 NP-Complete Problems

3-SAT \leq_P 3-Dimensional Matching: Clauses

▶ Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.

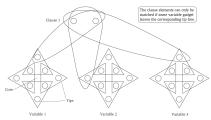
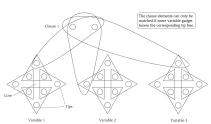


Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.

trategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT \leq_P 3-Dimensional Matching: Clauses

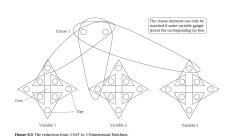


Variable 1 Variable 2 Variable 3

Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.

- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."

3-SAT \leq_P 3-Dimensional Matching: Clauses



- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- C₁ says "The matching on the cores of the gadgets should leave the even tips of gadget 1 free; or it should leave the odd tips of gadget 2 free; or it should leave the even tips of gadget 3 free."
- Clause gadget j for clause C_j contains two core elements $P_j = \{p_j, p_j'\}$ and three triples:
 - C_j contains x_i : add triple $(p_j, p'_j, b_{i,2j})$.
 - C_j contains $\overline{x_i}$: add triple $(p_j, p'_i, b_{i,2j-1})$.

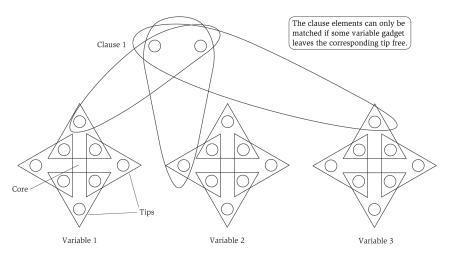


Figure 8.9 The reduction from 3-SAT to 3-Dimensional Matching.

▶ Satisfying assignment → matching.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.

- ► Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - We have not covered all the tips!

- ▶ Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.

- ▶ Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.

- ▶ Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$).

- ▶ Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$).
 - ► Is clause *C_i* satisfied?

- ▶ Satisfying assignment → matching.
 - Make appropriate choices for the core of each variable gadget.
 - At least one free tip available for each clause gadget, allowing core elements of clause gadgets to be covered.
 - ▶ We have not covered all the tips!
 - Add (n-1)k cleanup gadgets to allow the remaining (n-1)k tips to be covered: cleanup gadget i contains two core elements $Q = \{q_i, q_i'\}$ and triple (q_i, q_i', b) for every tip b in variable gadget i.
- ► Matching → satisfying assignment.
 - ▶ Matching chooses all even a_{ij} ($x_i = 0$) or all odd a_{ij} ($x_i = 1$).
 - ▶ Is clause C_j satisfied? Core in clause gadget j is covered by some triple \Rightarrow other element in the triple must be a tip element from the correct odd/even set in the three variable gadgets corresponding to a term in C_j .

▶ Did we create an instance of 3-DIMENSIONAL MATCHING?

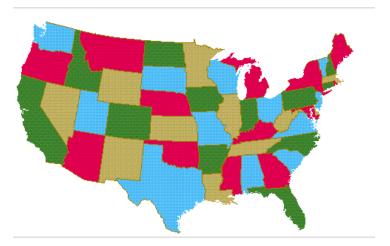
- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- ▶ We need three sets *X*, *Y*, and *Z* of equal size.

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- ▶ We need three sets *X*, *Y*, and *Z* of equal size.
- How many elements do we have?
 - 2nk aij elements.
 - 2nk b_{ij} elements.
 - \triangleright k p_j elements.
 - \triangleright k p'_i elements.
 - (n-1)k q_i elements.
 - ▶ (n-1)k q'_i elements.

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- ▶ We need three sets *X*, *Y*, and *Z* of equal size.
- How many elements do we have?
 - 2nk a_{ij} elements.
 - 2nk b_{ij} elements.
 - k p_j elements.
 - k p_i elements.
 - (n-1)k q_i elements.
 - $(n-1)k q_i'$ elements.
- \blacktriangleright X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i .
- \triangleright Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i .
- ightharpoonup Z is the set of all b_{ij} .

- ▶ Did we create an instance of 3-DIMENSIONAL MATCHING?
- \blacktriangleright We need three sets X, Y, and Z of equal size.
- How many elements do we have?
 - 2nk a_{ij} elements.
 - 2nk b_{ij} elements.
 - k p_j elements.
 - \triangleright k p'_j elements.
 - (n-1)k q_i elements.
 - ▶ (n-1)k q'_i elements.
- \blacktriangleright X is the union of a_{ij} with even j, the set of all p_j and the set of all q_i .
- Y is the union of a_{ij} with odd j, the set if all p'_i and the set of all q'_i .
- \triangleright Z is the set of all b_{ii} .
- ▶ Each triple contains exactly one element from *X*, *Y*, and *Z*.

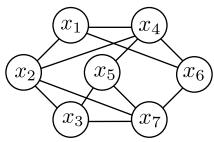
Colouring maps



Colouring maps

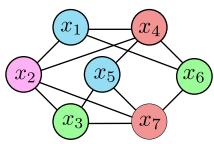
Any map can be coloured with four colours (Appel and Hakken, 1976).

Graph Colouring



▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ..., k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

Graph Colouring



▶ Given an undirected graph G(V, E), a k-colouring of G is a function $f: V \to \{1, 2, ..., k\}$ such that for every edge $(u, v) \in E$, $f(u) \neq f(v)$.

GRAPH COLOURING (k-COLOURING)

INSTANCE: An undirected graph G(V, E) and an integer k > 0.

QUESTION: Does G have a k-colouring?

Applications of Graph Colouring

- 1. Job scheduling: assign jobs to *n* processors under constraints that certain pairs of jobs cannot be scheduled at the same time.
- 2. Compiler design: assign variables to k registers but two variables being used at the same time cannot be assigned to the same register.
- 3. Wavelength assignment: assign one of *k* transmitting wavelengths to each of *n* wireless devices. If two devices are close to each other, they must get different wavelengths.

▶ How hard is 2-Colouring?

- ► How hard is 2-Colouring?
- Claim: A graph is 2-colourable if and only if it is bipartite.

- ► How hard is 2-Colouring?
- Claim: A graph is 2-colourable if and only if it is bipartite.
- ▶ Testing 2-colourability is possible in O(|V| + |E|) time.

- ▶ How hard is 2-COLOURING?
- Claim: A graph is 2-colourable if and only if it is bipartite.
- ▶ Testing 2-colourability is possible in O(|V| + |E|) time.
- ▶ What about 3-COLOURING? Is it easy to exhibit a certificate that a graph cannot be coloured with three colours?



Figure 8.10 A graph that is not 3-colorable.

3-Colouring is \mathcal{NP} -Complete

▶ Why is 3-Colouring in \mathcal{NP} ?

3-Colouring is \mathcal{NP} -Complete

- ▶ Why is 3-Colouring in \mathcal{NP} ?
- ▶ 3-SAT \leq_P 3-Colouring.

3-SAT \leq_P 3-Colouring: Encoding Variables

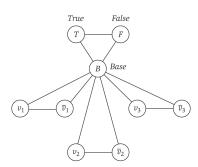


Figure 8.11 The beginning of the reduction for 3-Coloring.

 $ightharpoonup x_i$ corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$.

Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT \leq_P 3-Colouring: Encoding Variables

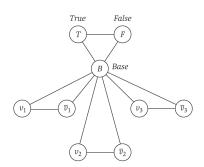


Figure 8.11 The beginning of the reduction for 3-Coloring.

- $ightharpoonup x_i$ corresponds to node v_i and $\overline{x_i}$ corresponds to node $\overline{v_i}$.
- In any 3-Colouring, nodes v_i and $\overline{v_i}$ get a colour different from *Base*.
- ➤ True colour: colour assigned to the True node; False colour: colour assigned to the False node.
- Set x_i to 1 iff v_i gets the *True* colour.

Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.

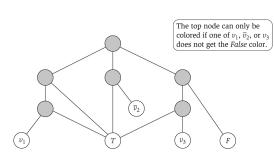


Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- Attach a six-node subgraph for this clause to the rest of the graph.

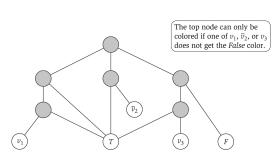


Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- Attach a six-node subgraph for this clause to the rest of the graph.
- Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v₂, or v₃ does not get the False colour.

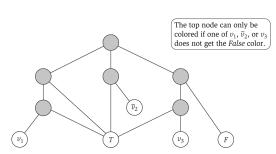


Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

- Consider the clause $C_1 = x_1 \vee \overline{x_2} \vee x_3$.
- Attach a six-node subgraph for this clause to the rest of the graph.
- ► Claim: Top node in the subgraph can be coloured in a 3-colouring iff one of v₁, v̄₂, or v₃ does not get the False colour.
- Claim: Graph is 3-colourable iff instance of 3-SAT is satisfiable.

Subset Sum

INSTANCE: A set of *n* natural numbers w_1, w_2, \ldots, w_n and a target W.

QUESTION: Is there a subset of $\{w_1, w_2, \dots, w_n\}$ whose sum is W?

Subset Sum

INSTANCE: A set of *n* natural numbers $w_1, w_2, ..., w_n$ and a target W. **QUESTION:** Is there a subset of $\{w_1, w_2, ..., w_n\}$ whose sum is W?

► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).

Subset Sum

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for SUBSET SUM that runs in O(nW) time.

Subset Sum

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.

Subset Sum

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.
- Claim: SUBSET SUM is NP-Complete,
 3-DIMENSIONAL MATCHING ≤P SUBSET SUM.

Subset Sum

- ► SUBSET SUM is a special case of the KNAPSACK PROBLEM (see Chapter 6.4 of the textbook).
- ▶ There is a dynamic programming algorithm for Subset Sum that runs in O(nW) time. This algorithm's running time is exponential in the size of the input.
- Claim: SUBSET SUM is NP-Complete,
 3-DIMENSIONAL MATCHING ≤_P SUBSET SUM.
- ▶ Caveat: Special case of Subset Sum in which W is bounded by a polynomial function of n is not \mathcal{NP} -Complete (read pages 494–495 of your textbook).

rategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Examples of Hard Computational Problems

(from Kevin Wayne's slides at Princeton University)

- ▶ Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- ► Chemical engineering: heat exchanger network synthesis.
- ► Civil engineering: equilibrium of urban traffic flow.
- ▶ Economics: computation of arbitrage in financial markets with friction.
- ▶ Electrical engineering: VLSI layout.
- ▶ Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- ▶ Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- ▶ Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- ▶ Operations research: optimal resource allocation.
- ▶ Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.