Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}

NP and Computational Intractability

T. M. Murali

April 12, 14, 21, 2016

Patterns

- ► Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts.

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts. IMAGE SEGMENTATION \leq_P MINIMUM *s-t* CUT

Patterns

- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
- "Anti-patterns"
 - NP-completeness.
 - PSPACE-completeness.
 - Undecidability.

 $O(n \log n)$ interval scheduling. $O(n \log n)$ closest pair of points. $O(n^3)$ RNA folding. $O(n^3)$ maximum flow and minimum cuts. IMAGE SEGMENTATION \leq_P MINIMUM *s-t* CUT

> $O(n^k)$ algorithm unlikely. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

▶ When is an algorithm an efficient solution to a problem?

When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

- When is an algorithm an efficient solution to a problem? When its running time is polynomial in the size of the input.
- A problem is *computationally tractable* if it has a polynomial-time algorithm.

Polynomial time	Probably not
Shortest path	Longest path
Matching	3-D matching
Minimum cut	Maximum cut
2-SAT	3-SAT
Planar four-colour	Planar three-colour
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

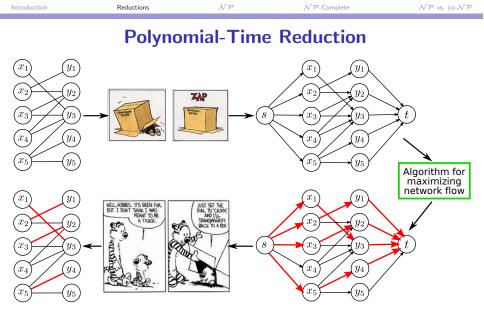
Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).

Problem Classification

- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.

Problem Classification


- Classify problems based on whether they admit efficient solutions or not.
- ► Some extremely hard problems cannot be solved efficiently (e.g., chess on an *n*-by-*n* board).
- However, classification is unclear for a very large number of discrete computational problems.
- We can prove that these problems are fundamentally equivalent and are manifestations of the same problem!

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$
	Dolyno	mial Time	Reduction	
		iiiiai- i iiiie	Neululion	

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X $(Y \leq_P X)$

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
	Polyno	mial-Time	e Reduction	

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
	Polyno	mial-Time	e Reduction	

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ► MAXIMUM BIPARTITE MATCHING \leq_P MAXIMUM *s*-*t* Flow
 - ► IMAGE SEGMENTATION \leq_P MINIMUM *s*-*t* Cut

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
	Polyno	mial-Time	Reduction	

- ▶ Goal is to express statements of the type "Problem X is at least as hard as problem Y."
- Use the notion of *reductions*.
- Y is polynomial-time reducible to X (Y ≤_P X) if any arbitrary instance of Y can be solved using a polynomial number of standard operations, plus one call to a black box that solves problem X.
 - ► MAXIMUM BIPARTITE MATCHING \leq_P MAXIMUM *s*-*t* Flow
 - ► IMAGE SEGMENTATION \leq_P MINIMUM *s*-*t* Cut
- $Y \leq_P X$ implies that "X is at least as hard as Y."
- Such reductions are Karp reductions. Cook reductions allow a polynomial number of calls to the black box that solves X.

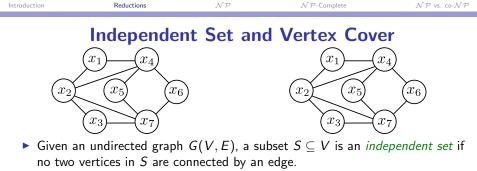
Usefulness of Reductions

Claim: If Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.

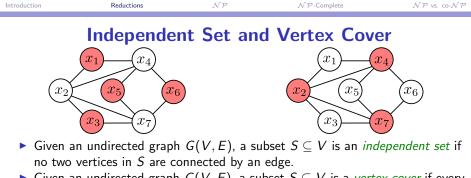
- ▶ Claim: If $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
- ▶ Contrapositive: If $Y \leq_P X$ and Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.
- Informally: If Y is hard, and we can show that Y reduces to X, then the hardness "spreads" to X.

Reduction Strategies

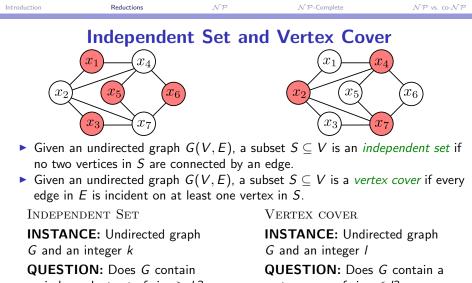
- Simple equivalence.
- Special case to general case.
- Encoding with gadgets.


Optimisation versus Decision Problems

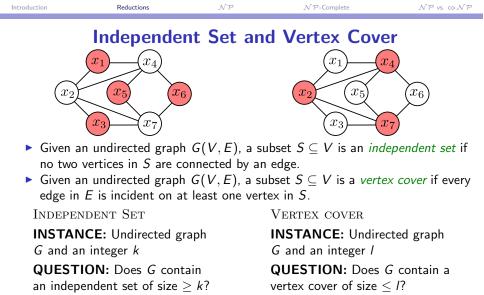
- ► So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the *closest* pair of points.
 - Find the schedule with the *least* completion time.


Optimisation versus Decision Problems

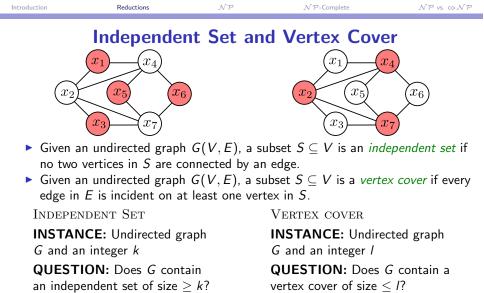
- ▶ So far, we have developed algorithms that solve optimisation problems.
 - Compute the *largest* flow.
 - Find the *closest* pair of points.
 - Find the schedule with the *least* completion time.
- ▶ Now, we will focus on *decision versions* of problems, e.g., is there a flow with value at least *k*, for a given value of *k*?
- Decision problem: answer to every input is yes or no.


PRIMES INSTANCE: A natural number *n* QUESTION: ls *n* prime?

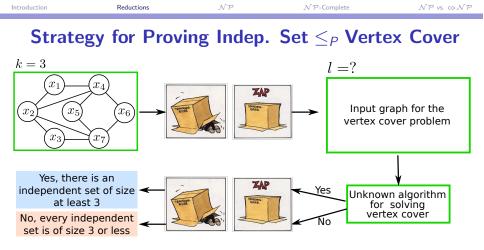
Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.



Given an undirected graph G(V, E), a subset S ⊆ V is a vertex cover if every edge in E is incident on at least one vertex in S.



an independent set of size > k?

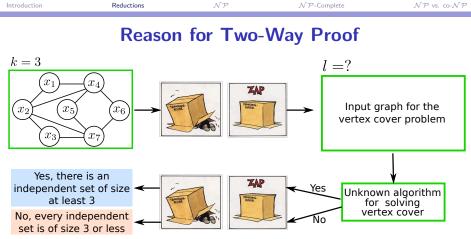

vertex cover of size < l?

Demonstrate simple equivalence between these two problems.

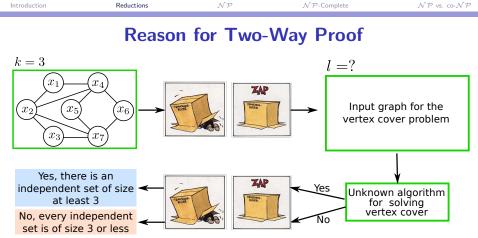
- Demonstrate simple equivalence between these two problems.
- ► Claim: INDEPENDENT SET ≤_P VERTEX COVER and VERTEX COVER ≤_P INDEPENDENT SET.

Strategy for Proving Indep. Set \leq_P Vertex Cover

- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- G' related to G in some way.
- ► / can depend upon k and size of G.


3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.

Strategy for Proving Indep. Set \leq_P Vertex Cover


- 1. Start with an arbitrary instance of INDEPENDENT SET: an undirected graph G(V, E) and an integer k.
- From G(V, E) and k, create an instance of VERTEX COVER: an undirected graph G'(V', E') and an integer I.
- G' related to G in some way.
- ► *I* can depend upon *k* and size of *G*.

- 3. Prove that G(V, E) has an independent set of size $\geq k$ iff G'(V', E') has a vertex cover of size $\leq l$.
- Transformation and proof must be correct for all possible graphs G(V, E) and all possible values of k.
- ▶ Why is the proof an iff statement?

Why is the proof an iff statement?

- ▶ Why is the proof an iff statement? In the reduction, we are using black box for VERTEX COVER to solve INDEPENDENT SET.
 - (i) If there is an independent set size ≥ k, we must be sure that there is a vertex cover of size ≤ l, so that we know that the black box will find this vertex cover.
 - (ii) If the black box finds a vertex cover of size ≤ *I*, we must be sure we can construct an independent set of size ≥ *k* from this vertex cover.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$
Pro	of that Indep	endent Se	et \leq_P Vertex (Cover
x_2	x_1 x_4 x_5 x_6 x_3 x_7		x_1 x_4 x_2 x_5 x_3 x_7	x_6
 Arbitrar an integ Let V 	ger k.	endent Set:	an undirected graph	G(V, E) and
3. Create		EX COVER: S	ame undirected graph	G(V, E) and

Introduc	tion Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}
	Proof that Independent Set \leq_P Vertex Cover
	x_1 x_4 x_1 x_4 x_1 x_4 x_2 x_5 x_6 x_3 x_7 x_7
1.	Arbitrary instance of INDEPENDENT SET: an undirected graph $G(V, E)$ and an integer k .
2.	Let $ V = n$.
3.	Create an instance of VERTEX COVER: same undirected graph $G(V, E)$ and integer $l = n - k$.
4.	Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n - k$.
	Proof: S is an independent set in G iff $V - S$ is a vertex cover in G.

Introduct	on Reductions \mathcal{NP} \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP}
	Proof that Independent Set \leq_P Vertex Cover
	x_1 x_4 x_1 x_4 x_1 x_4 x_2 x_5 x_6 x_3 x_7 x_3 x_7
1.	Arbitrary instance of INDEPENDENT SET: an undirected graph $G(V, E)$ and an integer k .
2.	Let $ V = n$.
3.	Create an instance of VERTEX COVER: same undirected graph $G(V, E)$ and nteger $l = n - k$.
4.	Claim: $G(V, E)$ has an independent set of size $\geq k$ iff $G(V, E)$ has a vertex cover of size $\leq n - k$.
	Proof: S is an independent set in G iff $V - S$ is a vertex cover in G.

▶ Same idea proves that VERTEX COVER \leq_P INDEPENDENT SET

Vertex Cover and Set Cover

- ▶ INDEPENDENT SET is a "packing" problem: pack as many vertices as possible, subject to constraints (the edges).
- ► VERTEX COVER is a "covering" problem: cover all edges in the graph with as few vertices as possible.
- ▶ There are more general covering problems.

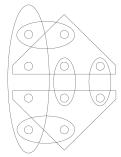
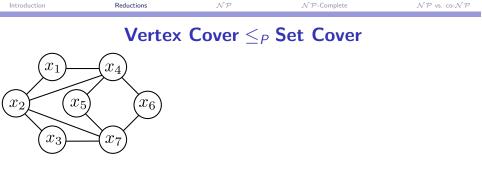
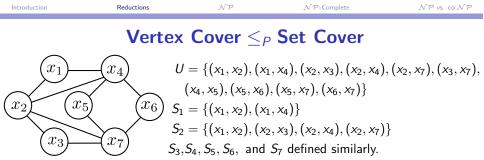
Set Cover

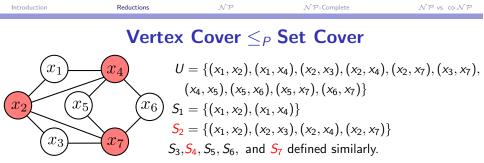
INSTANCE: A set U of n

elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k.

QUESTION: Is there a

collection of $\leq k$ sets in the collection whose union is *U*?


Figure 8.2 An instance of the Set Cover Problem.

- Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- Create an instance $\{U, \{S_1, S_2, \dots S_n\}\}$ of SET COVER where

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- Create an instance $\{U, \{S_1, S_2, \dots, S_n\}\}$ of SET COVER where
 - ► U = E,
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.

- ▶ Input to VERTEX COVER: an undirected graph G(V, E) and an integer k.
- Let |V| = n.
- Create an instance $\{U, \{S_1, S_2, \dots, S_n\}\}$ of SET COVER where
 - U = E,
 - ▶ for each vertex $i \in V$, create a set $S_i \subseteq U$ of the edges incident on i.
- Claim: U can be covered with fewer than k subsets iff G has a vertex cover with at most k nodes.
- Proof strategy:
 - 1. If G(V, E) has a vertex cover of size at most k, then U can be covered with at most k subsets.
 - If U can be covered with at most k subsets, then G(V, E) has a vertex cover of size at most k.

Boolean Satisfiability

Abstract problems formulated in Boolean notation.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$
	Boo	lean Sati	sfiability	
 Abstrac 	t problems formula	ted in Boolear	notation.	
 Given a 	set $X = \{x_1, x_2, \dots$	$., x_n$ of n Bo	olean variables.	
Each va	riable can take the	value 0 or 1 .		
► Term: a	a variable x _i or its r	negation $\overline{x_i}$.		
Clause of Cla	of <i>length I</i> : (or) of	I distinct term	ns $t_1 \vee t_2 \vee \cdots t_l$.	
► Truth a	ssignment for X: is	s a function ν	$X \to \{0,1\}.$	

- ► An assignment v satisfies a clause C if it causes at least one term in C to evaluate to 1 (since C is an or of terms).
- An assignment satisfies a collection of clauses C₁, C₂,... C_k if it causes all clauses to evaluate to 1, i.e., C₁ ∧ C₂ ∧ · · · C_k = 1.
 - ν is a satisfying assignment with respect to $C_1, C_2, \ldots C_k$.
 - set of clauses $C_1, C_2, \ldots C_k$ is satisfiable.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$
		Examp	le	
$\blacktriangleright X = \{x$	x_1, x_2, x_3, x_4			

• Terms: $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, x_4, \overline{x_4}$

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		Examp	ole	
	$x_1, x_2, x_3, x_4 \}$ $x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}$	$, x_4, \overline{x_4}$		
x ₁ x ₂	$ \begin{array}{c} \cdot \\ \forall \ \overline{x_2} \lor \overline{x_3} \\ \forall \ \overline{x_3} \lor x_4 \\ \forall \ \overline{x_4} \end{array} $			

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$
		Examp	le	
► <i>X</i> = { <i>x</i>	$\{x_1, x_2, x_3, x_4\}$			
Terms:	$x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}$	$\overline{x_4}, \overline{x_4}, \overline{x_4}$		
 Clauses 	:			
x_1	$\lor \overline{x_2} \lor \overline{x_3}$			
-	$\vee \overline{x_3} \vee x_4$			
3	$\vee \overline{x_4}$			
 Assignn 	nent: $x_1 = 1, x_2 =$	$0, x_3 = 1, x_4 =$	0	

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		Examp	le	
► <i>X</i> = { <i>x</i>	x_1, x_2, x_3, x_4			
Terms:	$x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, \overline{x_3}, \overline{x_1}, \overline{x_2}, \overline{x_2}, \overline{x_3}, x_3$	$x_4, \overline{x_4}$		
Clauses	s:			
<i>x</i> ₁	$\lor \overline{x_2} \lor \overline{x_3}$			
-	$\forall \overline{x_3} \lor x_4$			
5	$\vee \overline{x_4}$	0 1	0	
-	ment: $x_1 = 1, x_2 = 0$	$0, x_3 = 1, x_4 =$	0	
-	$ \forall \ \overline{\mathbf{x}_2} \lor \overline{\mathbf{x}_3} \\ \forall \ \overline{\mathbf{x}_3} \lor \mathbf{x_4} $			
x ₂	v x3 v x4			

Not a satisfying assignment

 $x_3 \vee \overline{x_4}$

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		Examp	le	
► <i>X</i> = { <i>x</i>	x_1, x_2, x_3, x_4			
Terms:	$x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}$	$, x_4, \overline{x_4}$		
 Clauses 	:			
x ₂	$ \forall \ \overline{x_2} \lor \overline{x_3} \\ \forall \ \overline{x_3} \lor x_4 \\ \forall \ \overline{x_4} $			
 Assignn 	nent: $x_1 = 1, x_2 =$	$0, x_3 = 1, x_4 =$	0	
-	$\vee \overline{\mathbf{x}_2} \vee \overline{\mathbf{x}_3}$			
-	$\vee \overline{x_3} \vee x_4$			
J	√ X 4			

- Not a satisfying assignment
- Assignment: $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	${\cal NP}$ vs. co- ${\cal NP}$
		Examp	le	
		Examp		
► $X = \{ :$	x_1, x_2, x_3, x_4			
Terms:	$x_1, \overline{x_1}, x_2, \overline{x_2}, x_3, \overline{x_3}, \overline{x_3}, \overline{x_3}, \overline{x_1}, \overline{x_2}, \overline{x_1}, \overline{x_2}, \overline{x_2}, \overline{x_3}, x_3$	$, x_4, \overline{x_4}$		
Clauses	S:	., .		
<i>x</i> ₁	$\lor \overline{x_2} \lor \overline{x_3}$			
-	$\vee \overline{x_3} \vee x_4$			
5	$\vee \overline{x_4}$			
Assign	ment: $x_1 = 1, x_2 = 0$	$0, x_3 = 1, x_4 =$	0	
-	$\vee \overline{x_2} \vee \overline{x_3}$			
-	$\vee \overline{x_3} \vee x_4$			
5	ot a satisfying assignr	ment		
	ment: $x_1 = 1, x_2 = 0$		0	
0	$\forall \overline{x_2} \lor \overline{x_3}$	-,-,-,-	-	
X2	$\vee \overline{x_3} \vee x_4$			
<i>X</i> 3	$\vee \overline{x_4}$			

Is a satisfying assignment

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
SAT and 3-SAT				
SATIS	FIABILITY PROBL	EM (SAT)		
INSTA	NCE: A set of clau	ses $C_1, C_2, \ldots C$	k	over a
set $X =$	$\{x_1, x_2, \dots x_n\}$ of x_n	n variables.		
QUEST C?	TION: Is there a sa	tisfying truth as	signment for X wit	h respect to

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	\mathcal{NP} vs. co- \mathcal{NP}		
	SAT and 3-SAT					

3-SATISFIABILITY PROBLEM (SAT)

INSTANCE: A set of clauses $C_1, C_2, ..., C_k$, each of length three, over a set $X = \{x_1, x_2, ..., x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for *X* with respect to *C*?

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	\mathcal{NP} vs. co- \mathcal{NP}
SAT and 3-SAT				
3- SATISFIABILITY PROBLEM (SAT) INSTANCE: A set of clauses $C_1, C_2,, C_k$, each of length three, over a				

set $X = \{x_1, x_2, \dots, x_n\}$ of *n* variables.

QUESTION: Is there a satisfying truth assignment for X with respect to C?

- ► SAT and 3-SAT are fundamental combinatorial search problems.
- ▶ We have to make *n* independent decisions (the assignments for each variable) while satisfying a set of constraints.
- Satisfying each constraint in isolation is easy, but we have to make our decisions so that all constraints are satisfied simultaneously.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\blacktriangleright \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.

- $C_1 = x_1 \lor 0 \lor 0$
- $\bullet \quad C_2 = x_2 \lor 0 \lor 0$
- $C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable?

- $C_1 = x_1 \lor 0 \lor 0$
- $C_2 = x_2 \lor 0 \lor 0$
- $\bullet \quad C_3 = \overline{x_1} \vee \overline{x_2} \vee 0$
- 1. Is $C_1 \wedge C_2$ satisfiable? Yes, by $x_1 = 1, x_2 = 1$.
- 2. Is $C_1 \wedge C_3$ satisfiable? Yes, by $x_1 = 1, x_2 = 0$.
- 3. Is $C_2 \wedge C_3$ satisfiable? Yes, by $x_1 = 0, x_2 = 1$.
- 4. Is $C_1 \wedge C_2 \wedge C_3$ satisfiable? No.

$$C_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$$

$$C_2 = \overline{x_1} \lor x_2 \lor x_4$$

$$C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$$

▶ We want to prove 3-SAT \leq_P INDEPENDENT SET.

Introduction	Reductions	50 /	JV / -complete	JV / V3. CO-JV /
	3-SAT	and Inde	pendent Set	
$C_1 = \frac{\mathbf{x}_1}{C_2} \setminus C_2 = \overline{\mathbf{x}_1} \setminus C_2 =$	I. Jele	ect $x_1 = 1, x_2 =$	$1, x_3 = 1, x_4 = 1.$	

N P-Complete

 $C_3 = \overline{x_1} \vee \underline{x_3} \vee \overline{x_4}$

- We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.
- ▶ Two ways to think about 3-SAT:

Reductions

1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.

NP VE CONP

Introduction	Reductions	\mathcal{NP}	\mathcal{NP} -Complete	\mathcal{NP} vs. co- \mathcal{NP}
	3-SA	AT and Inde	pendent Set	
$C_1 = x_1$	$\sqrt{x_2}\sqrt{x_3}$ 1.	Select $x_1 = 1, x_2 =$	$x_1, x_3 = 1, x_4 = 1.$	

 $C_2 = \overline{x_1} \lor x_2 \lor x_4$ 2. Choose one literal from each clause to evaluate to true. $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

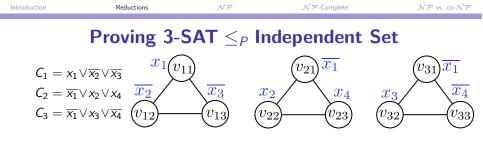
- ▶ We want to prove 3-SAT \leq_P INDEPENDENT SET.
- ▶ Two ways to think about 3-SAT:
 - 1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
 - 2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected *conflict*, e.g., select $\overline{x_2}$ in C_1 and x_2 in C_2 .

Introduction	Reduction	s NP	\mathcal{NP} -Complete	\mathcal{NP} vs. co- \mathcal{NP}			
3-SAT and Independent Set							
$C_1 = x_1$	$\sqrt{x_2}\sqrt{x_3}$. Select $x_1 = 1, x_2 =$	$x_{1} = 1, x_{3} = 1, x_{4} = 1.$				

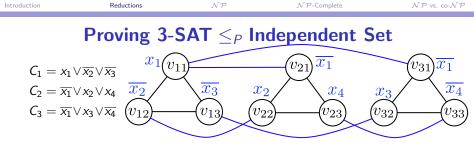
2. Choose one literal from each clause to evaluate to true.

• Choices of selected literals imply $x_1 = 0, x_2 = 0, x_4 = 1$.

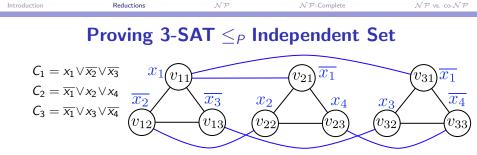
- We want to prove $3\text{-SAT} \leq_P \text{INDEPENDENT SET}$.
- ▶ Two ways to think about 3-SAT:

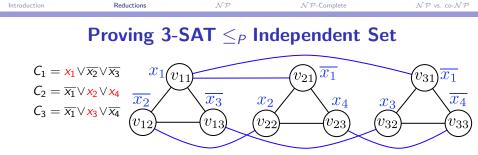

 $C_2 = \overline{x_1} \lor x_2 \lor \mathbf{x_4}$

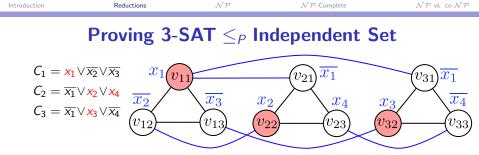
 $C_3 = \overline{x_1} \lor x_3 \lor \overline{x_4}$

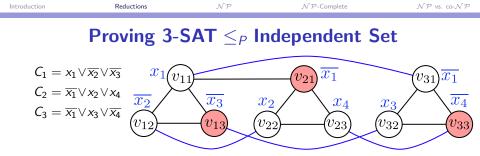

- 1. Make an independent 0/1 decision on each variable and succeed if we achieve one of three ways in which to satisfy each clause.
- 2. Choose (at least) one term from each clause. Find a truth assignment that causes each chosen term to evaluate to 1. Ensure that no two terms selected *conflict*, e.g., select $\overline{x_2}$ in C_1 and x_2 in C_2 .

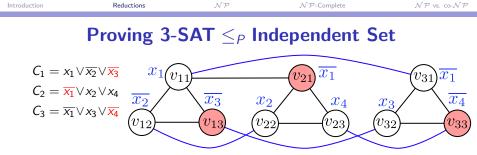
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$		
Proving 3-SAT \leq_P Independent Set						
	$ \sqrt{x_2} \sqrt{x_3} $					
$C_3 = \overline{x_1}$	$\forall x_3 \forall \overline{x_4}$					
 We are variable 	•	of 3-SAT with	k clauses of length th	ree over <i>n</i>		

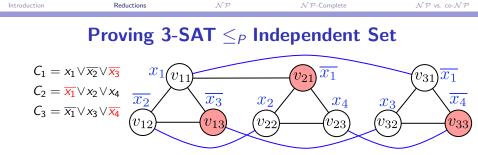

• Construct an instance of independent set: graph G(V, E) with 3k nodes.

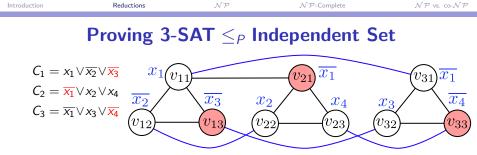

- We are given an instance of 3-SAT with k clauses of length three over n variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - For each clause C_i, 1 ≤ i ≤ k, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
 - Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .


- ▶ We are given an instance of 3-SAT with *k* clauses of length three over *n* variables.
- Construct an instance of independent set: graph G(V, E) with 3k nodes.
 - For each clause C_i, 1 ≤ i ≤ k, add a triangle of three nodes v_{i1}, v_{i2}, v_{i3} and three edges to G.
 - Label each node v_{ij} , $1 \le j \le 3$ with the *j*th term in C_i .
 - Add an edge between each pair of nodes whose labels correspond to terms that conflict.


▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.


- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment \rightarrow independent set of size k:


- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?


- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size $k \rightarrow$ satisfiable assignment:

- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?

- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?

- ▶ Claim: 3-SAT instance is satisfiable iff *G* has an independent set of size *k*.
- Satisfiable assignment → independent set of size k: Each triangle in G has at least one node whose label evaluates to 1. Set S of nodes consisting of one such node from each triangle forms an independent set of size = k. Why?
- Independent set S of size k → satisfiable assignment: the size of this set is k. How do we construct a satisfying truth assignment from the nodes in the independent set?
 - For each variable x_i , only x_i or $\overline{x_i}$ is the label of a node in S. Why?
 - If x_i is the label of a node in S, set $x_i = 1$; else set $x_i = 0$.
 - Why is each clause satisfied?

Transitivity of Reductions

• Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.

Transitivity of Reductions

- Claim: If $Z \leq_P Y$ and $Y \leq_P X$, then $Z \leq_P X$.
- We have shown

3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?

Finding vs. Certifying

- Is it easy to check if a given set of vertices in an undirected graph forms an independent set of size at least k?
- Is it easy to check if a particular truth assignment satisfies a set of clauses?
- We draw a contrast between *finding* a solution and *checking* a solution (in polynomial time).
- Since we have not been able to develop efficient algorithms to solve many decision problems, let us turn our attention to whether we can check if a proposed solution is correct.

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

• Decision problem X: for every input s, answer X(s) is yes or no.

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns A(s) ∈ {yes, no}.
- An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) = no then A(s) = no

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns A(s) ∈ {yes, no}.
- ► An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) =no then A(s) =no
- ► A has a polynomial running time if there is a polynomial function p(·) such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ▶ There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns A(s) ∈ {yes, no}.
- ► An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) =no then A(s) =no
- ► A has a polynomial running time if there is a polynomial function p(·) such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ▶ There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- \triangleright \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

PRIMES **INSTANCE:** A natural number *n* **QUESTION:** Is *n* prime?

- Decision problem X: for every input s, answer X(s) is yes or no.
- An algorithm A for a decision problem receives an input s and returns A(s) ∈ {yes, no}.
- ► An algorithm A solves the problem X if for every input s,
 - if X(s) = yes then A(s) = yes and
 - if X(s) =no then A(s) =no
- ► A has a polynomial running time if there is a polynomial function p(·) such that for every input s, A terminates on s in at most O(p(|s|)) steps.
 - ▶ There is an algorithm such that $p(|s|) = |s|^{12}$ for PRIMES (Agarwal, Kayal, Saxena, 2002, improved to $|s|^6$ by Pomerance and Lenstra, 2005).
- \triangleright \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

A decision problem X is in \mathcal{P} iff there is an algorithm A with polynomial running time that solves X.

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- ► Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- ► An algorithm *B* is an *efficient certifier* for a problem *X* if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. for all inputs s
 - X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - the size of t is polynomial in the size of s.

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- ► An algorithm *B* is an *efficient certifier* for a problem *X* if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. for all inputs s
 - X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - the size of t is polynomial in the size of s.
- ► Certifier's job is to take a candidate certificate (t) that s ∈ X and check in polynomial time whether t is a correct certificate.
- Certificate *t* must be "short" so that certifier can run in polynomial time.

- ► A "checking" algorithm for a decision problem X has a different structure from an algorithm that solves X.
- ► Checking algorithm needs input s as well as a separate "certificate" t that contains evidence that X(s) = yes.
- ► An algorithm *B* is an *efficient certifier* for a problem *X* if
 - 1. B is a polynomial time algorithm that takes two inputs s and t and
 - 2. for all inputs s
 - X(s) = yes iff there is a certificate t such that B(s, t) = yes and
 - the size of t is polynomial in the size of s.
- ► Certifier's job is to take a candidate certificate (t) that s ∈ X and check in polynomial time whether t is a correct certificate.
- Certificate *t* must be "short" so that certifier can run in polynomial time.
- Certifier does not care about how to find these certificates.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$
		\mathcal{NP}		

\triangleright \mathcal{P} : set of problems X for which there is a polynomial time algorithm.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		\mathcal{NP}		
 <i>P</i>: set of problems X for which there is a polynomial time algorithm. <i>NP</i> is the set of all problems for which there exists an efficient certifier. 				

▶ 3-SAT $\in \mathcal{NP}$:

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}	
		\mathcal{NP}			
 <i>P</i>: set of problems X for which there is a polynomial time algorithm. <i>NP</i> is the set of all problems for which there exists an efficient certifier. 					
► 3-SAT	•				

- Certificate *t*: a truth assignment to the variables.
- Certifier B:

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$
		\mathcal{NP}		
	•		polynomial time alg here exists an efficien	

▶ 3-SAT $\in \mathcal{NP}$:

- Certificate *t*: a truth assignment to the variables.
- ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$		
		\mathcal{NP}				
	 <i>P</i>: set of problems X for which there is a polynomial time algorithm. <i>NP</i> is the set of all problems for which there exists an efficient certifier. 					
▶ 3-SAT	$\in \mathcal{NP}$:					

- Certificate *t*: a truth assignment to the variables.
- ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier *B*:

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$		
		\mathcal{NP}				
	 <i>P</i>: set of problems X for which there is a polynomial time algorithm. <i>NP</i> is the set of all problems for which there exists an efficient certifier. 					
▶ 3-SAT	$\in \mathcal{NP}$:					

- Certificate *t*: a truth assignment to the variables.
- ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate t: a set of at least k vertices.
 - Certifier *B*:

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}	
		\mathcal{NP}			
	 <i>P</i>: set of problems X for which there is a polynomial time algorithm. <i>NP</i> is the set of all problems for which there exists an efficient certifier. 				

- ▶ 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.

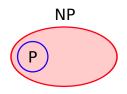
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$	
		\mathcal{NP}			
► \mathcal{P} : set	of problems X for	which there is a	polynomial time alg	orithm.	
\blacktriangleright \mathcal{NP} is	• \mathcal{NP} is the set of all problems for which there exists an efficient certifier.				

- ▶ 3-SAT $\in \mathcal{NP}$:
 - Certificate *t*: a truth assignment to the variables.
 - ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate t:
 - Certifier B:

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		\mathcal{NP}		
	•		polynomial time alg here exists an efficier	

▶ 3-SAT $\in \mathcal{NP}$:

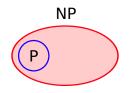
- Certificate *t*: a truth assignment to the variables.
- ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.
- Set Cover $\in \mathcal{NP}$:
 - Certificate *t*: a list of *k* sets from the collection.
 - Certifier B:

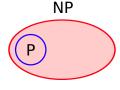

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$
		\mathcal{NP}		
 \$\mathcal{P}\$: set of problems \$X\$ for which there is a polynomial time algorithm. \$\mathcal{N}\$\mathcal{P}\$ is the set of all problems for which there exists an efficient certifier. 				

▶ 3-SAT $\in \mathcal{NP}$:

- Certificate *t*: a truth assignment to the variables.
- ► Certifier *B*: checks whether assignment causes each clause to evaluate to true.
- INDEPENDENT SET $\in \mathcal{NP}$:
 - Certificate *t*: a set of at least *k* vertices.
 - Certifier *B*: checks that no pair of these vertices are connected by an edge.
- ▶ Set Cover $\in \mathcal{NP}$:
 - Certificate *t*: a list of *k* sets from the collection.
 - Certifier *B*: checks if their union of these sets is *U*.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	${\mathcal N}{\mathcal P}$ vs. co- ${\mathcal N}{\mathcal P}$
		${\cal P}$ vs. ${\cal N}$	⁻ P	


• Claim: $\mathcal{P} \subseteq \mathcal{NP}$.

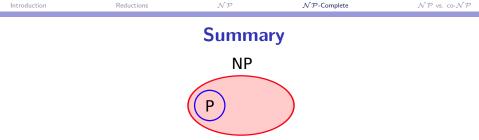

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	\mathcal{NP} vs. co- \mathcal{NP}	
		${\cal P}$ vs. ${\cal A}$	$\int \mathcal{P}$		
 Claim: P ⊆ NP. Let X be any problem in P. 					
The	ere is a polynomial t	ime algorithm A	that solves X.		

P

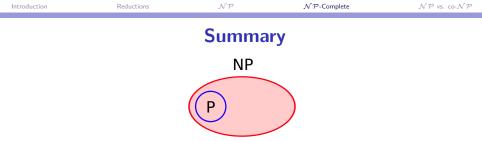
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}		
		$\mathcal P$ vs. Λ	$\int \mathcal{P}$			
 Claim: P ⊆ NP. Let X be any problem in P. There is a polynomial time algorithm A that solves X. B ignores t and simply returns A(s). Why is B an efficient certifier? 						

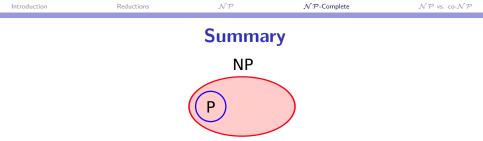
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$		
		${\cal P}$ vs. ${\cal N}$	$\int \mathcal{P}$			
 Claim: P ⊆ NP. Let X be any problem in P. There is a polynomial time algorithm A that solves X. B ignores t and simply returns A(s). Why is B an efficient certifier? Is P = NP or is NP - P ≠ Ø? 						

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	${\cal NP}$ vs. co- ${\cal NP}$			
		${\cal P}$ vs. ${\cal N}$	$\int \mathcal{P}$				
 Let Th B i 	 Claim: P ⊆ NP. Let X be any problem in P. There is a polynomial time algorithm A that solves X. B ignores t and simply returns A(s). Why is B an efficient certifier? Is P = NP or is NP - P ≠ Ø? One of the major unsolved problems in 						


April 12, 14, 21, 2016

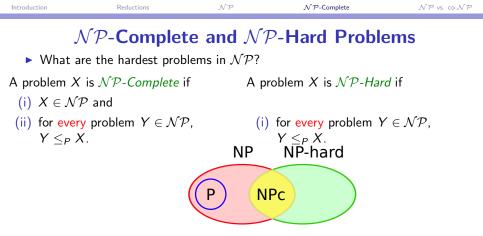
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	\mathcal{NP} vs. co- \mathcal{NP}	
		$\mathcal P$ vs. $\mathcal A$	$\int \mathcal{P}$		
 Claim: P ⊆ NP. Let X be any problem in P. There is a polynomial time algorithm A that solves X. B ignores t and simply returns A(s). Why is B an efficient certifier? Is P = NP or is NP - P ≠ Ø? One of the major unsolved problems in computer science. \$1M prize offered by Clay Mathematics Institute. 					
			Alter and the second se		



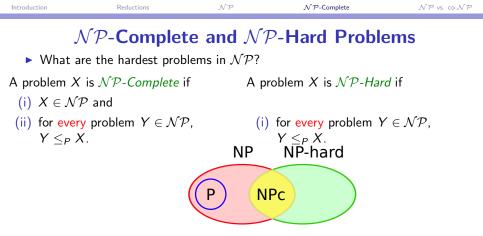

- $\blacktriangleright \ \mathcal{P} \in \mathcal{NP}$
- ▶ 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- ▶ 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover

- $\blacktriangleright \ \mathcal{P} \in \mathcal{NP}$
- ▶ 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- ▶ 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in NP?

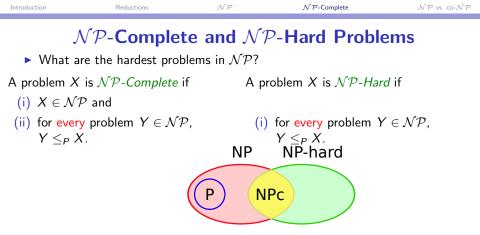
- $\blacktriangleright \ \mathcal{P} \in \mathcal{NP}$
- ▶ 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- ▶ 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in NP?
 - 1. Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 \leq_P X_2 \leq_P X_3 \leq_P \ldots$?



- $\blacktriangleright \mathcal{P} \in \mathcal{NP}$
- ▶ 3-SAT, VERTEXCOVER, SETCOVER, INDEPENDENTSET are in \mathcal{NP} .
- ▶ 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover
- What is the structure of the problems in NP?
 - 1. Is there a sequence of problems X_1, X_2, X_3, \ldots in \mathcal{NP} , such that $X_1 \leq_P X_2 \leq_P X_3 \leq_P \ldots$?
 - 2. Are there two problems X_1 and X_2 in \mathcal{NP} such that there is no problem $X \in \mathcal{NP}$ where $X_1 \leq_P X$ and $X_2 \leq_P X$?


\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems

• What are the hardest problems in \mathcal{NP} ?


Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}	
\mathcal{NP} -Complete and \mathcal{NP} -Hard Problems					
 What a 	• What are the hardest problems in \mathcal{NP} ?				
A problem X (i) $X \in \mathcal{N}\mathcal{N}$	is \mathcal{NP} - $Complete$ if $\mathcal P$ and	A	problem X is \mathcal{NP} -Hard	/ if	
(ii) for every $Y \leq_P X$	y problem $Y \in \mathcal{NP}$, K.	(i) for every problem Y $Y \leq_P X$.	$\in \mathcal{NP}$,	

▶ Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.

- ▶ Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in NP that cannot be solved in polynomial time, then no NP-Complete problem can be solved in polynomial time.

- ▶ Claim: Suppose X is \mathcal{NP} -Complete. Then $X \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
- Corollary: If there is any problem in NP that cannot be solved in polynomial time, then no NP-Complete problem can be solved in polynomial time.
- Does even one *NP*-Complete problem exist?! If it does, how can we prove that *every* problem in *NP* reduces to this problem?

Circuit Satisfiability

► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.

Circuit Satisfiability

- ► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - 1. the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator \land , \lor , or \neg .
 - 3. a single node with no outgoing edges represents the *output* of K.

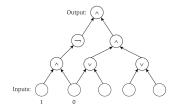
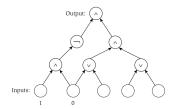



Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Circuit Satisfiability

- ► Cook-Levin Theorem: CIRCUIT SATISFIABILITY is *NP*-Complete.
- A circuit K is a labelled, directed acyclic graph such that
 - 1. the *sources* in *K* are labelled with constants (0 or 1) or the name of a distinct variable (the *inputs* to the circuit).
 - 2. every other node is labelled with one Boolean operator $\wedge,\,\vee,$ or $\neg.$
 - 3. a single node with no outgoing edges represents the *output* of K.

CIRCUIT SATISFIABILITY

INSTANCE: A circuit *K*.

QUESTION: Is there a truth assignment to the inputs that causes the output to have value 1?

Figure 8.4 A circuit with three inputs, two additional sources that have assigned truth values, and one output.

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.

Proving Circuit Satisfiability is $\mathcal{NP}\text{-}\text{Complete}$

► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in *n*, the size of the circuit is a polynomial in *n*.

- ► Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X?

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether $s \in X$ using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.

- ▶ Take an arbitrary problem $X \in \mathcal{NP}$ and show that $X \leq_P \text{CIRCUIT SATISFIABILITY}.$
- Claim we will not prove: any algorithm that takes a fixed number n of bits as input and produces a yes/no answer
 - 1. can be represented by an equivalent circuit and
 - 2. if the running time of the algorithm is polynomial in n, the size of the circuit is a polynomial in n.
- ▶ To show $X \leq_P \text{CIRCUIT SATISFIABILITY}$, given an input *s* of length *n*, we want to determine whether *s* ∈ *X* using a black box that solves CIRCUIT SATISFIABILITY.
- What do we know about X? It has an efficient certifier $B(\cdot, \cdot)$.
- To determine whether s ∈ X, we ask "Is there a certificate t of length p(n) such that B(s, t) = yes?"

Proving Circuit Satisfiability is $\mathcal{NP}\text{-}\text{Complete}$

► To determine whether s ∈ X, we ask "Is there a certificate t of length p(|s|) such that B(s, t) = yes?"

- ► To determine whether s ∈ X, we ask "Is there a certificate t of length p(|s|) such that B(s, t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First *n* sources are hard-coded with the bits of *s*.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.

- ► To determine whether s ∈ X, we ask "Is there a certificate t of length p(|s|) such that B(s, t) = yes?"
- View $B(\cdot, \cdot)$ as an algorithm on n + p(n) bits.
- Convert B to a polynomial-sized circuit K with n + p(n) sources.
 - 1. First *n* sources are hard-coded with the bits of *s*.
 - 2. The remaining p(n) sources labelled with variables representing the bits of t.
- ► s ∈ X iff there is an assignment of the input bits of K that makes K satisfiable.

▶ Does a graph G on n nodes have a two-node independent set?

- ▶ Does a graph G on n nodes have a two-node independent set?
- s encodes the graph G with $\binom{n}{2}$ bits.
- t encodes the independent set with n bits.
- Certifier needs to check if
 - 1. at least two bits in t are set to 1 and
 - 2. no two bits in *t* are set to 1 if they form the ends of an edge (the corresponding bit in *s* is set to 1).

Suppose G contains three nodes u, v, and w with v connected to u and w.

Suppose G contains three nodes u, v, and w with v connected to u and w.

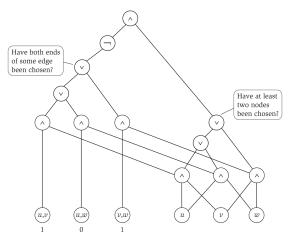


Figure 8.5 A circuit to verify whether a 3-node graph contains a 2-node independent set.

Asymmetry of Certification

- \blacktriangleright Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:
 - An input s is a "yes" instance iff there exists a short certificate t such that B(s, t) = yes.
 - An input s is a "no" instance iff for all short certificates t, B(s, t) = no.

Asymmetry of Certification

 \blacktriangleright Definition of efficient certification and \mathcal{NP} is fundamentally asymmetric:

- An input s is a "yes" instance iff there exists a short certificate t such that B(s, t) = yes.
- An input s is a "no" instance iff for all short certificates t, B(s,t) = no. The definition of NP does not guarantee a short proof for "no" instances.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		co- \mathcal{NP}		
	· · · · · · · · · · · · · · · · · · ·		$\overline{\mathbf{X}}$ · · · ·	

For a decision problem X, its complementary problem X is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		со- <i>М</i> (P	
For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.				

▶ If $X \in \mathcal{P}$,

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		со- <i>М</i>	P	
	ecision problem X , at $s \in \overline{X}$ iff $s \notin X$.		ntary problem \overline{X} is the	e set of inputs <i>s</i>

▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.

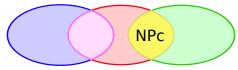
Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}
		со- <i>М</i>	D	
	ecision problem X , at $s \in \overline{X}$ iff $s \notin X$.		ntary problem \overline{X} is the	e set of inputs <i>s</i>

- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$?

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}	
со- \mathcal{NP}					
For a degree of the second	ecision problem X	its complemen	tary problem \overline{X} is the	e set of inputs s	

- For a decision problem X, its complementary problem X is the set of inputs s such that $s \in \overline{X}$ iff $s \notin X$.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class *co*- \mathcal{NP} iff \overline{X} belongs to \mathcal{NP} .

Reductions NP \mathcal{NP} -Complete \mathcal{NP} vs. co- \mathcal{NP} co- \mathcal{NP} ▶ For a decision problem X, its complementary problem X is the set of inputs s

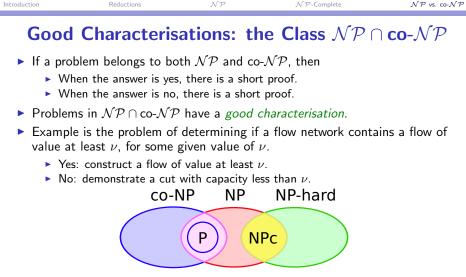

- such that $s \in \overline{X}$ iff $s \notin X$.
- ▶ If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- ▶ If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to NP. co-NP NP NP-hard

• Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?

Introduction Reductions NP NP-Complete NP vs. co-NP **CO-**NP• For a decision problem X, its complementary problem \overline{X} is the set of inputs s

- For a decision problem X, its complementary problem X is the set of inputs s such that s ∈ X iff s ∉ X.
- If $X \in \mathcal{P}$, then $\overline{X} \in \mathcal{P}$.
- If $X \in \mathcal{NP}$, then is $\overline{X} \in \mathcal{NP}$? Unclear in general.
- A problem X belongs to the class co-NP iff \overline{X} belongs to NP. **CO-NP NP NP-hard**

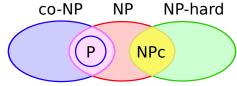
- Open problem: Is $\mathcal{NP} = \text{co-}\mathcal{NP}$?
- Claim: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then $\mathcal{P} \neq \mathcal{NP}$.


Good Characterisations: the Class $\mathcal{NP}\cap\text{co-}\mathcal{NP}$

- \blacktriangleright If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - ▶ When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.

- \blacktriangleright If a problem belongs to both \mathcal{NP} and co- $\mathcal{NP},$ then
 - When the answer is yes, there is a short proof.
 - When the answer is no, there is a short proof.
- ▶ Problems in $NP \cap co-NP$ have a good characterisation.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-Complete}$	\mathcal{NP} vs. co- \mathcal{NP}	
Good	Characteris	ations: th	e Class $\mathcal{NP} \cap$	co- \mathcal{NP}	
▶ If a problem belongs to both \mathcal{NP} and co- \mathcal{NP} , then					


- When the answer is yes, there is a short proof.
- When the answer is no, there is a short proof.
- ▶ Problems in $NP \cap co-NP$ have a good characterisation.
- Example is the problem of determining if a flow network contains a flow of value at least ν, for some given value of ν.
 - Yes: construct a flow of value at least ν .
 - No: demonstrate a cut with capacity less than ν .

• Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Introduction	Reductions	\mathcal{NP}	$\mathcal{NP} ext{-}Complete$	\mathcal{NP} vs. co- \mathcal{NP}
Go	od Characterisa	tions: t	he Class \mathcal{NP} (ר כס- \mathcal{NP}
•	Problem belongs to both When the answer is yes, When the answer is no, t	there is a sho	ort proof.	
► Pro	oblems in $\mathcal{NP}\capco extsf{-}\mathcal{NP}$ ł	have a <i>good</i>	characterisation.	
	ample is the problem of due at least $ u$, for some gi			ins a flow of

- Yes: construct a flow of value at least ν .
- No: demonstrate a cut with capacity less than ν .

- Claim: $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- ▶ Open problem: Is $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$?